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Abstract 

Background:  Head movement interferences are a common problem during pro-
longed dynamic brain electrical impedance tomography (EIT) clinical monitoring. 
Head movement interferences mainly originate from body movements of patients and 
nursing procedures performed by medical staff, etc. These body movements will lead 
to variation in boundary voltage signals, which affects image reconstruction.

Methods:  This study employed a data preprocessing method based on wavelet 
decomposition to inhibit head movement interferences in brain EIT data. Mixed Gauss-
ian models were applied to describe the distribution characteristics of brain EIT data. 
We identified head movement signal through the differences in distribution character-
istics of corresponding wavelet decomposition coefficients between head movement 
artifacts and normal signals, and then managed the contaminated data with improved 
on-line wavelet processing methods.

Results:  To validate the efficacy of the method, simulated signal experiments and 
human data experiments were performed. In the simulation experiment, the simulated 
movement artifact was significantly reduced and data quality was improved with indi-
cators’ increase in PRD and correlation coefficient. Human data experiments demon-
strated that this method effectively suppressed head movement in signals and reduce 
artifacts resulting from head movement artifacts in images.

Conclusion:  In this paper, we proposed an on-line strategy to manage the head 
movement interferences from the brain EIT data based on the distribution characteris-
tics of wavelet coefficients. Our strategy is capable of reducing the movement interfer-
ence in the data and improving the reconstructed images. This work would improve 
the clinical practicability of brain EIT and contribute to its further promotion.

Keywords:  Brain electrical impedance tomography, Head movement, Wavelet 
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Background
Dynamic brain electrical impedance tomography (EIT) is a non-invasive, low-cost, 
continuous monitoring functional imaging technology used in the biomedical field, 
which has applications for early diagnosis of cerebrovascular disease. Usually, the EIT 
system uses 16 electrodes placed uniformly on the head to apply safe currents and 
measures boundary voltage at two different instants, then reconstructs intracranial 
impedance changes between the two instants according to Acerta in algorithm [1, 
2]. To ensure that their constructed image is accurate, the boundary voltage varia-
tion between the reference frame and current frame should originate from changes in 
intracranial impedance. Thus, good and stable connection between electrodes and the 
scalp is a crucial factor for image monitoring of brain EIT. However, dynamic brain 
EIT monitoring is a long-term process. The change of connection status is a com-
mon occurrence during our previous clinical studies because of factors like: patient’s 
body movements (head rotation, body turning) and nursing procedures performed by 
medical staff. These body movements lead to head movements and change the elec-
trode–skin contact status, which introduce movement interferences in data collection 
and image reconstruction [3, 4]. Therefore, there is an urgent need for appropriate 
methods to process the movement interferences if we want to further promote the 
dynamic brain EIT research.

Currently, the researches of brain EIT mainly focus on employing EIT for neurologi-
cal functional studies through simulation experiments and animal models [5, 6]. This 
makes few reports on head movement processing for long-term brain EIT monitoring. 
There are some studies related to the analysis and processing of clinical body move-
ment interferences in lung EIT. Lozano et al. [7] analyzed errors in data collected from 
prolonged dynamic EIT clinical monitoring and quantitatively evaluated the effects of 
changes in electrode position and patient posture on measurement data. Subsequently, 
Adler and Guardo [8] analyzed the effects caused by changes in electrode position due to 
lung expansion and contraction during breathing. Following that, Adler [4] used maxi-
mum a posteriori (MAP), a posteriori estimation method for correction of data errors 
during severe body movement interferences (i.e., detached electrodes). Based on the 
MAP method, Asfaw and Hartinger employed simulation and reciprocity methods, 
respectively, for testing of problematic electrodes to obtain a priori information of com-
pensatory electrode data [3, 9]. Recently, Zhang used a weighted correlation coefficient 
method for testing multiple problematic electrodes caused by body movements, and 
employed data from grey model predictions for compensatory processing [10]. However, 
the methods above are all used in situations with extreme body movement interference 
such as electrode disconnection. The affected measurements are impossible to restore 
by data processing, which is a different problem compared with that we need to solve in 
this work. Besides, as the monitoring cycle for lung EIT is relatively short, the problem 
of body movement interference during breathing in EIT is not as urgent as during brain 
EIT [11, 12]. Goren et  al. [13] reported EIT data with noises and movement artifacts 
in stroke patients. But their data were collected through multifrequency EIT method, 
which was different from our time-difference EIT method. Besides, the EIT data con-
tained movement artifacts which were just rejected instead of being processed, which 
could not offer us help in the movement interferences management.
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Impedance mapping, EEG, near-infrared spectroscopy, and other similar techniques 
also encounter body movement interference problems during clinical practice. Sev-
eral methods for movement interference removal in such electrical signals have been 
reported. These methods can be mainly classified into two types.

The first type is based on adaptive filters. In this occasion, additional input signals are 
required for movement artifacts removal. Researchers acquired the expected signal or 
interference by set extra measurement channel in the hardware [14–16].

The second type mainly includes Wiener filter methods, signal-related improvement 
methods and Kalman filter method, which does not need additional input. The wie-
ner filter requires the acquisition of a priori information of expected signals, like sig-
nal’s power spectrum [17]. The signal improvement method was proposed by Cui et al. 
[18]. The disadvantage is that the expected signal and interference should be maximally 
negatively correlated if possible. The Kalman filter method requires a priori information 
models in which noise distribution is obtained [19]. Besides, there are also the principle 
component analysis (PCA) method [20], independent component analysis (ICA) method 
[21], spline interpolation method [22], etc., which all have particular scope of applica-
tion and limitations in real-time processing. Therefore, these methods are not ready for 
removal of movement interferences in dynamic brain EIT.

Wavelet decomposition is a signal processing method that analyzes the time–fre-
quency characteristics of signals to detect and process body movement interference 
components. As there are differences in amplitude and duration between head move-
ment interferences and normal photoelectric signals, these differences could be distin-
guished and managed in wavelet domain. Wavelet method shows good performance 
when processing weak signals, and provides us with referential application in dynamic 
brain EIT. However, the literature reporting use of this method does not mention spe-
cific real-time processing [14, 23–25].

Based on the points above, our study took advantage of the differences in the distribu-
tion characteristics of brain EIT signals and movement interference signals in wavelet 
domain to extract and process the movement interference signals by employing event 
probabilities. Meanwhile, brick-laying algorithm strategies were used to achieve on-line 
operation of this processing strategy.

In this scenario, the patients suffer from brain injury and have to stay lying on the 
sickbed in supine position. They will keep the supine position after any initiative or pas-
sive head movement for comfort or medical consideration. The status of affected elec-
trodes will be switched between being pressed and released. This kind of movement 
interferences may not result in data acquisition failure, but contaminate the brain EIT 
signal with spike-like artifacts. The spike-type movement interferences are the objects to 
manage in our study.

Methods
EIT data acquisition procedures

The brain EIT system used requires the annular attachment of 16 equidistant elec-
trodes on the subject’s head. Opposite excitation and adjacent acquisition protocol were 
adopted to measure boundary voltage data. The data acquisition process is shown in 
Fig. 1. In one completed at a acquisition process, electrodes 0 and 8 were used as current 
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entry and exit electrodes, respectively, while electrodes 0–1, 1–2, 2–3…15–0 were used 
as measurement electrode pairs to obtain 16 sets of voltage differences. The above steps 
were repeated by injecting by injecting the current through electrode pair 1–9, 2–10,…, 
15–7 sequentially and all adjacent measurements constituted one frame of data (256 
sets) [26]. While the measurements adjacent to the excitation electrode contain more 
contact impedance than internal impedance and need to be discarded during recon-
struction, there are 16× (16− 4) = 192 valid measurements in each frame. Therefore, 
there are 192 data channels that require observation and processing [27].

Influences of head movement interferences on boundary voltage

The EIT image reconstruction process can be briefly summarized as:

where x represents input data, which is a frame of boundary voltage data, y represents 
the conductivity distribution of the target field, and B is the construction matrix which is 
determined by the finite element model (FEM) of the target field, and is closely related to 
the number of model elements, number of boundary measurement values, background 
conductivity, electrode model, etc.

With respect to dynamic EIT, the reconstruction process can be briefly described as:

where xf represents the boundary voltage measurement data of the current frame and xb 
represents the boundary voltage measurement data of the reference frame. Under nor-
mal circumstances, the assumption is that differences in xf and xb only originate from 
changes in intracranial impedance.

When the electrode contacts the scalp, electrode–scalp contact impedance unbalance 
occurs [28, 29]. During brain EIT detection, contact impedance affects measurements 
in two ways: first, when electrodes are used as the measurement tool, the presence of 
electrode–scalp contact impedance is equivalent to the addition of a conductive layer 
outside the normal field. It will affect current distribution beneath the electrode. In addi-
tion, if contact impedance is sufficiently large, it will affect the common-mode rejection 

(1)y = Bx

(2)y = B(xf − xb)

Fig. 1  Illustration of opposite-excitation adjacent-measurement data acquisition protocol of the brain 
EIT system. The current flows into the circular field through electrode 0 and flows out through opposite 
electrode 8. Voltages are measured on the other adjacent electrodes
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ratio at the measurement end [30, 31]. Second, the contact impedance may decrease the 
injected current when the electrodes act as excitation pair. Therefore, the head move-
ment leads to artifacts into EIT signal [32]. These contact impedance variations only 
occur in the current frame and result in image artifacts. Since the movement duration is 
shorter than the voltage changes caused by intracranial pathophysiological changes, it is 
characterized by rapid changes in EIT signal. And due to the high resistivity of the skull 
compared to the degree of intracranial impedance changes, the ratio of corresponding 
boundary voltage changes is far smaller than the changes in intracranial impedance. 
Thus, it can be concluded that the head movement disrupts the continuity of EIT signals, 
which is equivalent to high-frequency outlier in stable signals. This makes it possible to 
use wavelet analysis methods to discriminate normal signals and from head movement 
interferences.

Processing strategy for head movement interferences based on wavelet decomposition

In previous analyses, the movement interference signals are considered as sudden 
changes with larger amplitude values in stationary signal. In contrast, slowly changing 
boundary voltage signals caused by internal impedance changes are regarded as low-
frequency signals. In the wavelet domain, the low-frequency components correspond to 
wavelet coefficients in smaller values and the high-frequency components correspond 
to wavelet coefficients in larger values. So we can discriminate normal signals from 
movement interferences in temporal manner through wavelet decomposition [33, 34]. 
Especially, in the scenarios where normal components and interferences are aliasing in 
frequency domain, the wavelet strategy is able to exert its time–frequency analysis fea-
tures and achieve better results.

Original signal s(t) can be expressed as:

where s0(t) represents EIT signals without head movement interferences and ε(t) rep-
resents head movement interference signal. The Mallet method was used to carry out 
wavelet decomposition, and raw signals can be expressed as [35, 36]:

where φjk(t) = 2j/2φ(2j t − k) represents the function of the reconstruction scale, 
ψjk(t) = 2j/2ψ(2jt − k) represents the reconstructed wavelet function, j and k represent 
the number of layers and scale translation coefficient in wavelet decomposition, respec-
tively, v represents the scale decomposition coefficient, and wj represents the wavelet 
decomposition coefficient at the j th level. In addition,

where j = j0, . . . , J − 1, k = 0, . . . , 2J−1, g(l − 2k) is a high-pass filter, and h(l − 2k) is a 
low-pass filter. The corresponding wavelet coefficient at the first level is:

(3)s(t) = s0(t)+ ε(t)

(4)s(t) =
∑

k

vj0kφj0k(t)+
∑

j=j0

∑

k

wjkψjk(t)

(5)wjk =
∑

l

g(l − 2k)vj+1(l)

(6)vjk =
∑

l

h(l − 2k)vj+1(l)
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Combining the above methods, the corresponding decomposition coefficient can be 
written as:

The coefficients for various layers in top-down decomposition coefficient can be 
expressed as:

The movement interference management based on wavelet method is achieved by 
dealing with the detailed wavelet coefficients. The normal brain EIT signals are continu-
ous and relatively smooth and slow-changing [37–39]. Compared with the head move-
ment interferences, the corresponding wavelet decomposition coefficients are small 
fluctuations concentrated around zero. This characteristic can be used to carry out dis-
crimination and processing head movement interference signals. We adopted Molavi’s 
wavelet processing strategy to manage the movement interferences [23].

Once a segment of signal is decomposed by wavelet function, the wavelet coefficients 
can be represented by a Gaussian mixture model containing two zero-mean Gaussian 
distributions [40]. One Gaussian distribution describes large wavelet decomposition 
coefficients, while the other Gaussian distribution describes the remaining small coef-
ficients. Among these coefficients, larger coefficients correspond to dramatic signal 
changes and the corresponding Gaussian distribution is relatively dispersed. Then the 
large coefficients can be set to zero to inhibit dramatic changes in signals. Giving the 
probability density function of Gaussian distribution with smaller variation, we can cal-
culate the geometric probability of wavelet coefficients. We define rejection probability 
to present this geometric probability. Considering the wavelet coefficient wjk ,s0 of signals 
can be represented by wjk ,s0 ∼ N (0, σ 2), the definition of rejection probability is:

where φ(k) = 1

σ̂
√
2π

∫ k
−∞ e

−k2

2σ̂2 dk is the Gaussian probability density function. If the 

wavelet decomposition coefficient does not originate from the Gaussian distribution 
with smaller variation, the calculated rejection probability should be higher than the 
ones that comply with this distribution. We can set threshold α to pick out and manage 
the wavelet coefficients of head movement interferences. The management strategy is:

(7)w1k =
∑

l

g(l − 2k)s(l)

(8)v1k =
∑

l

h(l − 2k)s(l)

(9)w1k = w1k ,s0 + w1k ,ε

(10)v1k = v1k ,s0 + v1k ,ε

(11)wjk = wjk ,s0 + wjk ,ε

(12)vjk = vjk ,s0 + vjk ,ε

(13)pjk =
(

φ

(

∣

∣wjk

∣

∣

σ̂

)

− 0.5

)

∗ 2

(14)wjk =
{

0
wjk

if pjk > α

if pjk < α
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wjk containing head movement will be larger and less possibly belong to the assumed N  
distribution. It will be set to zero to suppress interference in reconstruction signals. Fig-
ure 2 illustrates this concept. Once the movement interferences in the brain EIT signal 
are suppressed, the resulted artifacts in the EIT images will be removed consequentially.

On‑line calculation for wavelet processing strategy

The Mallet method is usually used for discrete wavelet decomposition. It is based on 
multi-resolution analysis, wherein high- and low-pass filters are used recursively to 
achieve the projection of any signal on scale space using a scale function as an orthogo-
nal basis, and on a wavelet space using wavelet function as an orthogonal basis. Nor-
mally, it is essential to acquire all data in advance to carry out wavelet decomposition. 
That is so-called pyramidal algorithm. All data are first read to construct the first layer 
of the pyramid and the values of the scale coefficient and wavelet coefficient of the first 
layer are calculated before calculating the second layer. The algorithm progresses layer 
by layer until reaching the required level. Therefore, data reconstruction can only be 
carried out after all decomposition is completed and wavelet decomposition and recon-
struction are not carried out in real-time.

In the theoretical analysis of multi-resolution, the support length of the scale function 
is not stipulated as finite length or infinite length. But in practical calculation, the sup-
port length of wavelet function is limited. Therefore, the decomposition filters are with 
finite length and only able to convolve limited data. So in the wavelet decomposition, 
there is no need to complete the calculation of the entire bottom layer before calculating 
the upper layer. The Mallet method can be modified [41]: we can perform once convo-
lution in the higher decomposition level after twice convoluting in the lower level. The 

Fig. 2  Illustration of the wavelet decomposition coefficients’ rejection probability and its comparison with 
threshold probability. For coefficient w , its corresponding rejection probability is pw , which is the integration 
from −|w| to |w| with assumed Gaussian probability density function. T  is the threshold of w and pT  is 
corresponding threshold of pw . If w is artifact-free, the coefficients are spread around zero. Then the pw will be 
less than pT  . If w is contaminated with movement artifacts, the coefficients will be discretely distributed and 
pw will be larger than pT
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whole calculation is performed transversely and upward. The higher layer convolution 
can be calculated as long as the lower layer offers data long enough to perform one cal-
culation. So we do not need to acquire all signal data to perform wavelet decomposition. 
Unlike the pyramidal algorithm, this kind of calculation is more akin to brick-laying. Fig-
ure 3 shows specific operations compared with conventional operations.

Data processing parameter selection

The movement interference management based on wavelet method requires the confir-
mation of multiple parameters, including wavelet function, number of decomposition 
layers, screening threshold, and variance of the priori Gaussian distribution. The vari-
ance of the normal distribution is determined as the median absolute deviation in the 
decomposition coefficient sequence. The median absolute deviation has good robustness 
and is not sensitive to small numbers of outliers in the extraction sequence. In dynamic 
brain EIT measurements, head movement interferences present as individual outliers 
with high amplitude. Therefore, when median absolute deviation is used to estimate the 
variance, the result will not be sensitive to a few head movement interferences. The cal-
culation for the distribution variance of the wavelet coefficient at each layer is [24, 42]:

We need to determine the wavelet function based on the morphological and empirical 
choice. Considering that the majority of head movement interferences appear as spikes 
and limited filter length is required for real-time operations, db4 wavelet was used 
for signals’ decomposition and reconstruction. According to reports in which wavelet 
decomposition was used for signal processing, when decomposition reaches the fourth 
layer, processing results from further decomposition does not show any significant dif-
ferences when compared with processing results at the fourth layer of decomposition. 
Differential probabilities with statistically significant differences were used as a reference 
for the selection of filtering threshold. When the corresponding adaptive probability of 
the current w is greater than 90% (i.e., the probability that w falls into the a priori normal 
distribution is greater than 90%), the source of w does not include measurement signals 
that contain head movement interferences (i.e. α = 0.9).

(15)σ̃j =
Median

(∣

∣Wj

∣

∣

)

0.6745

Fig. 3  Comparison of traditional pyramidal decomposition and brick-laying decomposition. a Is the Mallet 
method to carry out wavelet decomposition with complete dataset. The decomposition is performed 
downward. b Illustrates the brick-laying method, the higher layer will be calculated once the lower layer 
offers enough coefficients. The computation is performed transverse and upward
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Experiment validation design

To validate the feasibility of the proposed approach, we performed experiments with 
simulated data, phantom data and clinical measurement. The simulations and data 
processing were performed in Matlab version 2012b. All imaging reconstructions were 
implemented in self-developed software developed by C++.

Real EIT data were collected using an EIT system (FMMU-EIT5) [43]. This system 
uses a working frequency at 1–190 kHz, excitation current ranges from 500 to 1250 μA 
with measuring accuracy of 0.01%. The common-mode rejection ratio is over 80 dB. The 
image reconstruction algorithm was the damped least-squares algorithm developed by 
our research group [37]. We have used this system for previous clinical studies on brain 
EIT [44, 45]. In this study, we employed 500 μA and 50 kHz altering current to collect 
human data with the speed of 1 frame/s. All calculation were implemented on a Pentium 
G630 computer.

Simulation experiments

The ideal brain EIT signals can be regarded as direct current signals. Therefore, while 
generating signals, we need the simulation containing similar typical changes of the EIT 
signal. We used the following equation to generate a segment of composite frequency 
sinusoidal signal with white Gaussian noise:

where n = 4, ω = 2π f , µ represents the oscillation amplitude of the sine wave, σ(t) rep-
resents the Gaussian white noise, γ represents the amplitude of the Gaussian white noise, 
and the amplitude range for xsimulate(t) is (−1, 1) . The frequencies and amplitudes of the 
four types of sine waves used were (1 Hz, 0.6), (0.1 Hz, 0.9), (0.25 Hz, 0.9), (0.04 Hz, 1) 
and a total of 1000 data points were set, which were used to generate signals as shown in 
Fig. 4.

Spike signals simulating head movement interferences were added to the generated 
simulation signals to evaluate the consistency of post-processed and raw simulation 
signals. Evaluation was carried out using the three indicators of percent root difference 
(PRD), Pearson product–moment correlation coefficient (r), and coefficient of determi-
nation (R-square) [22].

(16)xsimulate(t) =
1

3

n
∑

i=1

µi sin(ωit)+ 0.05σ(t)

(17)PRD = 100%×

√

√

√

√

√

N
∑

i=1

(

x(ti)− y(ti)
)2

(

N
∑

i=1

x2(ti)

)−1

(18)

r = 1
M

N
∑

i=1

(

x(ti)−x(t)
sx

)(

y(ti)−y(t)
sy

)

, M = N − 1

with sx =
√

1
M

N
∑

i=1

(

x(ti)− x(t)
)2
, sy =

√

1
M

N
∑

i=1

(

y(ti)− y(t)
)2

, M = N − 1
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Here we consider x(t) as original signal without movement interference. PRD evalu-
ates the consistency between x(t) and y(t) while r and R-square evaluate the similarity 
between x(t) and y(t).

Physical phantom experiments

The physical phantom experiments were carried out on a resistor phantom representing 
a circular homogeneous medium and comprised of 120 resistors (1 kΩ) with 0.1% preci-
sion [46]. The phantom was connected to the data collection system through the SCIS-
36 port [10]. Localized conductivity perturbation could be generated by operating the 
16 push-type switches on the phantom. The finite element model for image reconstruc-
tion was a homogeneous circular mesh with 288 triangle elements. First, we acquired 
frames of EIT data without imaging target as the reference frames, and continued the 

(19)R-square =
∑N

i=1

(

y(ti)− x(t)
)2

∑N
i=1

(

x(ti)− x(t)
)2

Fig. 4  Simulated signal (a); different types of simulated head movement interference (b, d, g, h); signals 
obtained by adding (a) to movement (c, e, f, i)
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data collection after pushing one switch to produce one conductivity perturbation as 
current frames. We simulated four different spike interference scenarios by adding dif-
ferent spikes on the current frame part of phantom data.

Human measured data experiments

The clinical data were acquired in the neurosurgery ICU of Xijing Hospital, Fourth Mili-
tary Medical University, Xi’an, China. This study was approved by the human research 
ethics committee of the Fourth Military Medical University and informed written con-
sent was obtained from the patient’s nearest relatives. In this scenario, two male patients 
were included. One patient suffered from head impact and had the risk of secondary 
injury. The other one was with cerebral edema and received mannitol dehydration treat-
ment. There was no wound in the superficial scalp and all electrodes could be deployed. 
Both patients were conscious and lay on the sickbed. In the data collection process, no 
intervention was involved except for the patients’ movements themselves and nursing 
procedures performed by medical staff. Before data collection started, 16 rigorously dis-
infected cup-shaped electrodes were attached with conductive paste (Ten 20 conduc-
tive paste, Weaver and Company, Aurora, USA). Then, the electrodes were placed in an 
annular manner on the patient’s head. The finite element model for reconstruction was 
the same in phantom experiments.

Results
Validation with simulated data

The results of head movement processing method in simulation experiments are shown 
in Fig.  5 and Table  1. Db6 wavelet was used and the number of decomposition layers 
was 10 for all mixed signals. As shown in Fig. 5, we can see that the four kinds of sim-
ulated spike interferences were effectively restrained in the presence after processing. 
Table 1 shows the quantitative indicators of post-processed signals. All indicators show 
improvement in data quality. PRD was increased by at least 48% and r advanced 43% in 
average. In type 1 and type 2 simulation, the R-square had sharp promotion, which indi-
cates the goodness of the processed signal.

Validation with resistor phantom data

Figure 6 shows the mean values of continuous phantom data and the EIT image contain-
ing conductivity perturbation target. The length of the data was almost 350 frames. Db6 
wavelet with 6 decomposition layers was employed to implement the processing.

The processing results were presented in Fig. 7. We added four types of spike contami-
nation to the perturbation-included part of phantom data and testified the effectiveness 
of the proposed method. Rows A–D correspond to the four different scenarios. Column 
I–III, respectively, illustrate the comparison of mean values as well as imaging results 
of phantom data before and after processing by the proposed approach. From Column 
I, we can see that the spikes decreased greatly in time series. The artifacts introduced 
by spikes are shown in Column II. The original target was nearly lost in the EIT images. 
Compared to the images in Column II, the artifacts were removed and original perturba-
tion targets were restored in the EIT images in Column III after processing.
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Validation with human measurement data

Figure 8 shows the processing results of human measurement data. One segment data 
of clinically measured data containing 650 frames long was selected, which included 
several observed head movement interferences. Db4 wavelet with 4 decomposition 
layers was used for data processing. Figure  8a shows the waveforms of 192 channel 
data in time series before processing while Fig.  8b shows the data waveforms after 
processing. By comparing the signal waveforms in Figs.  8a and 9b, it could be seen 
that the head movement interferences were reduced considerably in all channels. To 
demonstrate the results more specifically, we made a comparison of the mean val-
ues before and after processing. Figure 8c illustrates the comparison results of mean 

Fig. 5  Results of the processing strategy on simulated signals. Each subfigure shows the comparison of 
signals before and after processing
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Table 1  PRD, r and  R-square values for  comparison between  the  simulation signals 
with simulated interference (type 1, type 2, type 3 and type 4) and with reduced simulated 
interferences (type 1-processed, type 2-processed, type 3-processed, type 4-processed)

The ∆ values correspond to percentage changes comparing the data with and without wavelet processing

PRD r R-square ∆PRD ∆r ∆R-square

Type 1 0.9096 0.7360 0.1726 73.28%↓ 31.81%↑ 445.18%↑
Type 1-processed 0.2430 0.9701 0.9409

Type 2 0.9753 0.7157 0.0488 48.15%↓ 24.08%↑ 1426.08%↑
Type 2-processed 0.5057 0.8880 0.7442

Type 3 1.3657 0.5904 0.8650 80.16%↓ 63.23%↑ 7.12%↑
Type 3-processed 0.2709 0.9637 0.9266

Type 4 1.3240 0.6043 0.7531 73.28%↓ 53.44%↑ 12.12%↑
Type 4-processed 0.3945 0.9273 0.8444

Fig. 6  Mean values (left side) and the normal EIT image with imaging target (right side) of the resistor 
phantom data

Fig. 7  Results of wavelet processing experiments on resistor phantom. Rows A–D are four different scenarios 
of spike interference added in normal data collected on resistor phantom. Column I shows the mean value of 
data frame before and after processing. Column II presents the EIT images contaminated by added spikes. In 
Column III is the EIT images reconstructed with processed data by proposed method. In Column I, the dashed 
lines mark the current frame of the EIT images in Column II and III
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values and the single channel spikes reflecting in mean values were restrained. There-
fore, our method is able to manage the spike type of movement at signal level.

Considering EIT, an imaging monitoring technique, we testified the feasibility of 
proposed processing method by reconstructing the EIT images with processed data. 
Figure 9 shows the imaging results before and after data processing. In Row A, labels 
M1–M6, respectively, indicate the time locations that movement interference hap-
pens. Considering the processing expectation was to inhibit head movement inter-
ferences, which only exist in current frames, we selected one frame of data before 
movement occurrence as reference frame. Following this principle, EIT images in 
Row B are the reconstructed results contaminated by movement artifact. Columns 
M1–M6 represent that the images in this column correspond to different movements 
marked in Row A. The EIT images in Row C are corresponding outcome after pro-
posed management. Row B shows significant artifacts introduced by head movement 
interferences in the reconstructed images. After signal processing by the proposed 
method, the artifacts are greatly reduced in corresponding EIT images of Row C. Row 
D indicates the variation range of reconstructed values. Because the movement usu-
ally leads to outliers in the signal, the reconstruction value will be also amplified if 
movement interference happens. Therefore, through the downscaling of reconstruc-
tion value variation in row D, the artifacts in reconstructed images were suppressed 
effectively. All results above prove that the proposed method is able to restrain head 
movement interferences at signal level and image level.

Fig. 8  Human measurement data processing results. a Data of 192 channels before processing. b Data of192 
channels after processing. c Mean value comparison of 192 channels’ data before and after processing
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Evaluation of time and storage cost

Figure 10 shows the time cost for real-time calculations in wavelet data processing. As 
data acquisition and data processing were carried out simultaneously, total time was 
significantly decreased. While the data acquisition interval is 1 s and time required for 
wavelet processing is far lower than 1 s, online processing is feasible.

According to the algorithms used for pyramidal method and brick-laying method, we 
set that wavelet data processing requirements for signals with a length of A, one layer of 
decomposition, wavelet filter length of N has a total number of data stored of:

(20)Offline: A+
i=l
∑

i=1

A

2floor(i/2)

Fig. 9  Comparison of reconstructed images with the original data and processed data. Row A is the mark 
of head movement occurrence, M1–M6 is the sequence number of head movement. Row B is the images 
reconstructed with original data. Row C is the images reconstructed with processed data. Row D is the 
comparison of reconstruction value range before and after data processing

Fig. 10  Comparison of calculation time and storage cost with online wavelet method and offline wavelet 
method
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Calculating the storage cost of the human measurement data in Fig. 9, the offline pro-
cessing requires 1.78× 103 storage units while on-line processing only requires 130 stor-
age units. Therefore, storage space requirement is greatly reduced in on-line calculation.

Discussion
This paper analyzed the problem of head movement during dynamic brain EIT monitor-
ing in clinical environments, and we managed the head movement interference based 
on the distribution characteristics of wavelet decomposition coefficients. In simulation 
experiments, the spikes which simulate head movement interferences were suppressed 
effectively after being processed by the proposed approach. The correlation between 
processed signal and raw signal was significantly increased, which could be concluded 
through the quantitative indicators such as PRD, correlation coefficient and R-square. 
After that, we simulated conductivity perturbation on the resistor phantom and col-
lected the phantom data with spike interferences. The proposed method could remove 
the artifacts and restored the imaging target at the same time. To testify whether the 
proposed method was able to improve the clinical practicability, we collected human 
data in the ICU for validation. After processing, the continuity brain EIT signal was 
restored and movement artifacts were removed from the reconstructed images. Besides, 
we employed brick-laying calculation to adapt to dynamic brain EIT monitoring.

In simulation experiments, we used different types of spikes to simulate head move-
ment interferences in the brain EIT signal. This choice is based on scenario analysis and 
actual data observation. By comparing the real movement signal, it can be seen that the 
spikes could well conform to the character of head movement interferences. In phantom 
data experiments, we demonstrated the efficacy of the proposed approach while there 
was simulated perturbation included in the measurement. The target information was 
well restored and the artifacts were suppressed effectively. In human data experiments, 
we could not get pure signal without movements at the same time based on existing 
equipment. In this way, quantitative indicators could not be calculated to measure the 
processing effect of real human data. Unlike the simulated signal, there were more com-
ponents except for noises and spikes in the real human data, like the step-type interfer-
ence, which made the processed curve less match compared with the simulations. But 
the further image results demonstrate the feasibility of the proposed approach. Here 
we only used artifact-free images to demonstrate the processing effect. There should 
be no voltage variation caused by intracranial pathophysiological change between the 
temporary reference frame and the current frame, which were a few seconds apart. The 
imaged targets were introduced by spike-type interference were well removed after data 
processing.

In previous studies, it was found that brain EIT signals showed continuity with 
slow changes in time series. On one hand, this is due to data acquisition speed being 
1 frame/s. On the other hand, since the resistivity of the skull is high, the boundary volt-
age changes caused by intracranial impedance changes are relatively small in amplitude. 

(21)Online: 1+
i=l
∑

i=1
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In addition, considering that intracranial pathophysiological changes that cause imped-
ance changes also require some time, brain EIT signals nearly become direct current 
(DC) signals during a segment of frequency domain analysis. The head movement inter-
ferences appear as relatively drastic changes in amplitude in an instant. Meanwhile, it 
takes 10 min or more time for intracranial impedance variation to result in such change 
in boundary voltage. Intuitively, it can be seen that normal signals and head movement 
interference signals show differences in frequency. However, compared with the base-
line of measurement, these changes are still small in amplitude. As shown in Fig.  11, 
the frequency band including all head movement interferences in the entire EIT sig-
nal was very narrow, and the energy of the signal was almost concentrated at the DC 
segment. Thus, it is not convenient to obtain prior information of movement interfer-
ences through the use of conventional digital filter methods for processing. Therefore, 
the frequency domains of head movement interference signals and normal signals can 
be considered being mixed, and only show significant distinction in the time domain. 
This makes characteristic time–frequency analysis methods more suitable to process the 
interferences. Besides, the traditional signal processing method, such as low-pass filter, 
separates interferences from normal signal of brain impedance variation in frequency 
domain. If the smoothing effect of low-pass filter is good, it will inevitably cause the sig-
nal to be blurred, which means suppression of normal biological signal. In this case, the 
effect of processing is at the expense of losing useful signal components. But, in signal 
processing by wavelet decomposition, we decompose the various frequency components 
in the signal into bands that do not overlap each other and only managed the parts con-
taminated by movement interferences. So the normal signal of brain impedance varia-
tion is left with minimum suppression.

The processing method selected in this study was based on the priori distribution 
information of the wavelet decomposition coefficient. If wavelet coefficient is “sparse”, 
i.e., the wavelet coefficient is composed of large number of small coefficients and a few 
large coefficients, then the Gaussian mixed distribution with two-component zero mean 
can effectively fit the actual wavelet coefficient distribution [47]. The differences in 

Fig. 11  Frequency–amplitude spectral of brain EIT data contaminated with movement artifacts. The energy 
of the whole power almost concentrated in the DC segment and there is no remarkable difference in 
frequency domain for us to employ data processing
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these two Gaussian distributions lie in the variance. The distribution with a large vari-
ance will have a low a priori probability, which represents few large coefficients; while 
the distribution with a small variance will have a high priori probability, representing a 
large number of small coefficients. The overall brain EIT detection signals are relatively 
smooth and slow-changing, and their wavelet decomposition coefficients can satisfy the 
“sparse” requirement. In addition, the characteristics of these signals are similar to previ-
ously studied body movement interference signals. Therefore, the use of wavelet decom-
position in this domain is reasonable [24].

During dynamic brain EIT continuous monitoring, head movement interferences will 
change electrode–scalp contact impedance, which will appear as changes in boundary 
voltage and ultimately affect image reconstruction. In previous reports, researchers have 
focused on the effects of contact impedance on the reconstructed images. However, 
such contact impedance changes often originate from conductivity changes due to elec-
trochemical changes at the electrode-conductive paste–scalp contact layer. In the recon-
struction process, we demonstrated that conductivity changes at the electrode contact 
layer are actually equivalent to impedance changes at one area in the reconstruction 
field. However, reconstruction algorithms themselves cannot differentiate whether volt-
age changes originate from the contact layer or inside the field. Limited by the FEM use 
during reconstruction, these surface contact changes are regarded as impedance changes 
inside the field and appear as reconstruction artifacts in reconstructed images [48, 49]. 
Current researches mainly modify imaging algorithms with complete electrode models 
to isolate contact impedance changes and their effects on specific elements in the finite 
element model [48, 50, 51]. However, this kind of processing strategy does not consider 
the influences of contact impedance changes on excitation current, and can only be 
used to process contact impedance problems in which the magnitude of such change is 
smaller than head movement interferences. Previously, other studies on processing of 
more severe body movement interferences were targeted at extreme situations in which 
there is saturation or distortion of excitation current, or inability to normally enter the 
field. Therefore, data-abandoned processing strategies were used for affected measure-
ment values. In the clinical environment, the movement interferences in the middle of 
the two scenarios are more common. The measurement data can still reflect the actual 
boundary voltage to some extent, but contains head movement inference component.

Our method employed the wavelet processing strategy proposed by Molvavi. Unlike 
the previous study, on-line calculation was carried out in the actual implementation, 
improving its practicality. In Molvavi study, the reason why this method could not be 
used in real-time was due to the variance estimation strategy employed. During dynamic 
brain EIT measurement, when electrodes fully contact the scalp, the corresponding 
measurements are generally similar. Therefore, it is feasible to use variance values cal-
culated from past data as priori distributed variance values. Chen et al. [23] proposed a 
processing strategy similar to Molvai. However, they directly converted the probability 
threshold into the screening threshold for specific wavelet decomposition coefficient to 
deal with motion artifact. In addition, they set the upper and lower limit threshold val-
ues and could suppress noise in signals by processing body movement interferences. In 
dynamic brain EIT scenarios, noise that is simultaneously present in data from the cur-
rent and reference frames are already inhibited during the imaging process and there is 
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no need to care for such noise. The conversion of probability to specific threshold num-
ber increased the calculation, especially such operation results were uncertain. Com-
pared with other methods, that method does not need the input of any reference signal 
and reduces the requirement for priori information to the minimum. Compared with 
traditional wavelet processing methods that used fixed thresholds, the use of an adaptive 
probability threshold can achieve specific elastic changes in coefficient threshold and has 
stronger adaptability.

Our processing strategy is mainly aiming at spike-type interferences in clinical prac-
tice. Patients’ movements or medical staffs’ operations will change the contact status of 
the electrodes. But the electrode’s contact will restore to its initial status with the elas-
tic shrinkage of bandages used for fixing. In this way, head movement interferences will 
present as uneven spikes in the signal. The characteristic of the head movement inter-
ference is no baseline alteration. The movements are discrete points in the time series. 
The wavelet method isolates the frequency-domain aliased interferences through its 
time–frequency analysis function. If the baseline is affected by movement disruption of 
electrode status, the processing results will be declined. That is because the data after 
discontinuous points show little difference compared with the normal signal in wavelet 
domain while it still contains baseline alteration. Therefore, the processing results with 
human data are a little inferior in waveform compared with the simulations. There is a 
special brain EIT application case, epileptic seizures imaging, where the spike-type sig-
nal is monitoring target [52, 53]. The seizures are occur in tens of seconds and more 
like movement artifacts, which makes the seizures difficult to be separated from the real 
movement artifacts. Although epileptic seizures can be detected by brain EIT theoreti-
cally, it is not ready for actual clinical application because of this limitation [54]. Our 
main object is also not epileptic seizures monitoring, so the situation that secondary sei-
zures mixed with movement artifact is not included and considered in our study.

Besides, our scope of application with the proposed wavelet method is to manage 
the movement interferences in the long-term brain EIT monitoring scenarios [44, 45]. 
Because of the skull’s high resistance, the boundary voltage variation from intracranial 
impedance change could be only 1–3%, in our previous twist drill drainage and clinical 
dehydration treatment experiments. Considering the time cost of treatment (for exam-
ple, the dehydration needs at least 60 min, the twist drill drainage needs tens of min-
utes), the monitoring procedure appears as a flat and slow-varying signal. The head 
movement introduces interference into the normal signal through changes in current 
field distribution near the affected electrodes. So the head movement can be considered 
as one kind of impedance variation in the field. The resulted spikes may not be larger 
in the amplitude but more acute gradient compared with the normal signal in the same 
time. In addition, we applied data collection for 1 frame/s. This data collection speed is 
too slow to acquire much faster changes like blood flow or other physiological activity. 
In this way, we do not consider these non-interested signals in our research. There is 
another concern that we could just exclude the data contaminated by movement, just 
like the EEG monitoring, where it is sufficient to label portions of the signal with move-
ment artifacts. If we target the EIT monitoring at the pathological process which may 
be occurring over an hour, the exclusion strategy is acceptable in such cases, especially 
in offline data analysis. However, we are not able to know how soon or how long the 
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pathological process will be happening beforehand. Meanwhile, we hope to make the 
EIT monitoring more practical in clinical monitoring by removing the artifacts with 
online management. Therefore, we prefer to employ the online processing method to 
extend its potential application and keep as much data as possible.

While using the wavelet method to deal with head movement interference, we need 
to determine the variance of the Gaussian distribution and the rejection probability. To 
acquire the variance of the Gaussian distribution, it is necessary to acquire all wavelet 
decomposition coefficients of the measurement. However, this is not possible during 
dynamic brain EIT monitoring. Therefore, the priori variances used during on-line pro-
cessing are empirical values. Although validation experiments using clinical measure-
ment data have obtained satisfactory results for empirical variances, the versatility of 
this method requires further validation. In addition, the rejection probability threshold 
determines the intensity of head movement interferences that require processing. Cur-
rently, to simplify the calculation, all 192 channels in EIT signals use the same threshold. 
However, the intensity of head movement interferences in all channels may not be iden-
tical. Therefore, more optimization of choosing parameters will be done in further study.

To manage the movement interference, there are some ad hoc algorithms, for instance, 
the compensation strategy based on spline interpolation proposed by Scholkmann [22]. 
Movements were detected by moving standard deviation and corrected by empirical 
correction value. Although the processing idea is relatively simpler, the reliability of the 
chosen correction value is a problem. The strategy of determining correction value lim-
its its application in real-time processing. As for the PCA method, it applies the simi-
lar idea to separate different level of signal components based on Gaussian distribution 
like the wavelet decomposition does [55]. The main concern of the component lies on 
two aspects: first, the principle component reserved to reconstruct the signal. We need 
to distinguish the principle component which can represent the normal signal through 
eigenvalue or other mark value. While the data keep flowing, the component choice may 
need to be altered. Second, the real-time capability of the processing procedure. Usu-
ally, the PCA is employed when all data are known. So if we want to apply the PCA to 
restrain the head movement in brain EIT signal, more modification on on-line calcula-
tion of PCA indicators and the correction of the eigenvector estimation from theoretical 
level, which may make the strategy unable to act its advantage in simpler and quicker 
processing.

In addition, the data preprocessing time for brain EIT is significantly different from 
processing methods used for other bioelectrical signals. After data processing, the fea-
sibility of the results is ultimately dependent on the reconstructed images. Therefore, 
brain EIT signal preprocessing has more stringent requirements compared with pre-
processing of other bio-signals. As such, we not only require quality evaluation of time 
series signals, but also further joint evaluation indicators for time series signal quality 
and reconstructed figure results. Mamatjan et al. [56] proposed quantitative indicators 
for evaluating data quality by connecting acquisition data quality obtained from elec-
trodes with image quality, and evaluating data from an image perspective. The method 
provided an overall assessment of the whole dataset. In further study, we will try to 
establish indicators to connect the image quality to single data channel to acquire head 
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movement interference in the brain EIT measurement and quantitatively estimate the 
processing effect from image point.

The wavelet processing method is suitable for all time-difference EIT application 
theoretically. In this study, we implemented data collection with working frequency at 
50  kHz and acquiring 1 frame of data per second. There is some time-difference EIT 
data measured at different working frequencies. And the time-difference data set is com-
posed of averaged frames data to improve the accuracy of measurement. Therefore, we 
hope to try the proposed method on time-difference EIT data under other collection 
conditions and test its broadness in future work.

Conclusion
In clinical long-term dynamic brain EIT, head movement interference is a common 
occurrence and will lead to image artifacts. This paper offers an on-line strategy to pro-
cess the contaminated measurement through wavelet decomposition. We used mixed 
Gaussian distribution to describe the wavelet coefficients and detected coefficients cor-
responded to movement signal by distributed probability to process. Besides, modifica-
tion was carried out to realize on-line processing for dynamic brain EIT monitoring. 
While the feasibility of this method is proved by experiments with reduced movement 
component, it provides an idea for data processing of brain EIT and lays a foundation for 
further research in data processing of brain EIT.
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