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Background
The patellar tendon is an integral part of the knee extensor mechanism. Although ten-
don rupture is rare, it is a potentially devastating injury. Approximately, 3–6% of all knee 
extensor mechanism injuries are patellar tendon ruptures [1]. Rapid contraction of the 
quadriceps muscle with knee flexion is the primary injury mechanism of patellar ten-
don rupture, and it often occurs in young athletes involved in jumping activities [2, 3]. 
The eccentric loading from the quadriceps is transferred to the tendon, and the tendon 
insertion often absorbs the largest force, and thus, is a common injury site [4]. Other 
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medical problems, such as reduced blood supply, long-term steroid injections, chronic 
renal disease, or diabetes are risk factors of patellar tendon ruptures. Patients with an 
age of > 40 years often experience indirect traumas caused by these systemic problems or 
the administered medications [4, 5].

Surgical repair is the primary treatment recommended for patients with patellar ten-
don ruptures. Given the tendon properties, the suture technique is critical for proper 
tissue repair [6, 7]. However, re-rupture rates ranging from 2 to 50% have been reported 
[8]. Various suture fixation options have been reported to provide adequate suture 
strength to prevent large gap formation and tissue rupture. The transosseous method 
with or without cerelage wire for augmentation, Krackow suture, and Bunnell and 
modified Mason–Allen methods have been used for patellar tendon repair [9–11]. The 
Krackow method, which is commonly used, has been reported as a locking suture for the 
fixation of soft tissues, such as ligaments, tendons, or capsular to bone [12]. In the stand-
ard repair procedure, two to four transpatellar tunnels are drilled through the patella, 
and then, the sutures attached to the ruptured tendon can pass though the holes.

Previous studies have reported on the mechanical characteristics of several suture 
methods [11, 13–15]. The parameters of deformation during cyclic loading and ultimate 
failure loading are often represented as the biomechanical characteristics of tendon 
repair. Cyclic loading can simulate functional activities after surgery, and ultimate failure 
loading can simulate a huge loading event. Krackow et al. reported that loading to fail-
ure occurred with approximately 450 N of loading in two rows of Krackow sutures with 
No. 5 Ethibond sutures [11]. Another study evaluated the standard transpatellar repair 
technique using the Krackow stitch without augmentation, and the results showed that 
the displacement after 250 cycles was 11  mm, which was defined as a tendon repair 
failure [13]. To prevent adhesions and promote performance, post-operative rehabilita-
tion is essential. The long-term follow-up after patellar tendon surgery showed that an 
early rehabilitation protocol demonstrated good results [16, 17]. Consequently, adequate 
loading during early mobilization is critical in avoiding tendon repair failure. Therefore, 
this study aimed to investigate the mechanical characteristics of various applied loadings 
in patellar tendon repair with Krackow sutures via a porcine model.

Methods
Twelve fresh porcine hindlimbs were used as the sutured model in the current study; 
ethical approval was not required. An experienced orthopedic surgeon performed the 
tendon repair on each specimen. Before the surgery, the soft tissue of each specimen was 
dissected, and the femur was removed. The rupture was created by the tendon transec-
tion that was 3 mm from the edge of the distal pole of the patella. The Krackow method 
was used with synthetic and non-absorbable No. 5 Ethibond sutures. The suture passed 
through two longitudinal drill holes in the patella and was tied to the superior pole of the 
patella to close the tendon rupture gap. Thereafter, a configuration of three single loops 
was tied to enhance the strength (Fig. 1). Saline solution was used to keep the porcine 
tendons moist throughout the entire surgical procedure and biomechanical testing.

All the specimens were randomized into two groups with loading levels of 100 and 
200 N, respectively. The patella and proximal tibia of each specimen were respectively 
embedded in two stainless steel cylinders using dental high-strength cement and then 
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installed on the electromechanic testing machine (Instron E3000, USA) for cyclic 
loading.

LED markers were attached to the patella and tibia to measure the displacement of the 
tendon. A three-dimensional optical motion capture system (VZ4000, Phoenix Technol-
ogies Inc., Canada) was used to collect the relative displacement of the patella and tibia 
to calculate the displacement of the patellar tendon during cyclic loading testing. The 
sampling rate of the motion capture system was set at 60 Hz.

The tendon was pretensioned to 20 N within 10 s. Then, the tendons were loaded for 1000 
cycles between 20–120 N and 20–220 N at a rate of 1 Hz with sine waves. The gap formations 
at the initial, 50th, 100th, 150th, 200th, 250th, 500th, 750th, and 1000th cycle were calculated.

After the cycling, each specimen was quasistatically loaded up to failure at a rate of 
1 mm/s. Load-to-failure data and the mode of failure were recorded during each experi-
ment. Failure was defined as the maximum force during the test, denoted by a sharp 
decrease in the loading force, or if the load created a cumulative deformation of 40 mm 
as observed in the load–displacement curve. Failure mode was defined as rupture of the 
suture, suture loosening, or fracture of the tendon/bone interface.

Results
In the 100 N cyclic testing, two specimens experienced failure during the cyclic loading 
test and four specimens completed the entire testing procedure. However, the specimens 
in the 200  N cyclic testing all experienced failure before 200 cycles (Table  1). Suture 

Fig. 1  Schematic drawing of patellar tendon repair with Krackow suture method and three single loop 
augmentation
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breakage was the primary failure mode during cyclic testing in both loading conditions. 
After 1000 cycles of loading at 100 N, the ultimate failure strength was 243.6 ± 25.8 N.

Table 2 lists the average gap deformation and residual deformation at specific cycles. 
For 100 N, the largest gap deformation and residual deformation were found during the 
initial cycle. Figure 2 displays the cumulative displacements at the initial, 50th, 100th, 
150th, 200th, 250th, 500th, 750th, and 1000th cycle under 100 N and 200 N (from the 
initial to 150th cycle). The average cumulative displacement from the initial cycle to the 
100th cycle was 5.13 and 11.65 mm under 100 and 200 N, respectively. In addition, the 
cumulative displacement from the 250th to the 1000th cycle was approximately 4.5 mm, 
which was less than the value before the 250th cycle.

Discussion
The current study discusses the mechanical characteristics of various cyclic loading 
conditions in a porcine model of patellar tendon suture repair. Cyclic loading tests have 
been used to represent the regular movements or rehabilitation activities after tendon 
repair [1, 9, 13, 14]. The parameters of average gap deformation, residual deformation, 
and cumulative displacement were used to describe the suture results. The gap deforma-
tion at a specific cycle represents the suture stability, whereas the residual deformation 
illustrates the suture loosening in a non-loading condition. The cumulative displace-
ment represents the total loosening of the suture technique, which could be used to 
compare various repair techniques. In addition, most studies have applied loading under 
250 cycles and only reported total elongation length. The elongation and deformation at 
specific cyclic conditions should be reported because these data could provide reference 
values and assist in understanding the properties of suture technique, which ultimately 
will help the surgeons or therapists to set post-operative rehabilitation programs.

During the cyclic loading test, the knot slippage, deformation of the suture, viscoelas-
ticity property, and elastic response of the tendon may contribute to the displacements. 
Although the deformation at initial cycle was < 5 mm (clinical failure) in our study, the 
largest gap deformation and residual deformation were found at the initial loading. Early 
mobilization and rehabilitation following tendon repair have been emphasized [16–18]. 
An adequate loading during rehabilitation and stronger repair are important to prevent 
re-rupture or adhesion of the tendon. Previous studies have reported that clinical failure 
would easily appear (average about 12 loading cycles), and subsequently lead to a lag in 

Table 1  Results of the cyclic loading test with 100 N and 200 N loading

a  Mean ± standard deviation of four specimens

Loading Cyclic loading test Load-to-failure test

No. of failures 
during cyclic 
loading

Failure mode/cycle no. Ultimate strength (N)a

100 N (n = 6) 2 Suture breakage (n = 2) 50th–100th cycle (n = 2) 243.6 ± 25.8

200 N (n = 6) 6 Suture breakage (n = 6) < 10th cycle (n = 2)
10th–50th cycle (n = 1)
150th–200th cycle (n = 3)

NA
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knee extensor mechanism repair with suture alone [1, 13]. The tendon repair with aug-
mentation could provide stronger stability to lower the risk of re-rupture and assist the 
acceleration of rehabilitation program.

Schliemann et al. designed a load-to-failure test and cyclic loading ramp (60 N, 120 N, 
180 N, and 240 N) protocol in a porcine model to compare the biomechanical properties 
of the patellar tendon repair with augmentation [1]. Four different loads were applied for 
300 cycles, and a total of 1200 cycles were completed in cyclic testing. The maximum 
loads reported in load-to-failure testing were approximately 538 N, 445 N, and 344 N 
for tendon repair with cable wire, polydioxanone suture, and suture anchor, respectively. 
The total elongation after 1200 cyclic loading was 13.85, 15.40, and 20.09 mm for cable 
wire, polydioxanone suture, and suture anchor repair, respectively. Although tendon 
repair with augmentation can tolerate larger loading than Krackow sutures alone at ini-
tial cycle loading, applying larger loadings (180 N and 240 N) at the later phase (600th–
1200th cycle) still leading to a tendon repair failure. The other study used a bovine 
model to compare the properties of three repair methods, including #5 Ethibond tendon 
repair plus wire, #5 FiberWire repair plus augmentation, and #5 Ethibond repair plus #5 
FiberWire augmentation [19]. At the static pullout test, the average load at 5 mm gap 
formation ranged from 115.6 to 91.2 lb, which supports the advantage of augmentation. 
McKeon et al. compared several configurations of the Krackow stitch in the Achilles ten-
dons of porcines, and no statistical differences were found among two, four, or six lock-
ing loops [20]. The mechanical strength of the Krackow suture reported in another study 
indicated that two single rows of Krackow No. 5 Ethibond sutures showed greater failure 
strength than the No. 2 Mersiline Bunnell stitch [11]. In addition, the loop configura-
tions of Ethibond sutures have been used in the fixation of patellar fracture. Harrell et al. 
designed an in  vitro study to compare the properties of 18-gauge stainless steel wire, 
Mersilene and Ethibond, with multiple loops [21]. The findings of their study indicated 
that the yield strength of multiple No. 5 Ethibond sutures was similar to the strength 
of 18-gauge stainless steel wire. The results may also support the multiple sutures used 

Fig. 2  Cumulative displacement at the initial, 50th, 100th, 150th, 200th, 250th, 500th, 750th, and 1000th 
cycle of 100 N and at the initial, 50th, 100th, and 150th cycle of 200 N
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in the current study, which could provide better tension in tendon repair. Furthermore, 
better suture stability may improve the stability of patella, which would prevent the ante-
rior knee pain [22].

Ravalin et  al. compared the gap formation after 250 cycles among standard suture 
repair, suture augmentation, and cable augmentation in a cadaver model [13]. Stand-
ard suture repair showed the largest displacement (7.3 mm), whereas suture augmenta-
tion and cable augmentation displayed displacements of 4.9 and 3.5 mm, respectively. 
Another study used the transpatellar method with No. 5 Ethibond sutures and found gap 
displacements of 3.4, 5.5, 7.3, and 8.5 mm after 1, 10, 100, and 250 cycles, respectively 
[9]. The cyclic loading tests in both studies simulated the knee movement between 90° of 
knee flexion and full extension. The loading applied to the tendon with pulley system is 
different from the bone-tendon-bone animal model. The movement range of the porcine 
hindlimb is less than that in humans, and the experimental setup in the current study 
could not represent the actual injury mechanism, which is a limitation of our study.

In the post-operative rehabilitation protocol, isometric exercise, hip muscle strength-
ening, and passive knee flexion are recommended at the first stage, followed by a gentle 
active range of motion exercise in the prone position [16, 17]. The average loading dur-
ing active knee flexion in the prone position is about 70 N, which is less than the loading 
we used in our study. It would not easily cause re-rupture and could prevent the joint 
adhesion. However, although the patient could receive early rehabilitation programs and 
start the range of motion exercise in the prone position, knee flexion in weight-bearing 
condition should be performed after 6–8 weeks. In our study, all samples that received 
cyclic loading of 200 N weight failed before 200 cycles, which indicates that weight-bear-
ing exercise, such as slight knee bending, performing during the late phase is recom-
mended to prevent tendon repair failure.

Animal model has been used to investigate the biomechanical performance of knee 
joint [23, 24]. Although the porcine model we designed could not reflect natural knee 
movement, specimens from human donors face limitations due to the age of the donor. 
The donors are usually older than patients who suffer patellar tendon rupture. Further-
more, medications such as steroids or degeneration, which both affect the properties of 
the patellar tendon, cannot be excluded. Therefore, the porcine model is acceptable in 
many biomechanical studies. Moreover, the influence of tissue healing after the opera-
tion should be considered. In in vivo conditions, the soft tissue may share the loading, 
and the fixation material or suture may be decreased.

Conclusion
Our findings can serve as reference values for further comparisons in various repair 
techniques or materials. This study suggests that the initially applied loads after patel-
lar tendon repair are an important risk factor of re-rupture. More time should be given 
to the patients before starting the bending exercise under weight-bearing condition to 
lower the risk of tendon re-rupture.
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