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Introduction
Falls are both common and debilitating in patients with Parkinson’s disease (PD). Gait 
impairment is among the factors contributing to increased risk of falls in PD [1, 2], 
together with leg muscle weakness and poor balance [2–4]. Indeed, patients with PD are 
more often admitted to hospital than healthy individuals because of a fall-related injury 
[5].
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Background:  Gait impairment is a risk factor for falls in patients with Parkinson’s 
disease (PD). Gait can be conveniently assessed by electronic walkways, but there is 
need to select which spatiotemporal gait variables are useful for assessing gait in PD. 
Existing models for gait variables developed in healthy subjects and patients with 
PD show some methodological shortcomings in their validation through exploratory 
factor analysis (EFA), and were never confirmed by confirmatory factor analysis (CFA). 
The aims of this study were (1) to create a new model of gait for PD through EFA, (2) to 
analyze the factorial structure of our new model and compare it with existing models 
through CFA.

Results:  From the 37 variables initially considered in 250 patients with PD, 10 did not 
show good-to-excellent reliability and were eliminated, while further 19 were elimi-
nated after correlation matrix and Kaiser–Meyer–Olkin measure. The remaining eight 
variables underwent EFA and three factors emerged: pace/rhythm, variability, and 
asymmetry. Structural validity of our new model was then examined with CFA, using 
the structural equation modeling. After some modifications, suggested by the Modi-
fication Indices, we obtained a final model that showed an excellent fit. In contrast, 
when the structure of previous models of gait was analyzed, no model achieved con-
vergence with our sample of patients.

Conclusions:  Our model for spatiotemporal gait variables of patients with PD is the 
first to be developed through an accurate EFA and confirmed by CFA. It contains eight 
gait variables divided into three factors and shows an excellent fit. Reasons for the 
non-convergence of other models could be their inclusion of highly inter-correlated or 
low-reliability variables or could be possibly due to the fact that they did not use more 
recent methods for determining the number of factors to extract.
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Electronic walkways are an easy instrument for assessing gait that provide a large 
number of spatiotemporal variables of gait. Even if these systems are expensive and led 
to evaluate gait only in the laboratory context, they have been often used to assess gait 
of patients with PD in clinical practice [6–9]. In particular, the GAITRite® system was 
demonstrated to be a reliable instrument [10] and showed an excellent concurrent valid-
ity for measuring individual footstep data [11]. However, to date there are no agreed 
standardised protocols for measuring gait or for selecting which gait variables among 
the plethora of collected ones are best suited to assess gait in patients with PD. Numer-
ous models of gait were previously developed with the aid of factor analysis to reduce 
the number of variables collected and to collect them into factors [12–18]. Most of these 
models were developed in older adults and include from 3 to 5 different factors [12, 13, 
16–18]. For instance, Verghese et al. [16–18] identified 3 factors that characterize gait 
performance in older adults: “rhythm”, “pace”, and “variability”. The “pace” factor, in par-
ticular, predicted decline in executive function in older adults [16]. More recently, Hol-
lman et  al. [12] divided the spatiotemporal gait variables into the following 5 factors: 
“rhythm”, “phases of the gait cycle”, “variability”, “pace” and “base of support”. Lord et al. 
[13] developed a model with a smaller number of variables, and identified similar fac-
tors to Hollman’s model that accounted for 79.5% of total variance in test scores: “pace”, 
“rhythm”, “variability”, “asymmetry”, and “postural control”. Finally, Thingstad et al. [15], 
after a first selection of gait variables, created a model for older patients with hip frac-
ture based on four factors: “variability”, “asymmetry” and “postural control” and another 
single factor combining pace and rhythm (“pace/rhythm”).

As regards patients with PD, only Lord et al. [14] created a specific model to evaluate 
gait in PD with an electronic walkway. Their model is similar to that of healthy subjects 
except for a few variability parameters (step time, stance time and step width variability) 
that were allocated in different factors. Other authors [19, 20] created gait models spe-
cific for patients with PD, but using inertial sensors rather than an electronic walkway. 
In particular, Horak et al. [19] used body-worn sensors to determine functional mobility 
domains for evaluating gait, postural sway, step initiation, turning, and trunk and arm 
motion when patients were performing an Instrumented Stand and Walk Test. On the 
other hand, Morris et al. [20] used body-worn sensors for analysing only gait parameter 
in a controlled and in a free-living environment, finding four factors.

The seven existing models proposed for assessing gait with the electronic walkway 
were developed in large samples in the case of elderly subjects [12, 13, 15–18], but in 
the single case of patients with PD the sample size was small (n = 121) [14]. In addition, 
some methodological limitations affected all models: (a) shortcomings in the procedure 
of exploratory factor analysis (EFA); (b) lack of confirmation of the models through con-
firmatory factor analysis (CFA).

Regarding the procedure of EFA, in some models [12, 14–18] the reliability of the 
included variables was low [21, 22] or not yet tested. In addition, in all seven models, 
only one method of factor determination (Kaiser criterion), when specified, was used 
despite the recommendation in the literature to apply more than one method [23, 24]. 
Moreover, none of the studies took into consideration other methods such as parallel 
analysis and minimum average partial (MAP) rule, considered in the literature to be two 
of the most accurate approaches for determining the number of factors [25–27].
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It appears that all the existing models were defined only through EFA, that serves 
to determine if numerous measures can be explained by a smaller number of factors, 
but it cannot verify a model [28, 29]. On the contrary, the models should be confirmed 
through CFA that is necessary to verify the factor structure of a set of observed variables 
and test the hypothesis that a relationship exists between observed variables and their 
underlying latent construct [30].

Given these shortcomings with the existing models, the principal aims of our study 
were: (a) to create a new model of gait evaluation specific for patients with PD through 
EFA; (b) to analyze the factorial structure of our new model and compare it with existing 
models through CFA, to identify the best model suitable for evaluating gait in patients 
with PD.

Results
Inter‑trial reliability

Intraclass correlation coefficients (ICC) values for all 37 gait variables initially consid-
ered are shown in Fig. 1. Reliability was excellent for all spatiotemporal gait variables and 
for all asymmetry variables. On the contrary, the following variability variables showed 
good-to-fair or poor reliability: SD step velocity, SD step length, SD stride length, SD 
step width, SD step time, SD stance time, SD double support time, CV step time, CV 
stride time, CV stance time. These ten variables were excluded from the subsequent 
analysis (see Fig. 2). 
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Fig. 1  Inter-trial reliability of all gait variables. a. Hollman et al. [12]; b. Lord et al. [13]; c. Lord et al. [14]; d. 
Thingstad et al. [15]; e. Verghese et al. [16]; f. Verghese et al. [17]; g. Verghese et al. [18]
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Correlation matrix

Based on the correlation matrix, the following variables were eliminated from the 
remaining group of 27 variables: all stride variables, all stance time and single sup-
port time variables, all variables expressed as % of gait cycle, walk ratio, step length, 
step width and step length asymmetry. Since many variability variables expressed 
as CV showed an adequate reliability, we considered only these ones; therefore, the 
remaining two variables expressed as SD (swing time and single support time) were 

Reliability:
• removed variables with ICC 

< 0.75

Removed:
SD step velocity 
SD step length
SD stride length
SD step width
SD step �me

SD stance �me
SD double supp. time
CV step �me
CV stride �me
CV stance �me

Removed: 
All stride variables
Cadence
All stance �me variables
All single supp. �me 
variables
SD variability variables
Variables % GC
Walk ra�o
Step length
Step width
Step length asymmetry

Kept:
All step variables
Step �me
Step �me variables
Swing �me variables
CV variability variables
Double Support �me
Gait speed and step �me

Correla�on matrix:
• considered variables with 

correla�on coefficients ≥ 0.30 but 
without high correla�on (≥ 0.90)

Kaiser-Meyer-Olkin measure (KMO): 
• KMO of each single variable         

< 0.50 is unacceptable;
• Overall KMO should be > 0.70

Swing �me removed (KMO = 0.35);

Overall KMO = 0.76

Variables retained:
1. Gait speed
2. Step �me
3. Double support �me
4. CV step velocity 

5. CV step length
6. CV swing �me
7. Step �me asymmetry
8. Swing �me asymmetry

Variables collected:
1. Gait speed
2. Walk ra�o
3. Step length
4. Stride length
5. Step width
6. Cadence
7. Step �me
8. Stride �me
9. Swing �me
10. Stance �me
11. Single support �me
12. Double support �me
13. Swing �me % GC

14. Stance �me % GC
15. Single supp. �me % GC
16. Double supp. �me % GC
17. SD step velocity 
18. SD step length
19. SD stride length
20. SD step width
21. SD step �me
22. SD swing �me
23. SD stance �me
24. SD single supp. �me
25. SD double supp. �me
26. CV step velocity 

27. CV step length
28. CV stride length
29. CV step �me
30. CV stride �me
31. CV swing �me
32. CV stance �me
33. Step length asymmetry
34. Step �me asymmetry
35. Swing �me asymmetry
36. Stance �me asymmetry
37. Single supp. asymmetry

Fig. 2  Flow chart describing the initial selection of gait variables
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eliminated. Walk ratio was eliminated since it was derived from other variables (step 
length and cadence) [29]. Based on Kaiser-Meyer-Olkin measure (KMO), swing time 
was eliminated since its value (0.35) did not meet the criteria for analysis set in the 
Methods. After this selection process, eight variables remained for the factor analy-
sis, with an overall KMO of 0.76, thus enough to produce distinct factors with EFA 
(see below and Fig. 2).

Exploratory factor analysis

Principal component analysis (PCA) revealed three factors with an eigenvalue > 1 
(Kaiser criterion) (Table 1). These three factors accounted for 80.2% of the total vari-
ance in gait performance. In particular, the first factor accounted for 45.6%, the sec-
ond for 19.9% and the third for 14.7%. The scree plot test was hard to interpret, since 
it was impossible to determine the point of inflexion (see Fig.  3, “observed” data). 
Results of Horn’s parallel analysis are shown in Fig. 3. The point at which the line of 
observed values intersects the line of random uncorrelated data indicates that three 
factors should be retained, according to the criterion of parallel analysis. Finally, the 
MAP procedure confirmed that three factors should be extracted. 

Table 1  Results of principal component analysis

Factor Eigenvalue Proportion of variance Cumulative 
variance

1 3.645 0.456 0.456

2 1.598 0.199 0.656

3 1.172 0.147 0.802

4 0.577 0.072 0.874

5 0.398 0.049 0.924

6 0.265 0.033 0.957

7 0.206 0.026 0.983

8 0.138 0.017 1
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Fig. 3  Results of Horn’s parallel analysis on a scree plot. The real data (“observed”) and the random data are 
presented. Grey line identifies eigenvalue = 1
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Promax rotation of EFA was conducted on the eight variables considered, accord-
ing to the three main factors found in the previous PCA analysis. Factors were 
labelled based on the variables grouped in each factor and in line with previous pub-
lished models: pace/rhythm, variability and asymmetry (Table 2).

Confirmatory factor analysis

According to the results of EFA, our new model was built with structural equation 
modeling (SEM): it showed an overall mediocre fit to the observed data: χ2 = 46.44, 
df = 16, p < 0.0005, RMSEA = 0.09 (CI90 = 0.06–0.12), CFI = 0.96, TLI = 0.94, 
SRMR = 0.05. Based on the Modification Indices (MIs), we then tried to improve the 
fit of the model including the following correlations: step velocity CV correlated with 
step time, step length CV and swing time CV (Fig. 4). The resulting model (χ2 = 17.19, 
df = 13, p = 0.16, RMSEA = 0.04 (CI90 = 0.00–0.08), CFI = 0.99, TLI of 0.98 and 
SRMR = 0.03) showed an excellent fit in each index.

We analyzed with SEM the structure of the other existing gait models [12–18]. No 
model reached convergence with our sample of patients. Hence, we determined the 
number of factors through the same methods used for our model (parallel analysis 

Table 2  Factor loading of  gait parameters on  three factors rotated and  extracted 
by exploratory factor analysis

Significant item loading is reported in italic

Variable 1st factor 2nd factor 3rd factor

Gait speed − 0.674 − 0.334 0.044

Step time 0.918 − 0.170 0.033

Double support time 0.908 0.065 − 0.051

CV step velocity 0.058 0.738 − 0.058

CV step length − 0.061 0.867 − 0.008

CV swing time 0.107 0.603 0.007

Step time asymmetry − 0.111 0.066 0.685

Swing time asymmetry 0.136 − 0.069 0.668

Variability

Gait speed Double
supp. �me

Step �me
asymmetry

Swing �me 
asymmetry

Step length 
CV

Swing �me 
CV

Step velocity
CV

ε2ε1 ε3 ε7 ε8ε4 ε5 ε6

Pace/ 
rhythm

Step �me

Asymmetry

0.65 -0.85 -0.98

-0.37

0.64 0.74 0.76 0.60 0.87

-0.47 0.34

-0.40

0.22 0.28 0.04 0.59 0.46 0.43 0.64 0.24

-0.29

0.36

-0.19

Fig. 4  Standardized solution of confirmatory factor analysis for our model. Circles from ε1 to ε8 represent 
the measurement errors. One-headed arrows represent correlations while two-headed arrows represent 
covariance. For each variable, values at the bottom represent errors, while values at the top represent 
Standardized Regression Weights
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and MAP, in addition to Kaiser criterion). As shown in Fig. 5, the number of factors 
reported in the existing models was generally different from that found in our anal-
ysis. In three of the existing models considered, parallel analysis and/or MAP sug-
gested a smaller number of factors with respect to the Kaiser criterion.

Discussion
The aims of this study were to create a new model of gait specific for patients with 
PD and to compare it with existing models in the literature, to identify which is the 
best model for evaluating gait of patients with PD. To this end, we considered 37 gait 
variables previously included in models of gait developed in elderly subjects [12, 13, 
15–18] and in patients with PD [14]. The structure of our new model was analyzed 
through CFA. The goodness of fit analysis revealed that the overall content structure 
of our model (with eight gait variables distributed into three factors) is clear and indi-
cates a good factorial validity. The comparison of our proposed model for assessing 
gait in PD with existing models demonstrates a higher level of structural validity in 
our model than in the existing ones, developed for elderly subjects or patients with 
PD.

Inter‑trial reliability

We found an excellent reliability for all 16 spatiotemporal variables considered, a good 
to excellent reliability for the five asymmetric variables and a poor to moderate reliability 
for many variability variables.
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Fig. 5  Number of factors in the seven existing models and in our new proposed model. Number of factors 
are shown as reported in existing models and as calculated in our sample of patients with PD through Kaiser 
criterion, parallel analysis and MAP
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Prior to our study, the only evaluation of inter trial reliability of gait variables meas-
ured with the GAITRite® system was performed in healthy subjects [31]. These authors 
found that inter trial reliability (speed, cadence, stride length, single support and the 
proportion of the gait cycle spent in double support) was good, with ICCs (3, 1) ranging 
from 0.85 to 0.97. Even though we assessed a different population (i.e. patients with PD), 
our inter trial ICC values were comparable to those of [31].

Similarly to Wong et  al.’s study [32] in patients with sub-acute stroke, we found a 
slightly lower ICC value for step width than for cadence, velocity or step length. Vari-
ability variables showed low values of ICC, with none reaching an excellent value. Galna 
et al. [21] assessed reliability of gait variability (SD variables) measured with GAITRite® 
in patients with PD and found an ICC range between 0.40 and 0.80. According to the 
latter study, no variability variables (expressed as SD or CV) exceeded an ICC of 0.80. 
This was confirmed in our study despite some important differences in the procedure of 
GAITRite® trials acquisition: in Galna et al. [21], patients continuously walked around a 
25 m oval circuit within which the walkway located and gait was repeatedly sampled as 
subjects walked over the walkway. In contrast, we used an intermittent traditional pro-
tocol, like almost all studies carried out so far on the GAITRite® walkway [12, 15–18]. 
Reliability of asymmetry variables had been previously measured only in patients with 
stroke [33]: in spite of the different disease under study, our findings are similar to those 
of patients with stroke. Overall, this underlines the reliability of variability variables even 
in different diseases, at least when assessed with GAITRite® system.

Exploratory factor analysis

EFA involved a first phase of criteria extraction through PCA. The number of factors 
was determined on the basis of different criteria. The methods of Kaiser criterion and/
or Cattell Scree Test, commonly used, were integrated with Horn’s parallel analysis and 
MAP. According to all methods of PCA, we divided our eight gait variables into three 
different factors, a model structure similar to the models of Verghese et al. [16, 17]. In 
the latter models, however, only spatiotemporal and variability variables were presented. 
Therefore, these models did not yield any information besides “gait speed” given that 
all variables considered in the models of Verghese et al. [16, 17] were related to speed. 
Moreover, these models did not consider “gait asymmetry”, which would be relevant to 
assess in PD since it is already altered in the first stages of PD and in other neurological 
diseases [34, 35]. Thingstad et al. [15], after selecting the variables to be considered in 
the subsequent factor analysis through correlation matrix and KMO measure, found the 
same three factors as in our model. Nevertheless, since they considered sixteen gait vari-
ables instead of eight as in our model, EFA produced a further factor, named “postural 
control”. Thingstad et al. [15] in this factor included the variables walk ratio, step length 
and step width, while other authors [13, 14] included step length asymmetry and step 
width variability. In contrast, in our analysis all these variables were eliminated in the 
initial phase of selection: step width SD, since it was one of the variables showing lowest 
reliability, walk ratio since it was derived from other variables, while the other three vari-
ables (step length asymmetry, step width and step length SD) showed a correlation that 
was either too high or too low. Moreover, the step width variability variable (expressed as 
SD), showed low to moderate reliability also in the literature (ICC = 0.51 and ICC = 0.65 
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for intermittent and continuous walking, respectively) (Galna et al. [21]). Not unexpect-
edly, in Lord’s models [13, 14] “postural control” also presented the lowest percentage 
of variance when compared with the other factors. A further practical point to consider 
that makes difficult the application of the “postural control” factor in gait models is that 
many variables that characterize “postural control” cannot be always evaluated or show 
low reliability if gait is assessed through inertial sensors rather than pressure-sensitive 
walkways. Morris et al. [20], for example, tried to reproduce the model of Lord et al. [14] 
and removed the “postural control” factor since step width and step width SD variables 
could not be measured using body worn monitors. Nevertheless, since Morris et al. [36] 
reported that the “postural control” factor had been shown to be sensitive to PD, we 
consider the lack of this factor in our model as a limit.

Finally, considering the model based on body worn monitors [20], they found factors 
similar to ours (pace, rhythm, asymmetry and variability), with a larger number of vari-
ables. We can, therefore, conclude that different instruments (GAITRite® or body worn 
monitors) may lead to similar conclusion regarding gait factor structure.

Confirmatory factor analysis

CFA suggested that our model could be a good solution for the evaluation of gait of 
patients with PD. The values of all indexes showed that, with the modifications made on 
the basis of MIs, the final model had an excellent fit. CFI and TLI, in fact, reached values 
above the cut-off of 0.95. It is also important to note that not only the RMSEA value, but 
also the upper bound of the CI90, were below the value of 0.06, considered to be the cut-
off for excellent fit.

Other models did not reach convergence when examined using the SEM [12–18]. Pre-
viously, however, these models had never been analyzed and/or confirmed through CFA. 
Only Lord et al. [13] reproduced the model of Verghese et al. [17], but using only EFA. 
EFA is normally used as an exploratory first step during the development of a measure, 
but it must be followed by CFA to confirm the factor structure identified by EFA [37].

One of the reasons for the non-convergence of the other existing models [12–18] could 
be that each had a considerable portion (about 25–60%) of gait variables that proved to 
be not reliable in our sample of patients with PD, and they also had some variables that 
were highly inter-related.

In addition, it is important to note that the number of factors identified in previous 
models was the same or higher than that found in our model. This could be due to the 
methods used (Kaiser criterion and scree plot) for determining the number of factors. 
Though used widespread, these methods have been shown to be less accurate than 
newer methods (parallel analysis and MAP). In particular, some authors used only the 
eigenvalue > 1 rule (Kaiser criterion) [12, 15], whilst others used both the Kaiser criterion 
and scree plot [13], and some did not specify any method at all for determining factors 
[14, 16–18]. The Kaiser criterion, often in conjunction with the scree plot, sometimes 
overestimates the number of factors, and this could have negative effects on subsequent 
analysis [24]. On the contrary, parallel analysis and MAP are considered to be the two 
most accurate methods for factor retention and they outperform Kaiser’s and Cattell’s 
criteria [26, 27, 38]. In our study, we tried to analyze the structure of the other models 
by assessing the number of factors to extract not only with the Kaiser criterion, but also 
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with parallel analysis and MAP methods. It is interesting to note that in all studies our 
analysis revealed a lower number of factors than that reported by the authors. The non-
concordance of these results with our data could be due to the low reliability of the vari-
ables included in previous models. Furthermore, in four of the models, parallel analysis 
and MAP confirmed the results obtained with the Kaiser criterion, while in the other 
three models these analysis produced fewer factors. Finally, no result was obtained in 
the MAP method when we considered the gait variables proposed by Hollman et al. [12] 
since the correlations between variables were too high.

Three factors summarize our model

The EFA of our model finally selected three factors, labelled according to previous 
published models as “pace/rhythm”, “variability” and “asymmetry”, which accounted 
for about 80% of the variance, with a total of only eight spatiotemporal, variability and 
asymmetry variables.

Pace/rhythm factor

The first factor, named “pace/rhythm”, had three variables: gait speed (which represents 
the pace of gait), step time, and double support time, which explains the rhythmicity of 
gait in PD.

In most of the existing models, as in ours, the factor with the largest explained vari-
ance is the one that includes gait speed [13–18]. Gait speed is the main variable used 
to describe gait of patients with PD: indeed, a reduction in gait speed is considered a 
cardinal feature of gait in these patients [39]. Many authors reported that this variable 
is also one of the strongest predictors of future falls both in patients with PD [1, 40] and 
in elderly people [41]. Of note, both in animals and humans, gait parameters change as a 
function of speed even under “normal” conditions [42]; for this reason, it was challeng-
ing to decide which variables to retain in our model. We believe that one of the causes 
for the non-convergence of previous models lies in their having included a plethora of 
highly correlated variables. In particular, most models included gait speed, step length 
and cadence or step time, variables that are derived from or strictly related to each other. 
Including variables that are sums or products of other variables in the same matrix can 
cause errors of interpretation of the factor analysis [29]. As a consequence, in our model 
we decided to maintain only step variables instead of stride variables, and step time 
instead of cadence, as suggested also by Thingstad et al. [15]. Gatesy et al. [43] showed 
that in bipedal locomotion, particularly in humans, increase of gait speed is achieved 
more by an increase of stride length than of stride frequency (generally expressed as 
cadence, that we removed in favour of step time, since they were strictly correlated). This 
could be due to the fact that gait speed and step length are presumably controlled by the 
same cortico-basal ganglia circuit, while cadence (i.e. step time) is controlled by brain-
stem and spinal cord mechanisms [44]. For these reasons and for the strong correlation 
of gait speed with step length rather than step time, we decided to retain gait speed and 
step time, but remove step length.

Finally, the double support time variable is represented in the pace/rhythm factor. 
This variable is reported to be increased in patients with PD, not only in linear walking 
[34], but also in curved trajectories [45]. Double support time is a phase of gait cycle 
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considered to be a stabilizing component of gait [46]: not unexpectedly, fallers usually 
have an increased double support time.

Variability factor

The second factor, called “variability”, includes features that are not quantifiable in rou-
tine clinical observation. The variability factor refers to unsteadiness and arrhythmic 
pattern of stepping [47]. The increased gait variability and impaired rhythmicity in PD 
worsen as the PD progresses [45, 48, 49] and may reflect reduced automaticity and dam-
aged locomotor synergies [50, 51]. Increased gait variability is usually associated with an 
increased fall risk in both elderly individuals [52] and patients with PD [53], suggesting 
that increased variability may be a very useful element in fall risk assessment. In most 
gait models presented up to now, the variability variables were dispersed among several 
factors [13–15]. In many models, the variability was part of the factor in which the vari-
able “walking speed” was present [13–15]. In our study, variability is included as a sepa-
rate factor from speed: this finding is in accordance with the first studies on gait models 
in elderly subjects [16–18] and with studies that found gait variability to be influenced 
independently of gait speed by experimental stressors such as dual task, reduced light-
ing and walking on a treadmill [54, 55]. In keeping with such independence, it seems 
that gait speed and gait variability are regulated by different brain functional networks. 
Exploratory voxel-wise analyses further suggest that gait speed is specifically linked to 
the functional connectivity of the bilateral middle frontal gyri within the frontopari-
etal control network [44]. On the other hand, gait variability seems primarily linked to 
the right superior parietal sulcus within the dorsal attention network [56]. In keeping 
with different brain networks regulating gait speed and variability, it has been shown 
that, among gait variability parameters, swing time variability is independent from gait 
speed both in patients with PD and in healthy subjects [55]. Indeed, swing time vari-
ability is determined predominantly by balance-control mechanisms [45, 57]. On the 
other hand, it seems that other gait variability measures such as step length CV, known 
to be increased in PD as a function of the Hoehn and Yahr stage [58], are predominantly 
determined by the gait-patterning mechanism. Moreover, other variability parameters 
such as stride time variability reflect automatic rhythmic stepping mechanisms and are 
more sensitive to different rhythmic rates, and hence walking speeds.

Asymmetry factor

The third factor of our model, termed “asymmetry”, is composed of two temporal asym-
metry variables: step and swing time. Asymmetry of gait has been reported in patients 
with neurological disorders such as cerebrovascular disease [35, 59] and PD [34, 60–
62], as well as in amputees [63]. Specifically for PD, alterations in gait symmetry were 
observed both in patients with recent diagnosis [34] and in those with mild PD [61] as 
well as moderate PD [60]. The mechanisms underlying the left–right coordination of 
walking in PD are poorly understood. In a recent study, Fling et al. [62] suggested that a 
reduced transcallosal sensorimotor structural connectivity may be a significant mecha-
nism underlying bilateral gait asymmetries in patients with PD, particularly in reference 
to spatial rather than temporal coordination.
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Swing time asymmetry seems to be altered from the early stages of PD and increases 
more in patients with freezing of gait episodes than in those without [60]. Unexpectedly, 
this gait variable did not show any association with asymmetry of clinical symptoms, 
such as tremor and rigidity [60, 61]. Interestingly, in the case of step time asymmetry, 
no association was found with disease severity or other spatiotemporal variables of gait 
[64].

Limitations

Our study has some limitations. The factor analysis was conducted only in a sample 
of patients with PD, without first analysing the model in a sample of elderly subjects. 
Hence, further studies are required to verify models of gait specific for elderly indi-
viduals. Moreover, even if the model was created to evaluate the general population 
of patients with PD, we cannot draw conclusions regarding the relationship between 
cognitive performance and gait since relevant tests were administered only in about 
30% of patients.

Our new model is composed by only three factors, without the “postural control” 
factor: since Morris et al. [36] reported that this factor had been shown to be sensitive 
to PD progression, we could consider its lack as a limit.

In the future, it might be interesting also to validate our model with accelerometers 
that offer a series of advantages such as lower cost and applicability in free-living situ-
ations. However, right now we believe it is important to have a model usable with 
electronic walkways since they are still frequently used in scientific studies and clini-
cal practice [7, 65–68].

Conclusions
In summary, our study showed that a small number of variables can describe a large 
variance of the gait pattern of patients with PD. The model we identified demon-
strated to be more appropriate than existing models, whether developed for elderly 
or patients with PD. Our model may be useful for future research since clinicians will 
be able to assess gait of patients with PD and to evaluate improvement following reha-
bilitation limiting the analysis to the eight variables identified.

Finally, from a methodological point of view, our study also suggests the importance 
of creating models in which there are no redundant variables and in which methods 
for determining the number of factors to be extracted are accurately selected.

Methods
Participants

Data were collected from 250 patients with idiopathic PD with median Hoehn–Yahr 
(H&Y) stage 2.5 evaluated at the Scientific Institute of Veruno (Novara, Italy) of the 
Istituti Clinici Scientifici Maugeri (IRCCS), between February 2014 and April 2017. 
PD was defined according to the UK Parkinson’s disease Society Brain Bank Crite-
ria [69]. Inclusion criteria were: (a) ability to understand the required motor tasks; 
(b) ability to walk independently, with or without an assistive device; (c) absence of 
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recent bone fractures. Exclusion criteria were: (a) musculoskeletal injury limiting the 
ability to walk; (b) any other serious cardio-respiratory problem. The Ethics Commit-
tee of the Institute approved the study (approval number # 905 CEC), and informed 
consent was obtained from all patients. Table 3 summarizes patient’s characteristics: 
gender, age, height, body mass index (BMI), disease duration, levodopa equivalent 
daily dose (LEDD) and H&Y stage.

Procedure

Spatiotemporal variables of gait were acquired using a GAITRite® electronic walkway 
(GAITRite®, CIR Systems, Sparta, NJ, USA). Subjects were asked to walk on the walk-
way barefoot at a comfortable speed; participants started to walk 2 m before and stopped 
2 m after the end of the walkway in order to avoid speeding up and slowing down on the 
walkway. Subjects repeated the walk four times [35], but the first trial was not consid-
ered for further analysis. That because the main gait variables of first trial were signifi-
cantly different from the other three, so it was considered as a practical trial. Based on 
the recorded footfalls, the walkway calculated several different gait variables. We con-
sidered all variables proposed in previous models [12–18] as summarized in Fig. 2. In 
addition, we averaged all single spatiotemporal and variability variables, the latter ones 
expressed as SD, from the right and left foot. Finally, for all significant variables we cal-
culated the following measures already considered in previous studies: (a) variability 
variables expressed as coefficient of variance (CV = SD/mean*100); (b) asymmetry vari-
ables calculated as 100*|ln (left/right)|; (c) walk ratio as the ratio step length/cadence.

Statistical analysis

Statistical analysis was divided into four phases (see Fig. 2 for details): (1) inter trial reli-
ability; (2) correlation matrix; (3) EFA, necessary for creating a new model of gait based 
on our sample of PD patients; (4) CFA conducted on our new model and on the seven 
existing models. All analyses were performed using STATA R13.0 statistical software 
package (StataCorp, College Station, TX, USA).

Table 3  Clinical details of patients

Values are expressed as mean ± standard deviation or median and interquartile range [25%, 75%]

Patients (n = 250)

Sex M = 134; F = 116

Age (years) 69.8 ± 8.7

Height (cm) 164.7 ± 8.7

BMI (kg/m2) 26.2 ± 4.4

Disease duration (years) 7.7 ± 5.3

LEDD 660.5 [434.8, 1071.8]

H&Y stage 2.5 [2.0, 3.0]

 H&Y 1 (n) 5

 H&Y 1.5 (n) 24

 H&Y 2 (n) 52

 H&Y 2.5 (n) 91

 H&Y 3 (n) 73

 H&Y 4 (n) 5
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1. Inter trial reliability

The 2nd, 3rd and 4th walking trial were used to calculate the reliability of the 37 variables 
collected. For each walking trial, an average value of each single variable was computed 
from about 7–8 steps. This value was used for the reliability calculation. Reliability was 
estimated by means of the ICC from three walking trials performed by the 250 subjects. 
In particular, we used an ICC 3,k type (Model 3, Form k) [70] because the rater was fixed 
and the data used to calculate the ICC were the mean data of the steps in each walking 
trial. An ICC < 0.40 was considered as indicating poor reliability, 0.40 ≤ 0.59 moderate 
reliability, 0.60 ≤ 0.74 good reliability, and ≥ 0.75 excellent reliability [71].

2. Correlation matrix

A correlation matrix was created to display the relationship between variables that 
showed an excellent reliability. Unlike the inter trial reliability calculation in which the 
“average values” of three walking trials were used, in the case of the correlation matrix 
build, only one average value was chosen among the three available values for each vari-
able. The correlation between two variables was then calculated by pairs of 250 average 
values, one pair for each subject. For EFA (see below), only the variables with correlation 
coefficients ≥ 0.30 but < 0.90 were considered [72]. Finally, the KMO of sampling ade-
quacy was run: KMO values for each single variable and overall KMO should be > 0.50 
and > 0.70, respectively, to be considered acceptable for analysis [29].

3. Exploratory factor analysis

EFA was conducted with the variables selected according to the correlation matrix. EFA 
is a technique used to determine if numerous measures can be explained by a small 
number of factors [29]. The extraction of factors was made using PCA (for the sake of 
clarity, we used the term factor for both PCA and EFA, even if “component” is more 
appropriate for PCA results) [29]. As suggested by Williams et al. [23], different crite-
ria are necessary to identify the number of factors: (a) Kaiser’s criteria, which considers 
only factors with an eigenvalue > 1 [73]; (b) Cattell’s Scree Test, a method that involves 
visual examination of a plot of eigenvalues for each factor: it identifies the breakpoint at 
which the scree begins; only factors that do not belong to the scree are retained [74]; (c) 
cumulative percent of variance extracted; (d) Horn’s parallel analysis, in which a random 
data set is generated and superimposed on the scree plot of real data: only those factors 
whose eigenvalue is greater than that from random data are retained [75]; (e) MAP rule 
[76], a method based on the analysis of partial correlation matrices.

Once the number of factors was determined through PCA, EFA proceeded with factor 
rotation. Factor rotation is commonly conducted in order to assess the distribution of 
variables into factors, obtaining a solution that is easier to interpret than the initial fac-
tor extraction. Since factors were expected to be correlated, a Promax oblique rotation 
method was used. Promax rotation produces correlation coefficients of items: items with 
factor loadings higher than 0.32 were considered relevant for that factor [72].
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4. Confirmatory factor analysis

Our sample size satisfied by an ample margin the two general criteria for CFA [77]: a 
minimum of 200 cases and a subject-to-item ratio of 20:1. For CFA, only one average 
value was chosen from the two that were not used in the build of the correlation matrix.

The structural validity of both our new model of gait and of the existing ones [12–
18] was examined with CFA, using SEM. CFA is a model-testing technique in which 
the hypothetical structure of a measure is tested [78]. In SEM analysis, conducted 
with the maximum likelihood method, χ2 test was used to identify whether the model 
fitted the data well. In addition, the models’ goodness of fit was assessed using the 
following indices: Comparative Fit Index (CFI) [79], Tucker–Lewis Index (TLI), Root 
Mean Square Error of Approximation (RMSEA) [80] with 90% confidence inter-
val (CI90) and the Standardized Root Mean square Residual (SRMR) [79]. A CFI and 
TLI > 0.95, RMSEA < 0.06 and SRMR < 0.08 indicate a good fit [81].

We allowed unique variances of different items to correlate in the case models dem-
onstrated an acceptable fit in some indices but not in others. These secondary modi-
fications do not affect conclusions about adequacy of a factor structure, but they can 
improve model fit by increasing the proportion of variance explained [82]. The selec-
tion of which correlations to perform between unique variances were based on the 
MIs [83]. MIs considered were suggested by SEM group options of STATA 13.0 [84].

On the contrary, when the existing models did not reach convergence at SEM analy-
sis, we investigated their structure. Since in previous studies, the method for deter-
mining the number of factors of these existing models was only the Kaiser criterion 
or was not specified, we assessed the number of factors for each previous model with 
two more recent methods of extraction: parallel analysis and MAP.

Finally, the goodness of fit of the seven models was compared by computing the χ2 
difference tests of each model pair, calculated as a χ2

= χ
2

2
− χ

2

1
 with df = df2 − df1.
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