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Abstract 

Background:  Segmenting the hippocampal subfields accurately from brain magnetic 
resonance (MR) images is a challenging task in medical image analysis. Due to the 
small structural size and the morphological complexity of the hippocampal subfields, 
the traditional segmentation methods are hard to obtain the ideal segmentation result.

Methods:  In this paper, we proposed a hippocampal subfields segmentation method 
using generative adversarial networks. The proposed method can achieve the pixel-
level classification of brain MR images by building an UG-net model and an adversarial 
model and training the two models against each other alternately. UG-net extracts 
local information and retains the interrelationship features between pixels. Moreover, 
the adversarial training implements spatial consistency among the generated class 
labels and smoothens the edges of class labels on segmented region.

Results:  The evaluation has performed on the dataset obtained from center for imag-
ing of neurodegenerative diseases (CIND) for CA1, CA2, DG, CA3, Head, Tail, SUB, ERC 
and PHG in hippocampal subfields, resulting in the dice similarity coefficient (DSC) of 
0.919, 0.648, 0.903, 0.673, 0.929, 0.913, 0.906, 0.884 and 0.889 respectively. For the large 
subfields, such as Head and CA1 of hippocampus, the DSC was increased by 3.9% and 
9.03% than state-of-the-art approaches, while for the smaller subfields, such as ERC 
and PHG, the segmentation accuracy was significantly increased 20.93% and 16.30% 
respectively.

Conclusion:  The results show the improvement in performance of the proposed 
method, compared with other methods, which include approaches based on multi-
atlas, hierarchical multi-atlas, dictionary learning and sparse representation and CNN. 
In implementation, the proposed method provides better results in hippocampal 
subfields segmentation.

Keywords:  Hippocampal subfields segmentation, Generative adversarial networks, 
Semantic segmentation, Fully convolution networks (FCNs), UG-net
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Background
The hippocampus belongs to the limbic system in the brain and plays important roles 
in the spatial location and long-term memory encoding and retrieval [1]. Clinically, the 
volume or morphology of the hippocampus and its subfields are closely related to many 
neurodegenerative diseases [2, 3], such as Alzheimer’s disease (AD) [4] and mild cogni-
tive impairment (MCI) [5], it is desirable to develop automatic hippocampal subfields 
segmentation from brain MR image. Figure 1 shows the hippocampus in T2-weighted 
brain MR image.

Many promising applications on hippocampal segmentation have been reported. In 
2006, Heckemann et  al. [6] proposed a multi-atlas segmentation method, which regis-
tered multiple atlases to the target image and relied on label fusion to decide the label of 
target voxel. There was a main disadvantage of the multi-atlas method, which the seg-
mentation result was highly dependent on the registration algorithms. Patch-based meth-
ods [7, 8] based on multi-atlas segmentations, which identified local similarities between 
the atlases and the target image at certain patch level, effectively eliminated the registra-
tion errors caused by the registration between the atlases and target image. Nevertheless, 
atlas patches with high similarity might still matched to the wrong labels because image 
similarities over small image patch may lead to the local optima. To avoid being trapped 
into the local optima, sparse coding methods [9, 10] were proposed to ensure that sev-
eral highly relevant atlas patches are selected to represent the target patch. Discriminative 
dictionary learning [11, 12] was utilized to guide the representation transition from simi-
larity to label. However, methods based on sparse coding and discriminative dictionary 
learning still have the disadvantage in selecting the best patches to reconstruct the target 
patch due to the limitation in discriminative ability of the model.

In recent years, deep learning models have achieved impressive state-of-the-art per-
formance over traditional machine learning approaches on a variety of computer vision 

Fig. 1  The hippocampus in T2-weighted brain MR image. a The T2-weighted brain image. b The ROI of 
hippocampus. c The 3D rendering of hippocampal. d The labeled image of hippocampus
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tasks, including image segmentation, classification, and recognition. Alex et  al. [13] 
proposed Alex-net, which won the ImageNet large scale visual recognition challenge 
(ILSVRC) in 2012, setting off an application upsurge of deep learning in the field of com-
puter vision and image processing. Ciprian et  al. [14] utilized the improved VGGNet 
to achieve the classification of MRI images in the hippocampus of AD, MCI, and nor-
mal brain regions. The accuracy was greatly improved compared with the traditional 
methods. Long et al. [15] built fully convolutional networks (FCNs), which is one kind 
of end-to-end deep network, to achieve the pixel-wise classification of input images. 
Nevertheless, FCNs discard valuable context information because the methods consider 
one single pixel in the images as conditionally independent from the others. The U-net 
architecture [16] with very few training images, an extension of FCNs, produced fast and 
precise segmentation of images by equipping with a large number of feature channels, 
which allow the modified architecture to propagate context information to subsequent 
layers.

Deep neural networks have some intrinsic shortcomings, such as the neglect of the 
interrelationship between pixels in the image, and the assumption that training data 
and testing data follow the same distribution. In order to overcome these shortcomings, 
Goodfellow et  al. [17] proposed generative adversarial networks (GAN) constituting a 
novel architecture for estimating generative model through an adversarial process. Sev-
eral methods [18–21] were proposed to solve the problem that the GAN network struc-
ture is unstable and difficult to train. Luc et al. [22] applied GAN to the natural image 
segmentation for the first time, achieving higher accuracy segmentation results by train-
ing the VGG16-based generative adversarial network.

In this paper, we propose a generative adversarial network model with the modified 
U-net (named UG-net) and the adversarial model to achieve an end-to-end, high-accu-
racy, fully automated segmentation of the hippocampal subfields of brain MRI images. 
In this method, some steps like candidate preselection or complex post-processing are 
abandoned. The experiments are performed on the ADNI dataset to validate the pro-
posed method. The experimental results show that the proposed method outperforms 
the state-of-the-art methods.

Methods
In this section, we present the general framework for adversarial training of our hip-
pocampal subfields segmentation models. Figure  2 describes the proposed model in 
details. The model consists of two major parts. The first part is generative network based 
on the modified U-net, which is trained to conduct the 2D segmentation of the slices 
extracted from brain nuclear magnetic image. The other part, an adversarial network 
with convolutional neural network is employed to discriminate the expert annotation 
and the segmentation images generated by generative network.

Generative adversarial network

The generative adversarial network, which consists of two components: a generator G 
and a discriminator D, is a deep learning framework that trains the generative model and 
the discriminative model alternately. The general idea of the generative adversarial net-
work is an adversarial process amongst the models pitting against each other to improve 
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the performance of the networks, where the generator counterfeits the sample images to 
deceive the discriminator and the discriminative model determines whether the images are 
fake or not. The sufficient competition and confrontation between the models leads to the 
improved performance of the models so that the generative images are indistinguishable 
from the real sample images.

The formula of the generative adversarial network optimal training process is as follows:

where x is a data sample. GANs have achieved state-of-the-art in some generation tasks, 
such as image synthesis, video generation. The conditional GAN has been proposed to 
solve some ill-posed problems, such as text-to-image translation, image-to-image trans-
lation, and image super-resolution. The conditional GAN receives an additional input as 
a condition to guide the generation of the images.

As shown in Eq. (2), the combination loss function that consists of two terms is used to 
optimize the models. The first term is a multi-class cross-entropy term encouraging the 
generative model to generate the segmentations of high accuracy. We use g(x) to denote 
the class probability map over M classes with the size of H × W × M produced by the gen-
erative model given an input image x with the size of H × W. The second term, which is 
based on the adversarial model, will be large if the adversarial model can discriminate the 
generative segmentations from the expert manual segmentations. This term will penalize 
the mismatches in the higher-order label statistics due to the fact that the adversarial model 
has a field-of-view covering the entire image. We use a(x, y)∈[0,1] to denote the probability 
predicted by the adversarial model that y is the expert manual segmentation label map of x 
or the label map produced by the generative model g(·). For a dataset of N training images 
xn with the corresponding label maps yn, the loss function is defined as follows

(1)V (G,D) = min
G

max
D

(

Ex∼Pdata(x)[logD(x)]+ Ez∼Pz(z)[log (1− D(G(z)))]
)

(2)ℓ
(
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)

=

N
∑
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ℓmce

(
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)

−
[
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a
(
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)

, 1
)
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(
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)
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Fig. 2  Illustration of the proposed GAN networks. a The generative network named UG-net, which is the 
modification of U-net, taking brain MR images as input and producing per-pixel class predictions. b The 
overview of GAN network including the generative model and the adversarial model
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where θg, θa are the parameters of the generative model and of the adversarial model 
respectively. In the Eq.  (2), ℓmce

(

ŷ, y
)

= −
∑H×W

i=1

∑M
m=1 yim ln ŷim denotes the multi-

class cross-entropy loss of the predictions ŷ , and ℓbce
(

âa
)

=−
[

a ln â+ (1− a) ln
(

1− â
)]

 
denotes the binary cross-entropy loss. When training the generative model, we mini-
mize the loss with respect to θg, while maximizing it with respect to θa when training the 
adversarial model.

The generative model

Based on the U-net, the generative model named UG-net, utilizes the encoder-decoder 
architecture as shown in Fig.  2. The encoder, consists of several conventional “convo-
lution + pooling” layers, attempts to extract the high-level features as opposed to the 
decoding part employed to reconstruct the segmentation ground truth label maps by 
upsampling layers. Highly condensed features, which are very effective for image seg-
mentation, are extracted by the convolution layers, but some important local informa-
tion has been missed in this processing. To retain the local information, the feature 
maps extracted by the convolution layers are concatenated with the corresponding out-
put feature maps of the upsampling layers. Some modifications are made for the origi-
nal U-net in the architecture and training strategies to suit our task and dataset. In the 
paper, instead of using two consecutive convolution layers prior to the pooling layer in 
U-net, we remove one of the convolution layers to reduce the parameters of the model. 
This modification aims to prevent overfitting since U-net may be easily overfitted in our 
task with more parameters. In addition, zero padding convolution layers are adopted to 
maintain the spatial dimension of the images and feature maps through each convolu-
tion layer. Data augmentation and dropout operations are also used to against the over-
fitting on several upsampling layers. In the last convolution layers, we only use one 3 × 3 
filter to reduce the number of output feature channels to one, same to the channels of 
the expert segmentations.

The adversarial model

The adversarial model architecture is illustrated in Fig.  3. The model takes the hip-
pocampal image and the corresponding label map as input. The label map is either the 
expert segmentations or produced by the generative model. At the beginning, the images 
and the label maps are processed by two separate branches to allow different level repre-
sentations for the two different signals. Following the observation of Pinherio et al. [23], 
the same number of channels is set up for each input signal to avoid that one of them 
dominates the other when fed to the subsequent layers. The two inputs are represented 
with 64 channels by concatenating the two signal branches. Then the signals are deliv-
ered into a series of convolution and max-pooling layers, thus a binary class probability 
is produced to determine whether the label map is the expert segmentation or not.

Experiments
Dataset

For validation of the proposed model, a dataset of brain MR images obtained from the 
CIND Center in San Francisco, USA was used. The dataset contains 3D T1-weighted 
and T2-weighted brain MR images of 32 subjects, aged between 38 and 82  years old, 
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with 18 males and 14 females. Among them, there were 21 normal persons, 4 MCI 
patients, and 7 AD patients. The resolution of T1-weighted image and T2-weighted 
image is 1 × 1×1  mm3 and 0.4 × 0.5 × 2  mm3, respectively. The expert segmentations 
with high labeling credibility, which can be regarded as ground truth, were labeled man-
ually by several clinically experienced physicians and experts. First, the brain MR images 
were registered using the linear registration method based on the affine transformation 
model in insight toolkit (ITK) library and the symmetric diffeomorphic registration 
method based on the mutual information [24]. Then, the registered images were normal-
ized to the range [0, 255] using the linear transformation method [25]. Then, Convert 
3D, an image processing tool, was employed to extract the region of interest from brain 
MR images. The size of the region of interest was 112 × 103 × 24. Since the proposed 
model takes 2D planar images as input, twenty-four 2D image slices were extracted from 
each 3D MR image as sample images. There are 768 different images before the data 
augmentation. In order to prevent overfitting, data augmentation methods such as rota-
tion, translation, and adding Gaussian noise were performed on the slices to increase the 
amount of data [13, 26], after which the total number of sample images is 5500. The MRI 
images of the dataset are available at http://isip.bit.edu.cn/kyxz/xzlw/13449​2.htm.

Optimization function

The generative model and the adversarial model were trained alternately in the experi-
ments. First, we minimize the multi-class cross-entropy loss to train the generative 
model, which encourages the generative model to produce the accurate segmentations 
that are hard to distinguish from the expert segmentations by the adversarial model. The 
terms relevant to generative model in the loss function (2) are

In training step, −ℓbce
(

a
(

xn, g(xn)
)

, 0
)

 was replaced with +ℓbce
(

a
(

xn, g(xn)
)

, 1
)

 [17]. It 
can be understood that we maximize the probability that the adversarial model predicts 
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)
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)

Fig. 3  The details of adversarial model architecture in our experiments

http://isip.bit.edu.cn/kyxz/xzlw/134492.htm
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g(xn) to be the expert segmentations instead of minimize the probability to be genera-
tive segmentations. The reason of the modification is that it leads to a stronger gradient 
descent when the segmentation model is trained. It is proven that this modified update 
is indeed of great significance to speedup the training process.

When the adversarial model is trained, it is obvious that only the second term in the 
loss function (2) depends on the adversarial model, so we can minimize the following 
binary classification loss to train the adversarial model.

Training and testing

The models are trained on a Nvidia GPU. 600 image slices of 5 subjects were chosen for 
testing from the total dataset, and 4900 slices of the other 27 subjects were used to train 
the proposed model. The training and testing strategies have been same for all evaluated 
schemes. The training processing is performed using tenfold cross validation. In each 
cross-validation permutation, one subsample is left as the validation data for testing the 
model, and the remaining 9 subsamples are used as training data. The generative model 
was trained for 100,000 iterations, with the batch size of 5, using an initial learning rate 
of 10−5, which is halved every 5000 iterations. For parameter optimizations the stochas-
tic gradient descent (SGD) with momentum was used. The momentum was set as 0.99 
and weight decay as 10−4. During the training stage, the adversarial model was trained 
using fixed learning rate of 10−5 on 3 batches while the generative model was trained on 
one batch.

Results
In this section, we evaluate the proposed GAN method by using the MRI images of sev-
eral subjects, which are different from the subjects for training the model. We randomly 
choose 5 subjects containing 600 image slices from the dataset to validate the methods, 
and the other 27 subjects comprising 4900 slices are used to train the model. The experi-
ment was performed by using UG-net (only the generative model without adversarial 
training) and our method with GAN (the whole generative adversarial network) respec-
tively. In addition, to verify the performance of the proposed model, the segmentation 
results of UG-net and GAN network are analyzed by the cross-validation experiment. 
Moreover, the proposed method results are compared with some state of the art work [8, 
10, 27, 28] that focus on hippocampus segmentation.

The Dice similarity coefficient (DSC) is used as a statistical validation metric to evalu-
ate the accuracy of segmentation of MR images. It is defined as follows:

where S1 represents the generative segmentations by the two networks and S2 represents 
the expert segmentations respectively. Meanwhile, |·| indicates the number of pixels in 
the area. It is important to note that the segmentation is performed on the 2D slices, but 
the hippocampus segmentation accuracy was calculated at the volume level.

Figure  4 provides the mean and standard deviation of segmentation accuracy for 
hippocampus segmentation results of UG-net (without adversarial training) and the 

(4)ℓ(θa)=ℓbce
(

a
(

xn, yn
)

, 1
)

+ ℓbce
(

a
(

xn, g(xn)
)
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)

(5)DSC (S1, S2) =
2× |S1 ∩ S2|

|S1| + |S2|
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proposed method (with adversarial training) from fivefolds. Moreover, the different 
methods segmentation results and the expert segmentation in various slices of brain 
MR image are given in Fig.  5. The results in the figures show that UG-net and the 
proposed method achieve high segmentation accuracy. For segmentation of larger 
subfield such as head of hippocampus, the accuracy reaches 91.5% and 92.9%, respec-
tively. For segmentation of smaller subfields, such as CA2 and CA3, the accuracy is 

Fig. 4  Comparison between the mean and standard deviation of segmentation accuracies of UG-net and 
GAN. a The segmentation accuracy of UG-net. b The segmentation accuracy of GAN. c The comparison of 
segmentation accuracies between UG-net and GAN

Fig. 5  The different methods segmentation results and the expert segmentation in some slices of brain MR 
image. a The segmentation of expert. b The segmentation of UG-net. c The segmentation of GAN
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also relatively high. The overall mean accuracy of segmentation of all hippocampal 
subfields has reached 84.9% and 91.6%, respectively.

Figure 6 delivers the results comparison of the proposed method, some other meth-
ods and expert segmentation. The compared segmentation methods include diction-
ary learning and sparse representation, CNN-based method, UG-net and our proposed 
method. As shown in Fig. 6, the first row shows the segmentation of hippocampal sub-
fields in coronal plane by different segmentation methods. The second and third rows 
are the three-dimensional rendering of hippocampal subfields. And the fourth row is the 
three-dimensional rendering of segmentation results difference between different meth-
ods and the expert manual delineation. Figure 6 shows that the segmented hippocampus 
three-dimensional rendering using the proposed method are much closer to the expert 
segmentation than the other methods.

Besides, we compare the proposed model with some state of the art methods that 
focus on hippocampus segmentation. Among the methods, multi-atlas approach and 
hierarchical multi-atlas approach focus on the whole hippocampus segmentation, 
while methods based on dictionary learning and sparse representation and CNN 
focus on the hippocampal subfields segmentation. Please note that the results are 
compared on the same dataset with dictionary learning and sparse representation 
and CNN methods, and the different dataset with multi-atlas and hierarchical multi-
atlas approaches. We do not intend to make a head-to-head quantitative comparison 
with multi-atlas and hierarchical multi-atlas approaches as we focus on the segmen-
tation of the hippocampus subfields rather than the whole hippocampus (multi-atlas 
and hierarchical multi-atlas approaches do). On the other hand, we just qualitatively 

Fig. 6  Comparison between the different methods segmentation results and the expert segmentation. 
a The ROI of hippocampus in brain MR image. b The segmentation of expert. c The segmentation of 
Sparse Coding and Dictionary Learning. d The segmentation of CNN. e The segmentation of UG-net. f The 
segmentation of our method
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compared the proposed method with multi-atlas and hierarchical multi-atlas 
approaches to show that our method has the competitive performance in the whole 
hippocampus segmentation. Nevertheless, both the highest segmentation accuracy 
of overall and that of subfields are achieved by our proposed methods, as shown in 
Table  1. For whole hippocampal segmentation, the DSC is increased by 2.63% than 
multi-atlas approach. For the subfields, especially for ERC and PHG, the segmenta-
tion accuracy is also significantly increased 20.93% and 16.30% respectively than the 
method based on CNN. For both cases, it shows that the proposed method with GAN 
has achieved the improved performance in segmenting no matter whole hippocam-
pus or hippocampal subfields.

Discussion
It is well known that traditional convolutional neural networks can automatically 
extract high-dimensional image features. However, some local information is missed 
after a series of convolution and pooling operations in the networks, and the local 
information is very important for accurate segmentation of small targets. There-
fore, this paper employs UG-net to preserve valuable local information through the 
skip-connection, which achieves accurate segmentation of the smaller hippocampus 
subfields. As shown in Figs. 5 and 6, the proposed model implements improved per-
formance on small regions, such as ERC and PHG, which verifies that UG-net can 
retain more local information.

Different from the traditional convolutional neural network, the generative adver-
sarial network attempts to fit the distribution of the generated segmentation results 
to the one of real samples. The adversarial training can maintain the interrelation 
between the pixels and improve the spatial consistency among the class labels. As 
shown in Figs. 4 and 5, generally, the proposed model has achieved higher segmenta-
tion accuracy than UG-net both in hippocampal subfields and in overall hippocam-
pus. Moreover, the adversarial training smoothens and strengthens the edges of class 
labels on large regions, e.g. the first row in Fig.  6. These verify the hypothesis that 
adversarial training can overcome the intrinsic shortcomings of common deep neu-
ral networks, such as missing the interrelationship between pixels and assuming that 
training data and test data follow the same distribution. The figures show that the 
adversarial training strategy efficiently reduces overfitting, generates a regularization 

Table 1  Quantitative evaluation of different segmentation methods (DSC)

Methods Hippocampal subfields Overall

CA1 CA2 DG CA3 Head Tail SUB ERC PHG

Multi-Atlas [8] – – – – – – – – – 0.8925

Hierarchical Multi-Atlas [10] – – – – – – – – – 0.8850

Dictionary learning and 
sparse representation [27]

0.804 0.538 0.807 0.548 0.890 0.772 0.751 0.743 0.620 –

CNN [28] 0.836 0.603 0.843 0.641 0.894 0.865 0.810 0.731 0.773 –

UG-net 0.820 0.631 0.805 0.666 0.915 0.838 0.811 0.743 0.792 0.849

Our method 0.919 0.648 0.903 0.673 0.929 0.913 0.906 0.884 0.899 0.916
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effect, and outperforms UG-net in accuracy of subfields segmentation. It is not hard 
to find that the accuracy standard deviation of the proposed model with GAN is 
higher than the one of UG-net.

Although the proposed model has achieved higher accuracy in the segmentation 
of the hippocampal and the larger subfields, it doesn’t perform well enough in the 
smaller hippocampal subfields and there is still some work to improve the perfor-
mance. The reason is that the subfields are so small that the sample voxels are too few, 
which affects the segmentation results of the model. Furthermore, since the registra-
tion methods in preprocessing may impact the image segmentation results, further 
research is needed to evaluate if different registration methods have any effect on the 
performance of proposed method.

Conclusion
In this paper, a method based on generative adversarial networks was proposed to 
achieve the higher accurate hippocampal subfields segmentation. By building an UG-
net model and an adversarial model and training the model against each other alter-
nately, we achieved superior performance in hippocampal subfields segmentation on 
the dataset of CIND. Compared with the existing methods, the proposed model has 
the following advantages: (1) the GAN networks retain spatial consistency among the 
generated class labels and smoothen the edges of class labels on segmented region. 
(2) UG-net can extract more local information and improve the accuracy of the seg-
mentation of small subfields with retaining the interrelationship between pixels. (3) 
In terms of the intrinsic quality of classification, the proposed model tends to fit the 
distribution of the generated segmentation results to the one of real samples. Explor-
ing a more efficient training strategy or model structure is our next step. And we will 
also attempt to apply the proposed method to the segmentation of other physiological 
tissues such as kidney cortex and brain tumors.
Authors’ contributions
CK conceived and designed this study and was a major contributor in writing the manuscript. SY provided the part idea 
of this work, did the analysis of results, and was a coauthor of the manuscript. LZ supported the experiments financially. 
All authors read and approved the final manuscript.

Acknowledgements
The work of this paper was supported by the National Natural Science Foundation of China (60971133, 61271112).

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The datasets analyzed in this study are available from the corresponding author on reasonable request.

Consent for publication
Each participant agreed that the acquired data can be further scientifically used and evaluated. For publication, we made 
sure that no individual can be identified.

Ethics approval and consent to participate
The Center for Imaging of Neurodegenerative Diseases, USA, gave the ethics approval for this study.

Funding
The work of this paper was supported by the National Natural Science Foundation of China (60971133, 61271112).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



Page 12 of 12Shi et al. BioMed Eng OnLine            (2019) 18:5 

Received: 29 October 2018   Accepted: 10 January 2019

References
	1.	 Lim HK, Hong SC, Jung WS, Ahn KJ, Won WY, Hahn C, Kim I, Lee CU. Automated hippocampal subfields segmentation in 

late life depression. J Affect Disord. 2012;143(1–3):253–6. https​://doi.org/10.1016/S0924​-977X(12)70453​-4.
	2.	 Voets NL, Bernhardt BC, Kim H, Yoon U, Bernasconi N. Increased temporolimbic cortical folding complexity in temporal 

lobe epilepsy. Neurology. 2010;76(2):138–44. https​://doi.org/10.1212/wnl.0b013​e3182​05d52​1.
	3.	 Kim H, Mansi T, Bernasconi N, Bernasconi A. Surface-based multi-template automated hippocampal segmenta-

tion: application to temporal lobe epilepsy. Med Image Anal. 2012;16(7):1445–55. https​://doi.org/10.1016/j.media​
.2012.04.008.

	4.	 Hobbs KH, Zhang P, Shi B, Smith CD. Quad-mesh based radial distance biomarkers for Alzheimer’s disease. In: 2016 IEEE 
13th international symposium on biomedical imaging (ISBI). 2016. p. 19–23. https​://doi.org/10.1109/isbi.2016.74932​01.

	5.	 Nestor SM, Gibson E, Gao FQ, Kiss A, Black SE. A direct morphometric comparison of five labelling protocols for multi-
atlas driven automatic segmentation of hippocampus in Alzheimer’s disease. NeuroImage. 2013;66(1):50–70. https​://doi.
org/10.1016/j.neuro​image​.2012.10.081.

	6.	 Heckemann RA, Hajnal JV, Aljabar P, Rueckert D, Hammers A. Automatic anatomical brain MRI segmentation combin-
ing label propagation and decision fusion. NeuroImage. 2006;33(1):115–26. https​://doi.org/10.1016/j.neuro​image​
.2006.05.061.

	7.	 Coupé P, Manjón JV, Fonov V, Pruessner J, Robles M, Collins DL. Patch-based segmentation using expert priors: applica-
tion to hippocampus and ventricle segmentation. NeuroImage. 2011;54(2):940–54. https​://doi.org/10.1016/j.neuro​
image​.2010.09.018.

	8.	 Wang H, Suh JW, Das SR, Pluta JB, Craige C, Yushkevich PA. Mult-atlas segmentation with joint label fusion. IEEE T Pattern 
Anal. 2013;35(3):611–23. https​://doi.org/10.1109/TPAMI​.2012.143.

	9.	 Wu GR, Wang Q, Zhang D, Nie F, Huang H, Shen DG. A generative probability model of joint label fusion for multi-atlas 
based brain segmentation. Med Image Anal. 2014;18(6):881–90. https​://doi.org/10.1016/j.media​.2013.10.013.

	10.	 Wu GR, Kim M, Sanroma G, Wang Q, Munsell BC, Shen DG. Hierarchical multi-atlas label fusion with multi-scal feature 
representation and label-specific patch partition. NeuroImage. 2015;106(1):34–46. https​://doi.org/10.1016/j.neuro​image​
.2014.11.025.

	11.	 Tong T, Wolz R, Coupé P, Hajnal JV, Rueckert D. Segmentation of mr images via discriminative dictionary learning and 
sparse coding: application to hippocampus labeling. NeuroImage. 2013;76:11–23. https​://doi.org/10.1016/j.neuro​image​
.2013.02.069.

	12.	 Deng Y, Rangarajan A, Vemuri BC. Supervised learning for brain mr segmentation via fusion of partially labeled 
multiple atlases. In: 2016 IEEE 13th international symposium on biomedical imaging (ISBI). 2016. p. 633–7. https​://doi.
org/10.1109/isbi.2016.74933​47.

	13.	 Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Int Conf Neural 
Inform Process Syst. 2012;25(2):1097–105. https​://doi.org/10.1145/30653​86.

	14.	 Ciprian DB, Olivia JD, David EH, Naval P. DemNet: a convolutional neural network for the detection of Azheimer’s disease 
and mild cognitive impairment. IEEE Region 10 Conference (TENCON). 2016; p.3724–7. https​://doi.org/10.1109/tenco​
n.2016.78487​55.

	15.	 Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach 
Intell. 2017;39(4):640–51. https​://doi.org/10.1109/TPAMI​.2016.25726​83.

	16.	 Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. Int Conf MICCAI. 
2015; p. 234–41. https​://doi.org/10.1007/978-3-319-24574​-4_28.

	17.	 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. 
Proc Adv Neural Inf Process Syst. (NIPS) 2014; p. 2672–80.

	18.	 Mirza M, Osindero S, Conditional generative adversarial nets. Comput Sci. 2014; p. 2672–80.
	19.	 Chen X, Duan Y, Houthooft R, Schulman J, Sutskever, Abbeel P. InfoGAN: interpretable representation learning by infor-

mation maximizing generative adversarial nets. In: Proc Adv Neural Inf Process Syst. (NIPS), 2016.
	20.	 Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks. In: Proceedings of the 34th international 

conference on machine learning (ICML). 2017; 70: 214–23.
	21.	 Che T, Li Y, Jacob AP, Bengio Y, Li W. Mode regularized generative adversarial networks. In: International conference on 

learning representations (ICLR), 2017.
	22.	 Luc P, Couprie C, Chintala S, Verbeek J. Semantic segmentation using adversarial networks. In: NIPS workshop on adver-

sarial training, 2016.
	23.	 Pinheiro PO, Lin T, Collobert R,. Dollár P. Learning to refine object segments. In: Proc Eur Conf Comput Vis. (ECCV). 2016; p. 

75–91. https​://doi.org/10.1007/978-3-319-46448​-0_5.
	24.	 Yushkevich PA, Wang HJ, Das SR, Craige C, Avants BB, Weiner MW, Mueller S. Nearly automatic segmentation of hip-

pocampal subfields in vivo focal T2-weighted MRI. NeuroImage. 2010;53(4):1208–24. https​://doi.org/10.1016/j.neuro​
image​.2010.06.040.

	25.	 Nyúl LG, Udupa JK. On standarding the MR image intensity scales. Magnet Reson Med. 1999;42(6):1072–81. https​://doi.
org/10.1002/(sici)1522-2594(19991​2)42:6%3c107​2:aid-mrm11​%3e3.0.co;2-m.

	26.	 Pereira S, Pinto A, Alves V, Silva CA. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE 
Trans Med Imaging. 2016;35(5):1240–51. https​://doi.org/10.1109/TMI.2016.25384​65.

	27.	 Shi YG, Wang DQ, Liu ZW. Segmentation of hippocampal subfields using dictionary learning and sparse representation. J 
Image Graph. 2015;20(12):1593–601. https​://doi.org/10.11834​/jig.20151​204.

	28.	 Shi YG, Hao HY, Liu ZW. Cascaded convolutional neural network based hippocampal subfields segmentation. J 
Image Graph. 2018;23(1):0074–83. https​://doi.org/10.11834​/jig.17033​4.

https://doi.org/10.1016/S0924-977X(12)70453-4
https://doi.org/10.1212/wnl.0b013e318205d521
https://doi.org/10.1016/j.media.2012.04.008
https://doi.org/10.1016/j.media.2012.04.008
https://doi.org/10.1109/isbi.2016.7493201
https://doi.org/10.1016/j.neuroimage.2012.10.081
https://doi.org/10.1016/j.neuroimage.2012.10.081
https://doi.org/10.1016/j.neuroimage.2006.05.061
https://doi.org/10.1016/j.neuroimage.2006.05.061
https://doi.org/10.1016/j.neuroimage.2010.09.018
https://doi.org/10.1016/j.neuroimage.2010.09.018
https://doi.org/10.1109/TPAMI.2012.143
https://doi.org/10.1016/j.media.2013.10.013
https://doi.org/10.1016/j.neuroimage.2014.11.025
https://doi.org/10.1016/j.neuroimage.2014.11.025
https://doi.org/10.1016/j.neuroimage.2013.02.069
https://doi.org/10.1016/j.neuroimage.2013.02.069
https://doi.org/10.1109/isbi.2016.7493347
https://doi.org/10.1109/isbi.2016.7493347
https://doi.org/10.1145/3065386
https://doi.org/10.1109/tencon.2016.7848755
https://doi.org/10.1109/tencon.2016.7848755
https://doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-46448-0_5
https://doi.org/10.1016/j.neuroimage.2010.06.040
https://doi.org/10.1016/j.neuroimage.2010.06.040
https://doi.org/10.1002/(sici)1522-2594(199912)42:6%3c1072:aid-mrm11%3e3.0.co;2-m
https://doi.org/10.1002/(sici)1522-2594(199912)42:6%3c1072:aid-mrm11%3e3.0.co;2-m
https://doi.org/10.1109/TMI.2016.2538465
https://doi.org/10.11834/jig.20151204
https://doi.org/10.11834/jig.170334

	Hippocampal subfields segmentation in brain MR images using generative adversarial networks
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Background
	Methods
	Generative adversarial network
	The generative model
	The adversarial model

	Experiments
	Dataset
	Optimization function
	Training and testing

	Results
	Discussion
	Conclusion
	Authors’ contributions
	References




