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Abstract 

Background:  The research and analysis of cellular physiological properties has been 
an essential approach to studying some biological and biomedical problems. Temporal 
dynamics of cells therein are used as a quantifiable indicator of cellular response to 
extracellular cues and physiological stimuli.

Methods:  This work presents a novel image-based framework to profile and model 
the cell dynamics in live-cell videos. In the framework, the cell dynamics between 
frames are represented as frame-level features from cell deformation and intracellular 
movement. On the one hand, shape context is introduced to enhance the robustness 
of measuring the deformation of cellular contours. On the other hand, we employ 
Scale-Invariant Feature Transform (SIFT) flow to simultaneously construct the comple-
mentary movement field and appearance change field for the cytoplasmic streaming. 
Then, time series modeling is performed on these frame-level features. Specifically, 
temporal feature aggregation is applied to capture the video-wide temporal evolution 
of cell dynamics.

Results:  Our results demonstrate that the proposed cell dynamic features can effec-
tively capture the cell dynamics in videos. They also prove that the Movement Field and 
Appearance Change Field Feature (MFAFF) can more precisely model the cytoplasmic 
streaming. Besides, temporal aggregation of cell dynamic features brings a substantial 
absolute increase of classification performance.

Conclusion:  Experimental results demonstrate that the proposed framework outper-
forms competing mainstreaming approaches on the aforementioned datasets. Thus, 
our method has potential for cell dynamics analysis in videos.

Keywords:  Cell deformation, Intracellular movement, Video feature aggregation, 
Shape context, SIFT flow
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Background
Image-based cell profiling provides quantitative information about cell state and paves 
the way to studying biological and biomedical problems [1–4]. As one of most significant 
aspects therein, characterizing temporal dynamics of cells is used to model cell cycle, 
analyze migratory phenotypes, and unravel cellular response to physiological stimuli [5–
9]. Because of the ability to capture spatio-temporal data, live-cell imaging technology 
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facilitates the analysis of cell dynamics based on image processing and machine learning 
[10, 11].

To obtain the features for temporal dynamics of cells, cell profiling methods need 
to precisely characterize the visual appearance of cells and its change on consecutive 
frames. These methods are divided into two categories according to the cell dynamics 
they adopted (the deformation of cell contour and the active or directed intracellular 
movement). Some shape parameters, such as the area or volume, centroid, and circular-
ity, are computed as the global features of cell contour, and the variance of these features 
is regarded as the index of cell dynamics [5, 12]. However, shape parameters cannot pre-
cisely characterize cell morphologies and cell morphology dynamics. The radial distance 
of cellular contours is employed to preserve more subtle structures of cellular morphol-
ogy. Similarly, tree graph (TG), a variant of radial distance, is designed for arbitrary cell 
contours, especially those with cell protrusions [13]. Then the length variation of pro-
trusions (or the number variation of protrusions1) between frames is calculated as the 
feature of cell contour dynamics.

These methods based on the cell contour dynamics make use of some straightforward 
shape matching strategies. As the accurate correspondence between two cell contours 
benefits the subsequent deformation measurement, the learning-based shape match-
ing strategy might be a better choices. Shape context measures the shape deformation 
by optimizing a shape matching problem and is applied to assessing the deformation of 
anatomical tissue and falling human silhouettes [14–16]. Thus it is suitable to be intro-
duced into our framework to quantize the deformation of cellular contours.

Another category of cell dynamics, or alternatively, the intracellular movement is 
also relevant to the cell dynamics. Image cross-correlation is employed to obtain time-
dependent speckle pattern derived from optical coherence microscopy images as the 
representation of the cell dynamics [17]. Furthermore, cytoplasmic streaming is mod-
eled to construct the movement field (or displacement field) between a pair of frames 
based on optical flow, and then the average horizontal velocity and vertical velocity are 
concatenated into the feature vector according to temporal order [18]. In fact, besides 
intracellular movement, there is the phenomenon of splitting, merging and disappear-
ing of them during cytoplasmic streaming [19]. And this phenomenon corresponds to 
the change of intensity or texture around the moving particles, i.e., the changes of image 
local properties. Hence, it is reasonable to construct an additional appearance change 
field for cytoplasmic streaming as a complement to the original movement field.

Nevertheless, optical flow is based on the brightness constancy assumption, which 
cannot construct a meaningful appearance change field and is sensitive to the variance of 
light, perspective, and noise. Scale-Invariant Feature Transform (SIFT) flow can obtain 
the robust semantic-level correspondence between two images. In this paper, we employ 
SIFT flow to establish the movement field and appearance change field for cytoplasmic 
streaming. Herein the appearance change field is constructed by computing the discrep-
ancy of the corresponding SIFT descriptors.

1  Tree graph is suitable to compute the number and length of cell protrusions.
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Although the aforementioned methods successfully capture the cell dynamics from 
short-term video segments, the subsequent video-range aggregation of these features 
is not considered in-depth. They only adopt the concatenation or accumulation strat-
egy for the features along temporal dimension [18, 20–22]. To preserve more temporal 
structures, hidden Markov models (HMM) are introduced to represent the cell shape 
dynamics in time series as predefined morphological states. This process condenses 
the temporal dynamics into a simpler representation, which enhances discriminative 
power for profiling temporal dynamics [23]. Therefore, HMM is applied to recognize 
the cellular phases during mitosis and cellular-response-based drug classification [6, 24]. 
Similarly, in the previous work of this study, a temporal bag of words (TBoW) model is 
utilized to fuse cell dynamic features between frames [25]. The TBoW model learns a 
codebook containing the typical modes of cell short-term dynamics and encodes these 
short-term dynamics as visual words in a codebook. Finally, the word frequency of the 
codebook is defined as the video-range cell dynamics.

HMM and TBoW only transform the primary features into predefined states (or visual 
words) or sample statistics, i.e., the number of states. Compact encoding, by contrast, 
exploits more statistics, such as mean, variance, as well as even skewness and kurtosis, 
which leads to its great advantage over HMM and TBoW. In this paper, we introduce the 
compact encoding for the sake of modeling the temporal dynamics in live-cell videos. 
We further compare Fisher vector (FV) [26, 27], vector of locally aggregated descriptors 
(VLAD) [28, 29] and higher-order VLAD (H-VLAD) [30] to find out the best one for our 
application.

This paper mainly proposes a novel framework to evaluate temporal dynamics of cells 
as shown in Fig. 1, and its contributions are threefold. First, shape context is introduced 
to measure the deformation of cellular contours. Second, SIFT flow is utilized to model 
the complementary movement field and appearance change field for the cytoplasmic 
streaming simultaneously. Finally, we introduce and compare three mainstreaming com-
pact encoding approaches to temporal aggregation of dynamic features, and discover the 
most suitable encoding strategy for the whole framework.

Materials and methods
In this section, we first describe two live-cell video datasets for evaluating the utility 
of the proposed framework. These two datasets individually contain 80 video clips in 
two classes and 120 video clips in four classes. Then the cell dynamic features between 
frames are presented, which include the contour feature using shape-context and the 
cytoplasm feature based on SIFT flow. Finally, we present the temporal aggregation 
strategy for these dynamic features to generate the video-wide representation.

Data

To validate the proposed approach, there are two datasets of video clips about lympho-
cytes established by the collaboration hospital, Beijing You’an Hospital. The lymphocytes 
were from the blood samples that were collected from the tails of the mice (6–8 weeks, 
20–22 g) after the skin transplantation, and the video clips (20–30 s, 25 frames per sec-
ond, 288 ×  352 video resolution, AVI format) were recorded with the phase contrast 
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microscopy (Olympus BX51) at a magnification of 1000. After the video clips were 
obtained, they are further enlarged 16 times by up-sampling. Each time only one tar-
get lymphocyte was observed and manually positioned in the center of the field. Then 
a quality control step was conducted beforehand to filter out the video clips containing 
only one lymphocyte. And it also guarantees that there is no overlap and trajectory cross 
between the lymphocyte and red blood cells. There are two types of skin transplantation, 
i.e., the self-skin transplantation group (SST group) and the allergenic-skin transplan-
tation group (AST group). In the SST group, a healthy Balb/C male mouse was used 
as both the host and the donor, while in the AST group a pair of healthy Balb/C male 
mouse and healthy C57BL/6 male mouse were used as the host and the donor, respec-
tively. Several video clips of the datasets are available at http://isip.bit.edu.cn/kyxz/
xzlw/77051​.htm.

For Dataset I, there are 80 video clips in total (40 video clips for each class) obtained 
from a contrast experiment, in which both the SST group and AST group have 20 hosts 
and 20 donors. On the fourteenth day after the surgery, the lymphocytes in Dataset I 
were obtained from the blood samples collected from the tail vein. The lymphocytes in 
the second group showed irregular dynamic behavior, such as the cell elongation from 
different angles and the obvious movement of intracellular cargoes compared with the 
first group. Consequently, the videos from the first group and the second group were 
categorized as normal and abnormal, respectively.

Dataset II is composed of 120 video clips equally divided into four classes, which is 
derived from an AST group experiment with 25 pairs of hosts and donors. On the sev-
enth day after the skin transplantation, the lymphocytes of Dataset II were obtained 
from the blood samples collected from the tail vein. The videos were divided into four 
classes (normal, slight activation, moderate activation, and drastic activation) according 
to the cellular deformation by three experts with a voting protocol. For these two data-
sets, we use 30 random splits of the data, while considering 20 random video clips per 
class for training and the rest for testing.

Fig. 1  The pipeline of the proposed video feature aggregation (VFA) to analyze temporal dynamics of cells. 
Cell dynamic features are extracted between frames, which contains contour feature and cytoplasm feature. 
Then, a VFA is applied based on these cell dynamic features

http://isip.bit.edu.cn/kyxz/xzlw/77051.htm
http://isip.bit.edu.cn/kyxz/xzlw/77051.htm
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Preprocessing

For the effectiveness of feature extraction, some pre-processing procedures need to be 
adopted, containing cell segmentation and cell tracking in each frame, as well as cell 
alignment among the sequence of frames. In Fig.  2, each row corresponds to a video 
clip in the datasets in “Data” section, and the target cells are lymphocytes in the red/
blue dashed box. We employ an active contour model designed for live cells in phase-
contrast images to automatically segment and track cells [31]. To further eliminate the 
impact of compulsory movement, video stabilization algorithm is introduced to perform 
a non-rigid alignment for the cell sequences in frames [32]. Besides, manual validation 
is exploited to eliminate the ambiguity of cell segmentation and tracking by human eye 
if necessary. In detail, we can specified the initial contours for the lymphocytes to make 
sure the accuracy of cell segmentation.

Dynamic features between frames

This subsection mainly describes the features of cell dynamics between frames in the 
image sequence. Specifically, the dynamic features can be extracted from the deformation 
of cellular contours and intracellular movements. The former is captured by the shape 
context while the latter is modeled with SIFT flow. Then the corresponding contour fea-
ture and cytoplasm feature are combined to form a robust feature vector of cell dynamics.

Contour feature using shape‑context

In the field of object recognition and shape matching, shape context was first proposed 
by [14], and then has been widely used in digit recognition, trademark search, and image 
registration. Shape context is introduced into the framework of deformation assess-
ment for anatomical tissue to preserve and discriminate tiny deformation [15]. While 
shape context also has the potential to match the silhouettes of the falling human body 
and take the mean matching cost as a crucial index to quantify the deformation [16]. 
Therefore, this paper adopts shape context for the sake of generating the cellular contour 
deformation feature.2

Shape context

In shape context, a shape is sampled into a discrete set of points from its contour, which 
will finally accumulate a log-polar histogram hi:

where pi is a point in the given n-points shape, and its shape context hi records the rela-
tive coordinates of the remaining n− 1 points as shown in Fig. 3. bin(k) stands for the 
k-th bin in histogram hi . Suppose pi and qj are from two shapes P and Q, respectively, 
therefore the matching cost Cij for each pair of points (pi, qj) is computed with the χ2 
statistic:

(1)hi(k) = #{q �= pi : (q − pi) ∈ bin(k)},

(2)Cij =
1

2

K
∑

k=1

[

hi(k)− hj(k)
]2

hi(k)+ hj(k)
,

2  The code for shape context can be found in https​://www2.eecs.berke​ley.edu/Resea​rch/Proje​cts/CS/visio​n/shape​/sc_
digit​s.html.

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/sc_digits.html
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/sc_digits.html
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where hi(k) and hj(k) denote the K-bin histograms for pi and qj , separately.

Contour feature based on shape distance

Hungarian algorithm [33] can find the best matching by minimizing the total cost 
H(π) =

∑

C(pi, qπ(i)) given a permutation π(i) . With the permutation, a series 
of transformations T = {Tk}k=1...u for each point can be computed using the thin 
plate spline model (TPS). Then several iterations of shape context matching and 
TPS re-estimation are implemented, and the shape context distances D1

sc, . . . ,D
L
sc 

in L iterations are concatenated as the feature vector of cellular contour deformation 
FDCS = {D1

sc, . . . , D
l
sc, . . . ,D

L
sc}.

where T (·) denotes the TPS shape transformation.

Cytoplasm feature based on SIFT flow

In SIFT flow, the SIFT descriptor, as a type of middle-level representation, is incorpo-
rated into the computational framework of optical flow. It establishes a robust seman-
tic-level correspondence through matching these image structure [34].3 Based on the 
semantic-level correspondence, the movement field and the appearance change field 
are constructed by computing the displacement of the corresponding points and the 
discrepancy of the corresponding SIFT descriptors, respectively. Then histograms of 

(3)Dl
SC =

1

n

∑

p∈P
argmin

q∈Q
C(p,T (q))+

1

m

∑

q∈Q
argmin

p∈P
C(p,T (q)),

a

b

c

d

Fig. 2  Samples from live-cell video datasets arranged in rows. The frames in different columns are extracted 
from certain videos at the fixed time interval of 3 s. Only one target lymphocyte (in the red/blue dashed box) 
is observed once, and there is no overlap and trajectory cross between the lymphocyte and red blood cells. 
The frames of the samples in a and b are both from the SST group in Dataset I, while those in c and d from 
the AST group in Dataset I

3  The code of SIFT flow is available in https​://peopl​e.csail​.mit.edu/celiu​/SIFTf​low/.

https://people.csail.mit.edu/celiu/SIFTflow/
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oriented SIFT flow is employed to characterize multi-oriented dynamic information 
from both the movement field and the appearance change field.

SIFT flow

Instead of matching raw pixels in optical flow, SIFT flow searches for the correspondences 
of SIFT descriptors on the grid coordinate p = (x, y) of images. The dense correspondence 
map, or the movement field, can be obtained by minimizing an objective function E(w):

where s1p and s2p individually denote the SIFT descriptor at position p in two SIFT images, 
and wp = (up, vp) presents the flow vector at p. The parameters t and d are the thresh-
olds of the data term and the smoothness term, respectively. The set ε contains all spatial 
four-neighborhoods.

After obtaining the correspondence map upon the sequential SIFT images, the appear-
ance change field can be implemented by computing the difference of SIFT features 
between the corresponding points.

Histograms of oriented SIFT flow

Due to the susceptibility to scale changes and directionality of movement, the raw SIFT 
flow cannot obtain a good performance if applied as features directly. Inspired by the his-
tograms of oriented optical flow, SIFT flow is binned according to its primary angle from 
the horizontal axis and weighted according to its magnitude or appearance difference, as 
shown in Fig. 4. FMDF =

{

f 1MDF , . . . , f
R
MDF

}

 and FACF =
{

f 1ACF , . . . , f
R
ACF

}

 are obtained to 
characterize the movement and appearance variation of the cytoplasm, respectively.

(4)

E(w) =
∑

p

min
(∥

∥

∥
s1p − s2p+wp

∥

∥

∥

1
, t
)

+
∑

η
(∣

∣up
∣

∣+
∣

∣vp
∣

∣

)

+
∑

(p,q)∈ε
min

(

α
∣

∣wp − wq

∣

∣, d
)

,

(5)f rMDF =
∑

u,v∈bin(r)

√

u2p + v2q ,

Fig. 3  Log-polar histogram computation for a point pi . The log-polar histogram has 5 bins for log r and 12 
bins for θ as proposed by [14]
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where f rMDF denotes the accumulation of displacement magnitude belonging to the r-th 
( 1 ≤ r ≤ R ) bin in the movement field, and f rACF means the sum of the appearance differ-
ence in the r-th ( 1 ≤ r ≤ R ) bin.

Combination of features

The robustness of feature representation can be enhanced by combining the com-
plementary features. To sum up, the aforementioned FDCS , FMDF  and FACF  between 
frames are concatenated to form a feature vector:

The computing of Fi is the key step to extracting the features of cell dynamics in the 
whole framework. Then “Temporal aggregation of dynamic features” section is mainly 
about encoding the chronological structure of the cell dynamic features in a particular 
video.

Temporal aggregation of dynamic features

For the video-wide cell dynamics, it is essential to aggregate a series of frame-level 
dynamic features along temporal extent in a rational way. That is to say, it needs to 
consider how dynamic features evolve over time in a video. In this section, we pre-
sent three compact encoding methods, including FV, VLAD, and H-VLAD, to capture 
the temporal information of cell sequences. The pipeline for the temporal aggrega-
tion strategy in this paper is depicted in Fig. 5. It can be summarized as the follow-
ing two phases: (1) In the training phase, the samples in the cell video dataset are 
transformed into the dynamic features by the aid of algorithms in “Dynamic features 
between frames” section. Then the compact dictionary with K visual words is learned 
based on these features by means of K-Means or Gaussian mixture model (GMM). (2) 
In the testing phase, the features of cell dynamics are obtained similarly and assigned 
to the K visual words. Then, the residuals between the visual words and the dynamic 
features belonging to them are encoded into the temporal-feature-aggregated vector.

(6)f rACF =
∑

u,v∈bin(r)

∥

∥

∥
s1p − s2p

∥

∥

∥
,

(7)Fi = {FDCF , FMDF , FACF }.

Time

sequence oriented SIFT flow
 cell sequence ba  SIFT flow c  histograms of d HOSF representation

1
2 3

4
8 5

67 1 2 3 4 5 6 7 8

Fig. 4  The illustration for histograms of oriented SIFT flow (HOSF). After constructing the movement field 
(or the appearance change field), the constructed field is binned in terms of their primary angle from the 
horizontal axis and weighted according to its magnitude (or appearance difference)
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Fisher vector encoding

In FV encoding [26, 27], a GMM with K components can be learned from the training 
dynamic features between frames, and denoted as Θ =

{

(µk , σ k ,πk), k = 1, 2, . . . ,K
}

 , 
where µk , σ k , πk are the mean vector, variance matrix (assumed diagonal) and mixture 
weight of the k-th component, respectively. Given X = (x1, x2 . . . , xN ) of dynamic 
features extracted from a testing cell image sequence, we have mean and covariance 
deviation vectors for the k-th component as:

where qik is the soft assignment of feature xi to the k-th Gaussian component. By concat-
enation of uk and vk of all the K components, FV for the testing sample is formed with 
size 2D′

K  , where D′ is the dimension of the dynamic feature after principal component 
analysis (PCA) pre-processing [27]. Power normalization using signed square root (SSR) 
with z = sign(z)

√
|z| and ℓ2 normalization are then applied to the FVs [26, 27].

VLAD encoding

As a non-probabilistic version of FV encoding, VLAD encoding [28, 29] simply utilizes 
K-means instead of GMM to generate K coarse centers {c1, c2, . . . , cK } . Then we can obtain 
the difference vector uk with respective to the k-th center ck for the testing dynamic feature 
set by:

where NN (xi) indicates xi ’s nearest neighbors among K coarse centers.
The VLAD encoding vector concatenates uk over all the K centers with size D′

K  , and the 
post-processing employs the power and ℓ2 normalization. Besides, the intra-normalization 
[35] is also applied to add normalization on each uk . The proposed framework prefer to 

(8)

uk =
1

N
√
πk

N
∑

i=1

qki

(

xi − µk

σ k

)

,

vk =
1

N
√
2πk

N
∑

i=1

qki

[

(

xi − µk

σ k

)2

− 1

]

,

(9)uk =
∑

i:NN (xi)=ck

(xi − ck),

W2

W1

W4

W3

Compact Dictionary 
Learning

Extracting Dynamic Features Between Frames

Feature Set of Cell Video Dataset

W2

W1

W4

W3

Compact Encoding

Dynamic Feature

Temporal Features 
Aggregated  Vector+

Cell Video Dataset

T
es
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g 

C
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l S
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e a

b

c

Fig. 5  The illustration of temporal aggregation for dynamic features. Module A is responsible for extracting 
the frame-level dynamic feature for the training dataset or testing sample. And Module B plays a part in the 
training phase to generate a compact dictionary. Based on the compact dictionary, Module C encodes the 
dynamic features from the module A into the final video level representation
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VLAD-k (k = 5), a variant of VLAD, which extends the nearest neighbor with the k-nearest 
neighbors, because of its good performance in contrast to the original VLAD [36].

High‑order VLAD encoding

In order to keep both high performance and high extraction speed, the H-VLAD [30] aug-
ments the original VLAD with high-order statistics, e.g., diagonal covariance and skewness. 
The K clusters are first learned by K-means, regarded as the visual words {w1,w1, . . . ,wK } , 
and the corresponding first-order, second-order, and third-order statistics are denoted as 
{

µ1,µ2, . . . ,µK

}

 , {σ 1, σ 2, . . . , σK } and 
{

γ 1, γ 2, . . . , γ K

}

 , respectively. The technical 
details of H-VLAD can be summarized as:

where Xk =
{

x1, x2, . . . , xNk

}

 is the testing dynamic features belonging to the k-th vis-
ual word wk , and mk stands for the mean of these dynamic features. Therefore, uk , vk and 
sk are the residual vectors of the first-order, second-order and third-order, respectively. 
Similar to the original VLAD, the final representation of H-VLAD is concatenated as 
{u1, v1, s1,u2, v2, s2 . . . ,uK , vK , sK } , and the post-processing operation also adopts the 
power-, ℓ2 - and intra-normalization [35].

Analysis of temporal feature aggregation methods

Given the above three compact encoding approaches to temporal feature aggregation, we 
need to find out which one is the most appropriate for our application. For this purpose, we 
conduct an experiment on Dataset I (for details see “Data” section ) to analyze the discrimi-
nation of these encoding strategies: FV, VLAD, and H-VLAD. Specifically, we calculate the 
histogram distribution of classification scores from positive exemplars and negative exem-
plars, respectively. The positive and negative exemplars individually correspond to 20 train-
ing samples from SST group and the AST group. Note that the classifier is the linear SVM 
(the parameters are the same as “Experimental setup” section ), the dictionary size is 64 for 
FV, VLAD, and H-VLAD, and the encoding vector is not followed by the temporal pyramid 
pooling (TPP). From Fig. 6, we can find that VLAD encoding and H-VLAD encoding have 
the similar discrimination while the FV encoding has better performance. It shows that the 
FV encoding is most suitable for the temporal aggregation of cell dynamic features.

(10)

uk = Nk





1

Nk

Nk
�

i=1

xi − µk



 = Nk(mk − µk),

vk =
1

Nk

Nk
�

i=1

(xi −mk)
2 − σ

2
k ,

sk =
1

Nk

�Nk
i=1 (xi −mk)

3

�

1

Nk

�Nk
i=1 (xi −mk)

2
�

3
2

− γ k ,
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Temporal pyramid pooling

To preserve much more temporal discrimination, we add the TPP, regarded as a one-
dimensional version of spatial pyramid pooling [37]. For a particular video, we suppose that 
its dynamic features between frames is denoted as Z and the temporal aggregation opera-
tion is defined as Φ(·) . TPP is to organize the dynamic features Z into three level of subsets: 
Z1
1
 , Z1

2
 , Z2

2
 , Z1

3
 , Z2

3
 and Z3

3
 , which have 1, 2 and 3 average-partitioned subwindows along 

temporal dimension, respectively. Therefore, the TPP of Z can be written as follows:

Experimental results
In this section, we present a detailed experimental evaluation of our proposed frame-
work based on the cell-video datasets in “Data” section. Several exploration experiments 
were conducted to determine the crucial parameters of the proposed approach. Moreo-
ver, the proposed approach is compared with several existing methods.

Experimental setup

The parameters used in our approach can be divided into three parts: the parameters in 
feature extraction, feature encoding, and classifier. Firstly, both shape-context for contour 
deformation and SIFT flow for cytoplasmic streaming adopt the default parameters as 
reported in the literatures [14, 34]. And the number of bins in histograms of oriented SIFT 
flow is setting to 36. As the frame interval has direct relationship with cell dynamics, we 
conduct a contrast experiment about different frame intervals. As shown in Fig.  7, it is 
able to achieve the best performance with different encoding methods or based on various 
vocabulary sizes, when the frame interval equals 30 (as default value without assignment) 
(Additional file 1: Figure S1). Secondly, there is an important parameter, vocabulary size, 
which is related to not only the encoding discrimination but also the classifier overfitting 
(the discussion in “Performance evaluation of temporal aggregation” section). Finally, the 
linear classifier in LibSVM toolkit [38] is adopted. After the parameters are chosen, we 
retrain the classifier based on the 30 random splits of two Dataset (refer to “Data” section), 
and the penalty coefficient is determined on the training set using fivefold cross-validation.

Validation of dynamic features between frames

In this paper, the frame-level dynamic features are extracted in two aspects: contour 
deformation and cytoplasmic streaming. Based on Dataset II, we first extract various 
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Fig. 6  Histogram distribution of classification scores from positive exemplars (blue and plain) and negative 
exemplars (red and dashed). The purple area stands for the overlap of positive histogram and negative 
histogram. Among these three encoding methods, FV encoding with the smallest overlap implies it has the 
best discrimination
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kinds of dynamic features between frames, which contain Zernike moment (ZM) [7], 
TG [13], radial-distance feature (RDF) [20], shape-context feature (SCF), FV (OFF) [18], 
SIFT flow feature (SFF), the complementary Movement Field and Appearance change 
Field Feature (MFAFF), and the combined feature vector (CF) in “Combination of fea-
tures” section. For a fair comparison, we make the dimension of all the frame-level 
dynamic features maintain 30 by choosing appropriate parameters for each feature. ZM 
with 30 orders is captured from the samples. TG and RDF are both sampled into 30 dis-
crete points. TG samples the perimeter of the cell contour according to equal interval 
strategy, while RDF is based on equal angle-interval sampling principle. The number 
of iterations L for SCF is specified as 30. The dimensions of OFF, SFF and MFAFF are 
decided by the histogram of oriented optical/SIFT flow, i.e. the number of histogram 
bins R. In detail, the R for OFF and SFF is set to 30, while the R for MFAFF is chosen 
as 15. CF is the combination of SCF and MFAFF, thus L and R are both set to 10. Then 
for all kinds of dynamic features, a video-range aggregation strategy is implemented by 
the average pooling, i.e., averaging frame-level features of each video along the tempo-
ral dimension. At last, we perform the classification with the aggregated features using 
SVM.

As shown in Fig. 8, SCF achieves a better performance than ZM, TG, and RDF, which 
proves the effectiveness of our proposed contour feature. TG and RDF both belong to 
the radial-distance-based feature, but TG obtains 8.1% lower accuracy than RDF. The 
reason might be that TG is designed for the dynamics of cell protrusions and lympho-
cytes in our dataset does not have the explicit protrusions. In the aspect of cytoplasm 
motion features, SFF achieves 0.625% higher accuracy than OFF. Moreover, the features 
from the MFAFF further improve the performance in contrast to SFF. Comparing the 
dynamic features in two aspects, we can find out that the contour deformation features 
play a more dominant role in the process of characterizing cell dynamics. Finally, the CF 
reaches the highest classification accuracy (67.50%), which illustrates the significance of 
combining the cellular contour and cytoplasm streaming dynamics.

Performance evaluation of temporal aggregation

The effectiveness of the temporal aggregation can be validated by the following experi-
ment. In addition, the vocabulary size is an important parameter. Intuitively, if the code-
book size is too small, the histogram feature may lose the discriminative power, while 

Fig. 7  The contrast experiment about the performance with different frame intervals. Three figures from left 
to right show the classification accuracy of FV, VLAD and H-VLAD on DataSet I respectively. And the green 
dashed line, blue dashed line and red plain line are corresponding to different vocabulary size (16, 32, 64)
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if the codebook size is too large, the histograms from the same class may not possess 
enough similarity. Fisher vector encoding, as the most suitable encoding strategy for our 
application, makes use of GMM to generate the compact dictionary. In this section, FV 
with different vocabulary sizes is applied on Dataset II, and the classification results are 
shown in Table 1. Combined feature vector (CF) in “Combination of features” section is 
employed as the frame-level dynamic feature. Fisher vector brings a substantial increase 
of classification accuracy when compared with the result of CF in “Validation of dynamic 
features between frames” section. We try five vocabulary size (denoted as K): 16, 32, 64, 
128 and 256, and the performance of FV encoding increases initially and then decreases 
as the vocabulary size grows. When the parameter K equals 64, it reaches the peak of the 
performance. However, K = 128, 256 could make the encoding vector too sparse, which 
is somewhat detrimental to performance. 

Effectiveness of the proposed framework

Finally, we evaluate the performance of our proposed framework in comparison with 
several existing algorithms. These algorithms are divided into two groups. On the one 
hand, The first one corresponds to the first five rows in Tables  2 and  3. Moreover, it 
contains shape parameters, ZM, TG, Dynamic-Time-Warping-based Radial distance 
(DTW-Radial distance) as well as radial distance and optical flow combined features 
(RDOF feature).4 [5, 7, 13, 18, 20]. These five algorithms mainly focus on modeling the 
cell dynamic between frames without emphasizing temporal aggregation. Specifically, a 
subsequence is sampled from a particular video-clip with fixed frame interval (specified 
as 20) except that DTW-Radial distance obtains the subsequence using dynamic time 
warping.5 Then cell dynamic features are extracted on the subsequence and concate-
nated into the video-range feature of cell dynamics. On the other hand, the last four rows 

Fig. 8  Comparison of cell dynamic features. For contour deformation, SCF is better than ZM, TG and RDF. 
With respect to the cytoplasmic streaming, SFF also achieves better performance comparing with OFF. At last, 
the CF reaches the highest classification accuracy

5  Dynamic time warping can obtain a more suitable subsequence for analyzing cell dynamics, which makes DTW-
Radial distance achieve a better performance.

4  RDOF feature employs a fusion strategy of multiple features, including radial distance feature and optical flow feature 
in “Validation of dynamic features between frames” section [18] And the fusion strategy brings an improvement for pro-
filing cell dynamics.
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in Tables 2 and 3 belong to the other group. In this group, not only the short-term cell 
dynamics but temporal aggregation are in-depth considered. Stochastic annotation of 
phenotypic individual-cell responses (SAPHIRE) framework only employs shape param-
eters as the descriptors of cell shape dynamics, and models video-range cell dynamics 
with HMM [24]. Local deformation pattern (LDP) framework employs radial distance 
to characterize cell deformation and accumulates the continuous deformation along the 
radial direction [21]. Temporal bag-of-word (TBoW) framework was reported in our 
previous work [25], and our proposed framework is denoted as VFA.

The experiments are conducted on the Dataset I and Dataset II, and the experimental 
results (classification precision, recall, and F-score measures) are summarized in Tables 2 

Table 1  Classification result (accuracy in percentage) of FV with different vocabulary sizes

Italic values indicate the best performance in the corresponding columns

Normal Slight activation Moderate activation Drastic activation mAP

K = 16 88.00 ± 10.30% 60.20± 16.34% 80.20± 12.85% 90.80± 6.65% 79.80± 4.86%

K = 32 86.80± 12.68% 58.60± 14.70% 82.20± 11.65% 92.20± 7.89% 79.95± 5.65%

K = 64 82.60± 12.08% 65.80 ± 13.10% 84.80 ± 11.99% 93.40 ± 8.71% 81.65 ± 5.90%

K = 128 86.00± 11.60% 65.40± 11.46% 77.80± 12.00% 93.40 ± 6.58% 80.65± 5.45%

K = 256 86.20± 9.66% 62.80± 16.66% 83.60± 11.02% 89.79± 9.14% 80.60± 5.38%

Table 2  Performance comparisons (precision, recall and  F-score, in  percentage) 
with several mainstreaming methods on Dataset I

Italic values indicate the best performance in the corresponding columns

Methods Precision (%) Recall (%) F-score (%)

Shape parameters 60.91± 12.80 60.85± 10.67 59.61± 13.52

Zernike moment 81.64± 6.57 82.75± 6.89 81.63± 6.63

Tree graph 69.92± 9.63 67.25± 9.43 65.59± 9.49

DTW-radial distance 82.73± 11.96 81.59± 12.28 81.40± 11.49

RDOF feature 82.90± 7.25 82.50± 9.61 82.27± 5.62

SAPHIRE 73.56± 8.30 74.17± 9.97 73.36± 8.54

LDP 90.03± 6.89 88.13± 7.06 88.97± 7.18

TBoW 89.84± 5.58 88.30 ± 6.35 88.84± 4.00

VFA (ours) 93.70 ± 5.10 89.70 ± 6.88 91.41 ± 3.98

Table 3  Performance comparisons (precision, recall and  F-score, in  percentage) 
with several mainstreaming methods on Dataset II

Italic values indicate the best performance in the corresponding columns

Methods Precision (%) Recall (%) F-score (%)

Shape parameters 38.34± 14.16 45.45± 11.35 29.91± 13.52

Zernike moment 55.95± 10.16 60.65± 12.75 54.46± 11.49

Tree graph 57.15± 12.36 54.40± 11.80 53.46± 10.30

DTW-radial distance 61.66± 14.25 63.95± 13.14 55.81± 13.88

RDOF feature 66.37± 12.95 65.85± 17.24 64.63± 14.31

SAPHIRE 58.24± 7.86 57.65± 6.86 56.76± 7.20

LDP 81.72± 7.60 80.45± 8.46 79.09± 8.05

TBoW 80.95± 11.79 79.95± 17.52 79.29± 12.58

VFA (ours) 82.34 ± 4.67 81.65 ± 5.90 81.27 ± 5.06



Page 15 of 18Pang and Liu ﻿BioMed Eng OnLine           (2019) 18:20 

and 3, respectively. The cell dynamics in Dataset I is categorized into two class, normal 
and abnormal, while in Dataset II the cell dynamics of abnormal are further annotated as 
three sub-categorization (slight, moderate and drastic activation). As shown in Tables 2 
and 3, RDOF feature achieves a better performance than other methods in group one. 
It indicates that the dynamic features from cell contour and cytoplasmic streaming are 
complementary to each other. Compared with DTW-Radial distance, the RDOF feature 
improves 0.87% F-score in Dataset I, but 8.82% F-score in Dataset II. This illustrates that 
integrating cytoplasm streaming dynamics brings more improvement for the complex 
situation, i.e., refined categorization of abnormal cell dynamics.

Because of modeling the video-range temporal dynamics, the frameworks in the sec-
ond group bring a substantial absolute increase over the corresponding features they 
used. For example, SAPHIRE benefits 13.75% and 26.85% F-score increases over shape 
parameters in Tables  2 and 3, separately. Similarly, LDP also obtains a better perfor-
mance in contrast with DTW-Radial distance. The fact that these two methods obtain 
better performance on two datasets proves the significance of the temporal aggrega-
tion of the cell dynamics. TBoW and VFA are based on the same primary feature (CF 
in “Combination of features” section), but VFA achieves a better performance ( 93.70% 
precision, 89.70% recall rate and 91.41% F-score in Table  2, 82.34% precision, 81.65% 
recall rate and 81.27% F-score in Table 3). It manifests that it is wise to introduce the FV 
encoding for the temporal aggregation of cell dynamics. At last, VFA reaches the peak of 
performance in both Tables 2 and 3. These results show that our proposed framework 
outperforms other existing algorithms.

Discussion
The proposed framework is convenient to extend to other applications about cell tem-
poral dynamics or cell deformation estimation. The whole framework is theoretically 
compatible with the classification tasks based on cell temporal dynamics. For example, 
the cellular-response-based drug classification tasks focus on exploring how the cellular 
response is variation with different drug stimulus, which is able to be captured as cell 
temporal dynamics in videos. The proposed framework can be considered as a scheme 
for these tasks. Moreover, part of the framework may also benefit the living cell study. 
There are some other applications in need of cell temporal dynamics. Modeling the cell 
cycle, for instance, incorporates the temporal information into the annotation strategy of 
cellular states in time-lapse movies. The existing methods, in general, exploit the static 
cell morphology as frame-level features and HMM as feature aggregation strategy. Our 
frame-level cell dynamic features might serve as the complement of cell morphology fea-
ture for cell cycle modeling.

In addition, there are some limits and assumptions in our proposed framework. The 
shape-context and SIFT flow both assume the time interval between frames should short 
enough relative to the cell temporal dynamics. And we use SIFT flow to approximately 
describe 3D cytoplasmic streaming. Although this method is effective for modeling 
intracellular movement to some extent, we plan to investigate how to model cytoplasmic 
streaming in 3D space in the future work.
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Conclusion
We have presented a novel framework to evaluate the cell dynamics in video-clips, which 
first extracts frame-level cell dynamic features based on both contour deformation and 
cytoplasmic streaming, and then leverages compact encoding to aggregate these short-
term features into a video-range cell dynamics. A series of experiments are conducted to 
evaluate the proposed framework. The first experiment not only verifies the effectiveness 
of the proposed cell dynamic features, but proves that the MFAFF can more precisely 
model the cytoplasmic streaming. The second experiment about temporal aggregation 
figures out the most suitable encoding strategy and its corresponding best parameters. 
Finally, the proposed framework has been compared with the existing mainstreaming 
approaches on two datasets, and experimental results show its outperformance in the 
assessment and classification of cell dynamics.

Additional file

Additional file 1: Figure S1. (a) and (b) correspond to a normal cell and drastic activation cell inDataset II. On the 
right side, there are two contour sequences. On the left side,blue lines show the radial distance sequences of con-
tour points at 80°, red linesrepresent the smooth sequences; x-axis is time-lapse and y-axis is redialdistance.
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