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Background
Type 1 diabetes (T1D) is a chronic disease in which pancreas does not produce insu-
lin, the hormone that stimulates transport of glucose from bloodstream to cells. To 
compensate the lack of endogenous insulin production, T1D subjects are treated 
with exogenous insulin, which is administered either by multiple daily injections or 
by an insulin pump. Insulin pumps are wearable medical devices that inject rapid-
acting insulin in the subcutaneous tissue of the abdomen at almost continuous time, 
by a cannula connected to a disposable reservoir of insulin in the pump. A small 
basal dose is administered throughout the day to keep blood glucose (BG) concen-
tration within the target range (70–180  mg/dl) in absence of external perturba-
tions. Larger doses, called boluses, are injected before meals to cover carbohydrates 
intake or between meals to treat too high BG concentrations. Use of insulin pump 
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was demonstrated to improve glycemic control in terms of glycated haemoglobin 
(HbA1c) values compared to multiple daily injections [1].

Insulin doses must be finely tuned in order to avoid dangerous complications. 
Insulin under dosing can drive to hyperglycemia (BG  >  180  mg/dl) and eventually 
life-threatening short-term complications, such as diabetes ketoacidosis, or long-
term complications such as cardiovascular diseases, kidney disease, retinopathy, 
neurological damage and diabetic foot. On the other hand, an over dosing of insulin 
can cause hypoglycemia (BG  <  70 mg/dl) that, if severe and not promptly treated, 
can be catastrophic, causing loss of consciousness, seizures and even death. As a 
consequence, T1D subjects need to monitor their BG concentration during the day 
and adjust their insulin therapy accordingly.

Traditional home glucose monitoring consists in using self-monitoring of blood 
glucose (SMBG) devices that measure glucose concentration in small drops of capil-
lary blood the patients collect 3–4 times per day by fingerstick [2]. More recently, 
continuous glucose monitoring (CGM) sensors have been introduced which can 
measure almost-continuously (e.g. every 5  min) glucose concentration in the sub-
cutaneous tissue [3, 4]. Most of CGM sensors in the market are based on a needle 
electrochemical sensor which is implanted in the subcutaneous tissue of the abdo-
men or the arm. The sensor is connected to a transmitter that transfers in real-time 
the glucose readings to a portable receiver, which displays current glucose concen-
tration and trend and produces audible alerts when glucose concentration exceeds 
user-defined hyper/hypoglycemia thresholds. Several studies demonstrated that 
CGM can improve diabetes therapy compared to SMBG, allowing to reduce both 
hyperglycemia and hypoglycemia frequency [5]. Since 2015, some CGM devices also 
received the regulatory approval for therapeutic use, i.e. CGM measurements can be 
used for making therapeutic decisions, like insulin dosing [4, 6, 7].

Although the use of insulin pump and CGM as standalone devices was demon-
strated to be beneficial for glycemic control, the major potential benefits can be 
obtained by connecting the two devices in an integrated system. Indeed, even for 
the most motivated patients, the manual control of glycemia is a difficult task and 
requires subjects to interrupt their daily activities for making treatment decisions 
several times during the day. Manual glucose control is even more challenging dur-
ing the night as subjects often do not wake up to CGM alarms [8]. Approaches to 
automatically tune insulin dosing based on CGM measurements have been an 
intense area of research in the last 10 years [9, 10]. As first step towards the develop-
ment of a fully closed-loop system, also called artificial pancreas, academic research 
groups and companies investigated algorithms to automatically attenuate or suspend 
basal insulin infusion based on CGM measurements, e.g. when CGM detects hypo-
glycemia or CGM trend reveals a risk for imminent hypoglycemia [11, 12].

In this paper, we review the literature on methods for CGM-based automatic 
attenuation or suspension of basal insulin with a focus on algorithms, their imple-
mentation in commercial devices and clinical evidence of their effectiveness and 
safety.
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Automatic attenuation/suspension of basal insulin: definitions 
and classification
In the next sections, we will detail the algorithms and methods developed so far by aca-
demic groups and companies. Before that, in this section, we introduce some key con-
cepts and definitions needed to highlight the differences between algorithms.

In general, the methods proposed for the automatic attenuation/suspension of basal 
insulin infusion can be divided into two categories: (i) those in which the attenuation/
suspension is determined by the detection of hypoglycemia, and (ii) those in which the 
modulation of the basal insulin infusion pattern is triggered by the prediction of incom-
ing hypoglycemia.

In detection-based attenuation methods (Fig.  1a), CGM measurements are real-time 
collected and when CGM data fall below a pre-defined threshold for hypoglycemia 
detection T (e.g. 70  mg/dl) a basal insulin attenuation factor 0 ≤ φ ≤ 1 is calculated 
and multiplied for the nominal basal insulin injection rate ( Ibnom ) to reduce basal insu-
lin delivery ( Ibmod ). When a stopping criterion is met, e.g. CGM readings return above 
the threshold T, the attenuation factor φ is set to 1 and the nominal basal insulin injec-
tion is restored. One limitation of detection-based algorithms is that the attenuation of 
basal insulin at the time of hypoglycemia detection can only reduce the duration of the 
hypoglycemic event, but cannot prevent the event from happening, especially because of 
the intrinsic delay of subcutaneous insulin absorption. For example, Swan et al. reported 
that, after a subcutaneous bolus of insulin, the peak of plasma insulin occurred 60 min 
after the bolus time [13]. Therefore, even if basal insulin is suspended when hypoglyce-
mia is detected, there is still some previously-injected insulin active in the plasma caus-
ing a lowering in BG concentration.

To overcome this limitation, prediction-based attenuation methods can be used. 
Such strategies allow switching on/off the attenuation of basal insulin on the basis of 
the predicted CGM value, rather than of the current CGM reading (Fig.  1b). Specifi-
cally, in prediction-based methods, CGM measurements and optionally other input 
data, e.g. insulin doses, are used to forecast future glucose concentration. If a hypogly-
cemia is predicted to occur in the near future, i.e. predicted glucose concentration falls 
below a threshold T, then a basal insulin attenuation factor 0 ≤ φ ≤ 1 is calculated and 
multiplied for the nominal basal insulin injection rate to reduce basal insulin delivery, 
thus possibly avoiding the predicted hypoglycemic event. When glucose is predicted to 
return in the safe range, the nominal basal insulin injection is restored to its nominal 
value ( φ = 1 ). Besides the threshold T, another key parameter to tune the performance 
of prediction-based algorithms is the prediction horizon (PH), i.e. how much time in 
advance the hypoglycemic event would be predicted. Ideally, a longer PH would be 
desirable in order to anticipate the attenuation of basal insulin and thus compensate the 
delay of insulin action. However, in practice a too long PH is not convenient, because it 
increases the rate of false positives (i.e. predicted hypoglycemic events that do not hap-
pen in reality), and thus the risk of rebounds in hyperglycemia.

Finally, methods are classified as suspension algorithms if, instead of attenuating the 
basal insulin delivery, they simply interrupt basal insulin delivery when hypoglycemia 
is detected (detection-based suspension methods) or predicted (prediction-based suspen-
sion methods). In suspension algorithms, the attenuation factor φ can only be 0 or 1.
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Methods developed in academia
In the last 10 years, several detection- and prediction-based algorithms for basal insu-
lin attenuation/suspension have been proposed in the literature, with the aim of pre-
venting or mitigating hypoglycemia. Here, we illustrate the approaches developed so 
far, distinguishing those applying a pump suspension from those applying a modula-
tion of basal insulin delivery. The characteristics of algorithms developed in academia 
are summarized in Table 1.

a

b

Fig. 1 Schematic representation of basal insulin suspension/attenuation algorithms. a Schema of algorithms 
based on detection of hypoglycemia. Measurements of subject’s interstitial glucose (IG) concentration are 
real-time collected by a CGM sensor. When CGM measurements go below a threshold T, the hypoglycemia 
detection module detects hypoglycemia. Then, the basal insulin attenuation module calculates the attenuation 
factor φ(t) , which is 0 if no hypoglycemia is detected and 0 < φ(t) ≤ 1 if a hypoglycemia is detected. Finally, 
the nominal basal insulin delivery rate, Ibnom(t) , is multiplied for φ(t) to obtain the final modulated basal 
insulin delivery rate, Ibmod(t) , which is given in output by the insulin pump. b Schema of algorithms based 
on prediction of hypoglycemia. In these algorithms, CGM measurements are used, optionally together 
with other input data (e.g. insulin), to predict in real-time the occurrence of hypoglycemic events PH min in 
advance (hypoglycemia prediction module). Such hypoglycemia prediction is then used to calculate a basal 
insulin attenuation factor, φ(t) , as in detection-based methods
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Algorithms for basal insulin suspension

The first attempt to produce an algorithm to suspend the basal insulin infusion rate 
based on CGM values is due to the research group of Dr. Bruce Buckingham. Indeed, 
in 2009 Buckingham and colleagues developed and tested a method to discontinue 
insulin pump injection when hypoglycemia is predicted from real-time CGM [14]. The 
algorithm used in this study consisted in suspending basal insulin delivery for 90 min 
when glucose was predicted to fall below 80 mg/dl in the next 30 min. In particular, two 
methods were proposed for glucose prediction: a simple linear prediction algorithm that 
predicts future glycemia by linear extrapolation of CGM data; and a method using mul-
tiple empirical statistical models to estimate probability of future hypoglycemia [15]. The 
algorithms were assessed in a daytime 7-h in clinic experiment in which hypoglycemia 
was induced by controlled increase of basal insulin infusion rate.

After the encouraging results obtained in the first pilot study (56% of hypoglycemic 
events were prevented), Buckingham et al. further developed their method and tested 
a second prediction-based suspension algorithm for prevention of nocturnal hypogly-
cemia in clinic [16]. In this second study, hypoglycemia was predicted by using 5 dif-
ferent prediction algorithms and basal insulin infusion was suspended if 2 or 3 out of 
5 prediction algorithms predicted a glucose value below 80  mg/dl in the next 35 min 
[17]. The 5 prediction algorithms considered were: linear extrapolation, Kalman filter-
ing [18], adaptive hybrid infinite impulse filter, statistical prediction [15] and numerical 
logical algorithm. Instead of using a fixed suspension time of 90  min as in their pre-
vious study, the authors proposed a new criterion for early restart of basal insulin in 
case (i) at least 30 min passed since suspension started, (ii) CGM rate of change is more 
than 0.5 mg/dl/min, (iii) CGM value is greater than 80 mg/dl. The early restart criterion 
allowed to reduce the mean peak glucose after pump suspension from 158 ± 50 mg/dl to 
149 ± 32 mg/dl. Among the 5 prediction algorithms, the only algorithm that did not play 
a significant role in the generation of hypoglycemia alarms was the linear extrapolation, 
result that justifies the investigation of more complex prediction algorithms.

In their subsequent work, Buckingham and coauthors abandoned the idea of having 
multiple prediction algorithms in favor of using a single Kalman filter prediction algo-
rithm with a PH of 70 min [19]. This choice was motivated on one hand by the need to 
reduce computational complexity, on the other hand by the necessity to further antici-
pate the insulin suspension in order to increase the proportion of nights with prevented 
hypoglycemia, which was about 75% in their previous study [16]. For this purpose, the 
criteria to restart the basal insulin were also updated. In work by Cameron et al. [19], 
basal insulin delivery was restarted if glucose was predicted to rise above 100 mg/dl 
in the next 70  min. Moreover, the algorithm allowed a maximum suspension time of 
120 min every 150 min and 180 min per night. The new algorithm was tested in clinic in 
16 subjects. Mean suspension time was 89 min, hypoglycemia was prevented in 11/15 
subjects, but 13/15 subjects had a peak glucose >  180  mg/dl after basal suspension. 
Nevertheless, the authors stated their study was not designed to rigorously assess the 
rebound in hyperglycemia, because hypoglycemia was artificially induced by increasing 
basal insulin delivery, and no control subjects were studied.

In 2013, Buckingham et al. [20] conducted an outpatient study to test the safety and 
effectiveness of the algorithm proposed by Cameron et al. [19] under real-life conditions. 
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The trial revealed that the proposed algorithm was able to reduce overnight hypoglyce-
mia (occurring in 19% of intervention nights vs 26% of control nights), but at the cost of 
significantly increasing mean morning glycemia (158 ± 52 mg/dl in intervention nights 
vs 125 ±  53  mg/dl in control nights). The authors then decided to revise their algo-
rithm to reduce the occurrence of pump suspension. Specifically, the PH was reduced 
to 30 min, pump suspension was not allowed if CGM value was > 230 mg/dl or a drop 
of ≥ 40 mg/dl was present in consecutive CGM readings (suspected sensor compression 
artifact), and insulin delivery was resumed as soon as CGM values started rising. With 
the revised algorithm, overnight hypoglycemia occurred in 16% of intervention nights 
vs 30% of control nights and a smaller increase in mean morning glucose concentration 
was observed (144 ± 48 mg/dl vs 133 ± 57 mg/dl).

The algorithm by Buckingham et al. [20] was extended in work by Stenerson et al. [21] 
to incorporate physical activity measurements derived from accelerometer and/or heart 
rate monitor to improve the algorithm’s performance in mitigating exercise-induced 
hypoglycemia. Specifically, the extended algorithm suspended basal insulin delivery 
when CGM reading was below 180 mg/dl and decreasing and one of these two condi-
tions was satisfied: (i) > 0.1 vector magnitude units on the accelerometer; (ii) > 90 beats 
per minute on the heart rate monitor. The efficacy of the algorithm was first tested in 
a simulated experiment. Results suggested that adding accelerometer data allowed to 
improve the performance of the pump suspension algorithm, while further addition of 
heart rate monitor data did not significantly improve the performance of the system.

Algorithms for basal insulin attenuation

Starting from 2010, the research group led by Prof. Boris Kovatchev at the University of 
Virginia has been working on a different approach, i.e. algorithms to attenuate, rather 
than suspend, the basal insulin delivery according to the risk of hypoglycemia. The two 
main approaches that they developed were called Brakes and Power Brakes [22].

Brakes is a detection-based algorithm which attenuates basal insulin delivery when the 
15-min unweighted moving average of CGM measurements, ȳ , goes below T = 120 mg/
dl with negative derivative. The attenuation factor φ is calculated according to the fol-
lowing formula:

where R(ȳ) is the glucose risk function introduced by Kovatchev et  al. [23] and Ŵ is a 
patient-specific aggressiveness parameter derived from total daily insulin and correc-
tion factor. As visible in Fig. 2, where φ(R(ȳ)) is plotted for two different values of Ŵ , the 
attenuation factor rapidly decreases as the hypoglycemia risk increases and this decrease 
is more rapid for higher Ŵ values. Basal insulin delivery is restored as soon as the deriva-
tive of ȳ becomes positive.

Power Brakes is a prediction-based algorithm that uses both CGM and insulin data to 
forecast glucose concentration in the next 15 min and attenuate basal insulin delivery 
accordingly. Specifically, glucose prediction is performed by the Kalman filter using as 
underlying model the metabolic state observer, i.e. a linearized and discretized version 

(1)φ(R(ȳ)) =
1

1+ Ŵ · R(ȳ)
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of the subcutaneous oral glucose minimal model [24] with population parameters. 
The inputs of the model are CGM measurements and insulin pump delivery rate. The 
basal insulin attenuation factor is calculated as in Brakes (Eq. 1 replacing ȳ with ŷ , i.e. 
the 15-min ahead predicted glucose concentration returned by the Kalman filter). Basal 
insulin delivery is restored as soon as the derivative of ŷ becomes positive.

The method of Power Brakes was further developed in work by Hughes et al. [25] by 
adding in input to the algorithm information extracted from historical CGM data col-
lected in the previous 30  days. The goal was to let the algorithm anticipate routine 
behavioral events that can cause hypoglycemia, like exercise or consistent over-deliv-
ery of insulin. In the version of Power Brakes enhanced with historical CGM data, the 
Kalman filter and the metabolic state observer are used in real-time to filter the CGM 
signal and obtain a clean estimate of current glucose concentration. This is then pro-
jected in the next 30 min using a simple linear regression model with patient-specific 
parameters that depends on the time of the day (updated every 30 min) and have been 
estimated from historical CGM data collected in the previous 30 days. Historical data 
are also used to tune the threshold T for activation of basal insulin attenuation, which 
was set to either 120 mg/dl or 140 mg/dl depending on the probability of being in hypo-
glycemia in the next 60 min estimated from historical CGM data.

Another variation of the Power Brakes algorithm was proposed by Patek et al. [26] as 
safety supervision module (SSM) of a modular closed-loop system. In this variant, glu-
cose prediction is performed by a simple linear regression in time with PH = 17 min, 
intercept parameter equal to the unweighted average of CGM measurements collected 
in the last 10 min and slope parameter equal to the least-square linear fit of CGM sam-
ples in the last 30 min. Predicted glucose is then corrected to account for the effect of 
insulin-on-board (IOB), i.e. previously injected insulin that is still active in the body. 
This is done by subtracting to the predicted glucose concentration a term proportional 

Fig. 2 Attenuation function used in the Brakes and Power Brakes algorithms. Plot of the attenuation function 
used in the Brakes and Power Brakes algorithms (see Eq. 1) for two virtual subjects of the UVA/Padova T1D 
Simulator [58]. In particular, the function is plotted for the subject with maximum aggressiveness parameter 
(max Ŵ , red line) and the subject with minimum aggressiveness parameter (min Ŵ , blue line)
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to an estimate of current IOB, obtained using insulin action curves of different duration 
(4–8 h) in different glucose ranges. The glucose value obtained after IOB correction is 
used to calculate the risk of hypoglycemia using the same function of the original Power 
Brakes formulation, but with different parameters. Particularly, in the SSM variant, basal 
insulin attenuation is triggered only if CGM is lower than 112.5 mg/dl with decreasing 
trend. Finally, the attenuation factor is calculated as in Eq. 1, but without applying the 
aggressiveness parameter ( Ŵ = 1).

Algorithms embedded in commercial devices
Since the availability of first CGM sensors, insulin pump companies understood the 
potentiality of exploiting CGM data in real-time to improve insulin infusion and, thus, 
glucose control.

Medtronic Inc. (Northbridge, CA) has been one of the most active companies work-
ing at the development of both detection- and prediction-based suspension algorithms. 
Indeed, Medtronic Inc. launched in 2006 the first system for diabetes management inte-
grating CGM and insulin pump technologies in the same medical device (MiniMed Par-
adigm REAL-time system). Later on, Medtronic Inc. developed the Medtronic Paradigm 
Veo (Fig. 3a), i.e. the first device equipped with an automatic detection-based basal insu-
lin suspension feature, which became commercially available outside the U.S. in 2009. 
The Paradigm Veo system implemented the low glucose suspend (LGS) feature that sus-
pended basal insulin delivery for up to 2 h when the CGM value measured by the sen-
sor embedded in the system fell below a low glucose threshold, which could be set by 
the user between 40 and 110 mg/dl. In particular, when the pre-defined threshold was 
reached, in absence of patient’s actions, a 6-h cycle automatically started, in which basal 
insulin was suspended for 2 h and then re-activated for the next 4 h regardless of CGM 
measurements. The fixed 4-h re-activation of insulin delivery was introduced to prevent 
the occurrence of diabetes ketoacidosis. Nevertheless, the patient could manually inter-
rupt the LGS cycle at any time and resume normal basal insulin delivery [27]. In the 
U.S., the first device including automatic detection-based suspension of basal insulin, 
the MiniMed 530G system (Fig. 3b), entered the market several years later, in 2013. The 
system implemented the threshold suspend (TS) feature, which was identical to LGS, 
except for the range of settable low thresholds that was restricted to 60–90 mg/dl in this 
second device [28].

According to a retrospective study of Paradigm Veo data uploaded on Carelink Ther-
apy Management Software for Diabetes (Carelink), the LGS feature was generally well 
accepted by the European users, who used the feature on 82% of the time, with the low 
threshold most commonly set between 50 and 60 mg/dl (data collected from January to 
July 2010) [27]. A similar analysis of MiniMed 530G data uploaded on Carelink showed 
that 70% of patients always used TS, 19% used it intermittently and the remaining 11% 
never used the feature (data collected from October 2013 to July 2014) [28]. Among 
MiniMed 530G users, the mean low threshold setting was 62.8 ± 5.8 mg/dl. However, 
even though the patients had the LGS/TS feature active on most of the time, actually, 
most of suspension events were manually interrupted by the users. Indeed, the retro-
spective analysis of Carelink data showed that about 50% of suspension events lasted 
5 min or less and only 10% of events had complete 2-h duration [27, 28]. This suggests 
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that a 2-h suspension may be too long for most of the events, thus users preferred to 
reactivate basal insulin earlier and/or make their own treatment.

A new prediction-based suspension algorithm, called “suspend before low” or Pre-
diction Low Glucose Management (PLGM), was implemented in the SmartGuard fea-
ture of the MiniMed 640G (Fig.  3c), which became commercially available outside 
the U.S. in 2015. The system automatically suspends basal insulin delivery when glu-
cose concentration is predicted to reach or fall below a preset glucose threshold in 
the next 30  min and automatically restarts basal insulin on recovery from hypogly-
cemia [29]. Specifically, basal insulin delivery is suspended if glucose concentration 
is below T + 70 mg/dl and predicted to drop below T + 20 mg/dl in the next 30 min, 
where T is a low threshold that the user can set between 50 and 90 mg/dl. The system 

Medtronic Paradigm Veo Medtronic MiniMed 530G 

Medtronic MiniMed 640G Medtronic MiniMed 630G

a b

c d

Fig. 3 Commercial devices implementing basal insulin suspension algorithms. a Medtronic Paradigm 
Veo (taken from: http://www.desan g.net/2011/02/medtr onic-parad igm-veo). b Medtronic MiniMed 530G 
(taken from: http://www.medtr onicd iabet es.com/loop-blog/intro ducin g-the-minim ed-530g-with-enlit e). 
c Medtronic MiniMed 640G (taken from: http://www.medtr onic-diabe tes.co.uk/minim ed-syste m/minim 
ed-640g-syste m). d Medtronic MiniMed 630G (taken from: http://www.diabe tesms .com/produ cts/minim 
ed-630g-insul in-pump)

http://www.desang.net/2011/02/medtronic-paradigm-veo
http://www.medtronicdiabetes.com/loop-blog/introducing-the-minimed-530g-with-enlite
http://www.medtronic-diabetes.co.uk/minimed-system/minimed-640g-system
http://www.medtronic-diabetes.co.uk/minimed-system/minimed-640g-system
http://www.diabetesms.com/products/minimed-630g-insulin-pump
http://www.diabetesms.com/products/minimed-630g-insulin-pump
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automatically resumes basal insulin if glucose is ≥ T  + 20 mg/dl, the 30-min ahead 
predicted glucose value is ≥ T  +  40  mg/dl and basal insulin delivery has been sus-
pended for at least 30 min. As in the LGS/TS feature, the user can manually restart 
basal insulin delivery at any time and the maximum duration of suspension events is 
2 h, after which basal insulin delivery is resumed for 4 h regardless of CGM concen-
tration. In the U.S., the SmartGuard feature became commercially available in 2016 
as part of the MiniMed 630G system (Fig.  3d). Besides the new PLGM algorithm, 
the SmartGuard feature of both MiniMed 640G and MiniMed 630G implements the 
LGS/TS algorithm as well, which is also called “suspend on low”.

An analysis of MiniMed 640G real-world data (data uploaded on Carelink from Janu-
ary 2015 to January 2016), showed that “suspend before low” was used on 83% of user-
days, “suspend on low” was used on 11% of user-days, while in the remaining 6% of 
user-days neither “suspend before low” or “suspend on low” were activated [30]. With 
the MiniMed 640G, the percentage of suspension events manually interrupted by the 
user decreased to 33.51%, 11% of events had maximum duration of 2 h, while in the 
remaining 55% of events basal insulin delivery was automatically resumed by the PLGM 
algorithm.

Evidence of clinical effectiveness and safety
Many studies were performed to assess the effectiveness and the safety of basal insulin 
suspension algorithms both in clinic under controlled conditions [14, 16, 19, 31–35] and 
at home under real-life conditions [20, 29, 36–43]. The effectiveness is intended as the 
ability of the algorithm to reduce or prevent hypoglycemia and was generally assessed by 
metrics like number/rate of hypoglycemic events, time spent in hypoglycemia, percent-
age of values in hypoglycemia, minimum glucose value (or nadir) per suspension event 
and area under the curve (AUC) for hypoglycemic excursions. The safety is intended 
as the ability of the algorithm not to produce rebounds in hyperglycemia and adverse 
events, like diabetes ketoacidosis, that can result from an extended suspension of basal 
insulin delivery. Metrics commonly used to assess algorithm’s safety are mean glucose 
concentration, glycated hemoglobin (HbA1c), time spent in hyperglycemia, percentage 
of values in hyperglycemia, glucose values at restart of basal insulin, 2 h and 4 h after 
restart of basal insulin, morning glycemia and morning blood ketones.

The Medtronic LGS/TS algorithm was tested both in single-arm [36, 37] and rand-
omized controlled clinical trials [31, 40, 41]. Evidences from these trials support the 
effectiveness of the algorithm in reducing hypoglycemia, at the price of a slight increase 
in hyperglycemia that, however, was not associated with an increase of HbA1c or the 
occurrence of ketoacidosis. For example, in the ASPIRE In-Home study [41], a rand-
omized trial in which 247 subjects were randomly assigned to sensor-augmented pump 
therapy (SAP) or SAP +  LGS for 3 months, AUC for nocturnal hypoglycemic events 
was reduced by 37.5% in the LGS group compared to the control group. Regarding the 
2-h suspension events, 4 h after the event start, 26% of CGM values were above 200 mg/
dl and the mean CGM value (168 ± 64.6 mg/dl) was pretty close to the hyperglycemic 
region. Nevertheless, no significant change in HbA1c was observed. In a 6-month rand-
omized study comparing SAP + LGS therapy with pump therapy (no CGM) in patients 
with hypoglycemia unawareness, the rate of severe (coma and seizure) and moderate 
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(requiring other person assistance) hypoglycemic events decreased from 129.6 to 28.4 
events per 100 patient-months with no significant change in HbA1c  [40]. In a partial 
analysis conducted in 24 patients [44], the investigators found a discrepancy between 
first morning CGM value, that was 144  ±  9  mg/dl, and first morning SMBG value, 
that was 185 ±  9 mg/dl, after overnight 2-h suspension events (n =  324). Moreover 
on 14 occasions, there were more than one 2-h suspension per night. In these cases, 
mean morning meter value was 239 ±  22 mg/dl and mean morning sensor value was 
112 ±  18  mg/dl. The authors stated these events were caused by sensor’s calibration 
error, underlying the importance of relying on an accurate CGM sensor. These clinical 
trials also confirmed the evidence reported in Agrawal et al. [27, 28] that most of LGS/
TS suspension events were manually interrupted by the user, with a percentage of events 
of duration less than 10 min ranging between 48% [44] and 66% [37].

An investigational Medtronic device with the PLGM feature was assessed by Abraham 
et  al. in experiments of insulin-induced [33] and exercise-induced [34] hypoglycemia 
and under real-life conditions [43, 45], demonstrating the effectiveness of the algorithm 
in reducing hypoglycemia and hypotreatment requirements. The commercial MiniMed 
640G system was assessed in a single-arm outpatient study [29], a single-arm inpatient 
study with nocturnal hypoglycemia induced by increased insulin delivery [35], and 
a randomized controlled trial conducted in children and adolescents [42]. In study by 
Choudhary et al., mean suspension event duration was 56.4 ± 9.6 min, mean of subse-
quent CGM nadir was 71.8 ± 5.2 mg/dl and CGM did not reach the preset low thresh-
old in 83.1% of events [29]. Basal insulin delivery was manually restarted by the user 
in 26.7% of events, result of the improved strategy for basal insulin resumption in the 
PLGM feature. In in-clinic experiments, the 60% of hypoglycemic events (defined as two 
consecutive BG samples ≤  65  mg/dl) were prevented with PLGM [35]. In their rand-
omized clinical trial comparing SAP with and without PLGM, Battelino et al. found that 
PLGM allowed a significant reduction of number of events below 65 mg/dl, at the price 
of an increase of time above 140  mg/dl, which was significantly longer in the PLGM 
group [42]. Nevertheless, time above 180 mg/dl and time above 250 mg/dl were com-
parable in the two groups. Moreover, no significant difference in the number of events 
below 50 mg/dl was observed, indicating that basal insulin suspension may not be suf-
ficient to avoid episodes of profound hypoglycemia. The superiority of PLGM compared 
to LGS/TS was proved by Danne et al. in silico using the UVA/Padova T1D simulator 
[32]. Zhong et al. analysed the data of 851 users who transitioned from Paradigm Veo 
to MiniMed 640G and observed a statistically significant reduction of excursions below 
70 mg/dl and above 300 mg/dl [30].

As far as noncommercial algorithms are concerned, the algorithm based on Kalman 
filter prediction developed by Buckingham et al. [20] was tested for reduction of over-
night hypoglycemia in a large 42-night randomized controlled clinical trial involving 45 
adolescents and adults, 45 children aged 11–14 and 37 children aged 4–10 [38, 39, 46]. 
The algorithm was running in a bedside laptop communicating with the Paradigm Veo 
pump and the Medtronic Enlite sensor. Results showed that the prediction-based sus-
pension algorithm was effective in reducing hypoglycemia in all age groups. In adults 
and adolescents, median hypoglycemia AUC was reduced by 81% and the percentage of 
nights with at least one CGM value < 60 mg/dl was 21% in the intervention group versus 
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33% in the control group [38]. In children, median time below 70 mg/dl was about 50% 
lower in the intervention group. However, in subjects aged 11 or older, the percentage of 
nights followed by morning glycemia > 180 mg/dl was statistically significantly higher in 
the intervention groups compared to the control groups (42% vs 32% in 11–14 year-olds; 
27% vs 21% in > 14 year-olds) [38, 39]. Despite the higher occurrence of morning hyper-
glycemia in patients using the suspension algorithm, no significant increase in morning 
blood ketones and no serious adverse event was observed [39, 46].

All the aforementioned clinical trials were performed with either detection-based or 
prediction-based suspension algorithms. The attenuation algorithms proposed by Uni-
versity of Virginia, Brakes and Power Brakes, were assessed in silico using the first release 
of the UVA/Padova T1D Simulator [47]. In Hughes et  al. [22], two simulated scenar-
ios were generated in which hypoglycemia was induced by increasing the basal insulin 
delivery rate and by an insulin bolus with missed meal, respectively. In the first scenario, 
both Brakes and Power Brakes were effective in reducing the number of subjects expe-
riencing hypoglycemia (from 59% to 26% and 7%, respectively). In the second scenario, 
Brakes was able to reduce the duration of hypoglycemic events but did not succeed in 
preventing any of them. Better results were achieved by Power Brakes, which, taking into 
account previously injected insulin for glucose prediction, was able to prevent 32/90 
hypoglycemic events. Hughes et  al. also showed that combining Power Brakes with a 
hypoglycemic treatment advisor, which suggests 15 g of rescue carbohydrates when pre-
dicted glucose goes below 80 mg/dl, almost all the hypoglycemic events were prevented 
[22].

The variant of Power Brakes with historical CGM data as additional input was tested 
in silico in an ad-hoc scenario generated by the UVA/Padova T1D Simulator, in which a 
random increase in the patient’s basal rate was introduced to artificially simulate a cir-
cadian increase in the patient’s insulin sensitivity [25]. Results showed that the addition 
of historical CGM data allowed to modestly improve the performance of Brakes in pre-
venting hypoglycemia, although an assessment of these techniques in either real clini-
cal studies or more realistic in silico experiments is necessary to better understand the 
potential benefits of using historical data to enhance pump attenuation algorithms.

The SSM variant of Power Brakes was also assessed in silico, in a single-day experi-
ment generated by the UVA/Padova T1D Simulator, in which patient’s insulin sensitiv-
ity and basal insulin rate were perturbed to generate a suboptimal treatment scenario 
[26]. Compared to the conventional therapy, the SSM was able to effectively reduce 
hypoglycemia (0% time in hypoglycemia), at the price of an upward shift of the glucose 
profiles. However, this shift was compensated when the module of the closed-loop sys-
tem responsible for recommending both positive and negative basal insulin adjustments 
(Range Correction Module) was activated under the supervision of the SSM.

Although the encouraging results obtained in these short in silico experiments, to 
the best of our knowledge, Brakes and Power Brakes were never assessed as standalone 
algorithms in clinical trials, but only in closed-loop control trials, where they have been 
embedded in the SSM, making impossible to distinguish their effectiveness from that of 
the closed-loop controller. In addition, the effectiveness and safety of such algorithms 
have never been tested in more realistic long-duration in silico clinical trials when new 
and more reliable simulators were released [48, 49].
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Conclusion
The availability of insulin pumps communicating with CGM sensors has stimulated 
the development of algorithms for the automatic suspension or attenuation of basal 
insulin delivery when hypoglycemia is either detected or predicted from CGM read-
ings. Some algorithms were also implemented in commercial integrated systems 
produced by Medtronic. The commercially available algorithms are all suspension 
algorithms, i.e. they can only turn on or off basal insulin delivery, and rely only on 
CGM measurements for the prediction of future hypoglycemia [27–29].

Literature studies have shown that the performance of glucose prediction algorithms can 
significantly improve when additional inputs are considered apart from CGM, like insulin, 
meals, and physical activity, all factors that strongly impact glycemic excursions [50–52]. 
Some literature studies on basal insulin attenuation algorithms have explored the possibil-
ity of enhancing glucose prediction by taking into account insulin data [22, 26] and his-
torical CGM data [25]. However, such algorithms have been tested only in short in silico 
experiments and a more extensive evaluation is needed to understand the real benefits of 
using insulin and historical glucose data as additional inputs for glucose prediction. A first 
step in this direction could be the assessment of these algorithms using a more advanced 
simulation framework including a description of physiological, technological and behav-
ioral variability, which allows the simulation of realistic multiple-day scenarios [48, 49]. In 
another literature study, physical activity data were used to enhance the performance of an 
algorithm for basal insulin suspension in mitigation of exercise-induced hypoglycemia [21]. 
However, in the proposed algorithm, physical activity could trigger basal insulin suspen-
sion independently on glucose prediction. A more robust approach would be to use physi-
cal activity data to enhance glucose prediction and then use the prediction derived from 
CGM, physical activity and possibly other input data to trigger basal insulin suspension.

Another interesting idea that has been proposed in the literature is the use of a 
smoothed attenuation function [22, 25, 26]. Further assessments are needed to under-
stand the real benefits of using a smooth attenuation function instead of a thresh-
old-based suspension strategy, like that implemented in commercial devices. Indeed, 
the plot of Fig. 2 shows that the attenuation function proposed by Hughes et al. [22] 
is very steep, thus the effect on glucose concentration of using such an attenuation 
function may actually be very similar to that obtained with a step function.

The assessment of basal insulin suspension algorithms in clinical trials showed that 
these methods are effective in reducing hypoglycemia outcomes, except the rate of 
events of profound hypoglycemia (e.g. below 50  mg/dl), whose incidence and dura-
tion did not change significantly with or without the use of pump suspension [22, 
42]. The price is a slightly increase of time spent in the high glucose range (e.g. above 
140 mg/dl) [38–40, 42], although no serious adverse event (e.g. diabetes ketoacidosis) 
associated with the use of suspension algorithms was observed.

As Hughes et  al. shown in a simulated case study [22], the simple attenuation of 
basal insulin when hypoglycemia is predicted may not be sufficient to prevent epi-
sodes of profound hypoglycemia caused by large insulin boluses, unless this is 
combined with carbohydrate intake. Therefore, a possible effective solution for the 
prevention of profound hypoglycemia could be the combination of basal insulin atten-
uation algorithms with algorithms for the suggestion of preventive hypotreatments in 
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presence of elevated hypoglycemia risk. Such preventive hypotreatment advisory sys-
tems could be also applied to mitigate hypoglycemia in patients on traditional multi-
ple daily injections therapy.

To minimize the undesired rebound in the high glucose range following a suspen-
sion event, basal insulin attenuation algorithms can be coupled with algorithms allow-
ing automatic basal insulin increase in response to high glucose concentration. This 
strategy was supported, for example, by Patek et  al. that showed the performance of 
their SSM increased when this was coupled with the Range Correction Module allow-
ing positive insulin corrections [26]. In recent work by Spaic et al., the prediction-based 
suspension algorithm developed by Buckingham et al. [39] was combined with an auto-
matic insulin-dosing component, forming the Predictive Hyperglycemia and Hypogly-
cemia Minimization system for overnight control [53]. Two recent randomized clinical 
trials showed that the addition of the insulin-dosing component allowed the system to 
increase time in target and reduce mean morning glycemia, without deteriorating the 
performance in hypoglycemia mitigation [53, 54]. Systems like these that allow real-
time automatic positive and negative adjustments of basal insulin delivery are examples 
of hybrid closed-loop systems, which have been object of intense research activity in 
the last 10 years and recently entered the market, with the Medtronic MiniMed 670G 
being the first commercial hybrid closed-loop system [55–57].

In conclusion, basal insulin attenuation algorithms are a promising technique for the 
mitigation of hypoglycemia in SAP therapy and represent the first step towards a fully 
closed-loop system. Although some of these algorithms have already been implemented 
in commercial devices, there are still many margins for improving their performance. 
Interesting research topics in this area include the enhancement of prediction algo-
rithms by adopting multivariable approaches, the use of different smooth attenuation 
functions, and the combination of basal insulin suspension algorithms with preventive 
hypotreatment advisory systems and/or automatic insulin dosing algorithms.
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