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Introduction
Functional near-infrared spectroscopy (fNIRS) is a non-invasive optical brain imaging 
technique that measures oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) con-
centrations in the brain (or body) [1]. A continuous wave fNIRS (CW-fNIRS) system 
detects a brain activity based on the intensity changes of the detected light while a con-
stant intensity of the incident light is continuously exposed on the brain. The incident 
light from the emitters placed on the subject’s scalp penetrates several layers of brain 
tissue (i.e., the scalp, skull, cerebrospinal fluid, gray matter, and white matter), during 
which some photons are deflected/scattered; pass through the layers, and are detected 
by a detector (i.e., optode, photodiode) positioned on the scalp approximately at a dis-
tance in the range of 0.5–5.5 cm from the emitters [2, 3]. The intensity changes in the 
detected lights are then utilized to compute the changes of HbO and HbR by using the 
modified Beer–Lambert law (MBLL) [1, 4–9]. The advantages of the fNIRS technique 
are non-invasive, inexpensive, quiet, harmless, and portable. It is especially promising 
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for real-time and mobile applications (e.g., daily living environment, intensive aerobic 
exercises) [10–13]. Recently fNIRS has been shown as appropriate for neuronal activity 
detection [14–16] and brain–computer interface (BCI) [7, 17–20].

Event-related fNIRS signals are normally contaminated by physiological noises (i.e., 
heartbeat, respiration, and Mayer waves), extra-cortical physiological noises from the 
superficial layers, and motion artifacts. This leads to inaccuracies in the obtained corti-
cal activity data. Therefore, it is necessary to remove these noises prior to analyzing the 
targeted brain functions [21]. Several approaches to reduce these noises were applied in 
extant studies.

In relation to the motion artifacts that normally originate from the subject’s body 
movement during the experimentation, various methods including Wiener filtering 
[22], correlation-based signal correction [23], wavelet transform [24], combined moving 
average and wavelet [25], an autoregressive model [26], spline interpolation [27], inde-
pendent component analysis (ICA) [28], targeted principle component analysis (tPCA) 
[29], and kurtosis-based wavelet filtering [30] were utilized for removal, reduction, and/
or correction. Specifically, the wavelet transform [24], tPCA [29], and kurtosis-based 
wavelet transform [30] are associated with increasing effectiveness when compared 
with other methods in the reduction of motion artifacts. Least mean squares (LMS) 
approaches were intended to reduce physiological noises from the superficial scalp and 
skull layers [31, 32]. Also a recursive least-square estimator (RLSE) was demonstrated in 
Zhang et al. [33] with fNIRS data generated by Monte Carlo simulation (no experimental 
data), in which the optode configuration including short- and long- separation channels 
was utilized to get both superficial and brain tissue components from the five-layer slab 
model. The RLSE algorithm is faster computationally than the LMS method. In addi-
tion, it was demonstrated that a short-separation channel of less than 9 mm was robust 
to the signal variation in the superficial layer. For investigating noise reduction, various 
approaches (i.e., band-pass filtering, correlation-based signal improvement, median fil-
tering, Savitzky–Golay filtering, wavelet denoising, and ICA) have been pursued [34].

Recently, physiological noises (approximately 0.1 Hz for Mayer wave, 0.25 Hz for respi-
ration, and 1 Hz for a heartbeat) have been modeled as a sum of sinusoidal functions [10, 
35–37] and estimated by using a general linear model (GLM) [10, 38] or an autoregres-
sive moving average model with external inputs [37]. Specifically, Prince et al. [35] pro-
posed a physiological noise model consisting of three sine and cosine functions in which 
the frequencies of heartbeat, respiration, and Mayer wave were assumed as known. The 
amplitudes of the sine and cosine functions are estimated by using the extended Kalman 
filter. In a manner similar to Prince et al. [35], Abdelnour and Huppert [10] used three 
sinusoidal functions in their physiological noise model. It is noted that Scarpa et al. [36] 
used the same model of Prince et al. for physiological noise removal although the num-
ber of sine/cosine components varied based on the provided data, and it is claimed that 
the amplitudes of these components (in addition to the Kalman filtering technique) were 
estimated by using the least-square estimation method [36]. To obtain the corrected 
signals, the estimated physiological noise signal was subtracted from the acquired sig-
nals. Subsequently, the corrected signal of each trial was filtered by a Bayesian approach 
to improve the accuracy of the HR estimation. Specifically, diverse adaptive filtering 
approaches [10, 21, 31, 32, 35, 36, 38] are used for other noise reductions.
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An emitter-detector pair of distance less than 1  cm is termed as a short-separation 
(SS) channel. This type of SS channel is used to acquire the noise in the superficial layer 
because the detected light in this case passes only through the superficial layer and does 
not reflect any cognitive activity [36, 39–44]. Saager and Berger [39] and Saager et  al. 
[39, 41] suggested a method to reduce superficial noises by subtracting one SS measure-
ment from a long-separation measurement. Additionally, Zhang et al. [33] demonstrated 
that a RLSE based adaptive method significantly reduced the superficial noises. In their 
study, the superficial noise estimated through the coefficient of one SS channel within 
the framework of RLSE. Recently, the long-separation measurement has been modeled 
as a linear form consisting of the expected HR and SS measurement [40, 42, 43]. It is 
noted that the weights of canonical functions (i.e., a combination of 15 Gaussian func-
tions) and the amplitudes of SS data were estimated by using the Kalman filter approach. 
Their proposed method revealed a significant improvement in both HbOs and HbRs 
when compared to those obtained by the traditional adaptive filter or the standard GLM 
model. Additionally, Sato et al. [44] estimated the extra-cortical signal by using the GLM 
model, and subsequently, the corrected HR was obtained by subtracting the estimated 
extra-cortical signal from the measured long-separation channel signal.

Clearly, fNIRS data are contaminated by extra-cortical noises from the extra-corti-
cal layers that occur when the light travels through the extra-cortical layers (i.e., scalp, 
skull, cerebrospinal fluid) prior to/after reaching the cortical layers (i.e., gray and white 
matter). Superficial noises are exposed in either single-SS [42] or double-SS measure-
ment [43]. The fNIRS data obtained by the SS detectors (emitter-detector pair distance: 
0.5  cm) contains extra-cortical physiological noises while data obtained by the long-
separation detectors (emitter-detector pair distance: approximately 3 cm) contains HR 
information for both extra-cortical and cortical tissues [39, 42]. The SS measurements 
have been included in the GLM model involving the expected brain HR [42, 43], and the 
proposed Kalman estimator method obtained the efficiency of noise reduction up to 50 
and 100% [42]. Additionally, Gagnon et al. [43] demonstrated that the use of the double-
SS measurement reduces noises in the HbO and HbR by 59% and 47%, respectively.

In the fNIRS field, the canonical HR functions were usually generated by a combina-
tion of gamma functions [45, 46]. However, the state-space model developed in [46] is 
specifically convenient when compared with the use of canonical HR functions in which 
the impulse HR for an impulse stimulation at a specific cortex was reconstructed as a 
state-space equation by using the subspace identification method. It should be noted 
that the shapes of impulse HRs in individual cortices are different. Thus, the expected 
HR for an arbitrary stimulus is generated online (or in real-time).

In the study, we propose an adaptive-filter-based method to reduce physiological and 
superficial noises in fNIRS data. The mathematical model for filtering is a linear form 
comprised of the following four main components: the expected HR, SS data, the sum 
of sinusoidal functions representing physiological noises, and the baseline drift. The 
expected HR is generated with given stimuli by using the state-space model developed 
in [46]. The SS data (emitter-detector distance: 0.5 cm) are utilized to obtain the extra-
cortical noise from the superficial layer. The physiological noises are modeled as a sum 
of three sinusoidal functions by following the method developed in [10, 35, 36]. In order 
to estimate the baseline value, the corresponding element in the regression vector is set 
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to unity although its coefficient b0 (i.e., b0 × 1) is estimated (see “Methodology” section 
for more details). The unknown parameter vector in the proposed model is estimated by 
using the RLSE with an exponentially forgetting factor. Finally, the efficacy of the pro-
posed method is demonstrated by using experimental right-finger-movement fNIRS 
data obtained from the left motor cortex. Our experimental results indicate that the 
proposed method significantly reduces physiological and superficial noises when com-
pared with the existent approaches. Thus, it is possible to apply the proposed method to 
remove noises in both offline and online cases.

Methodology
Theory (brain activity model)

In this study, the hemodynamic response caused by a brain activity is modeled in a linear 
form as follows:

where t denotes the discrete time, y(t) represents the measured HR signal acquired by 
a pair of long-separation optodes (for e.g., E-D2 pair in Fig. 1) at time t; u(t) denotes the 
expected HR generated by a state-space model [46]; Δu(t) and Δ2u(t) denote the first 
and second derivatives of u(t), respectively; ySS(t) (in which the subscript SS refers to 
short-separation) denotes the extra-cerebral physiological noise in the superficial layer 
(e.g., the channel E-D1 in the emitter side in Fig. 1); fm denotes the frequencies of physi-
ological noises; q denotes the total number of physiological noises (in this study, q is set 
to 3); yb denotes the term introduced to correct the baseline per trial; ε(t) denotes the 
white Gaussian noise, and a1, a2,… a4, b1, b2,…, bq, and b0 denote unknown coefficients 
that are to be estimated. In extant studies, three important frequencies of physiological 
noises are 1 Hz (cardiac), 0.25 Hz (respiratory), and 0.1 Hz (low frequency arterial blood 
pressure oscillation) [47, 48]. In the study, these three frequencies were estimated with 
the fft function available in MATLAB (MathWorks Inc.) from the data of the initial rest-
ing state data.

(1)

y(t) = a1u(t)+ a2�u(t)+ a3�
2u(t)+ a4ySS(t)+

q
∑

m=1

bm sin(2π fmt)+ b0yb + ε(t),

Fig. 1  Schematic of workflow for processing hemodynamic responses (HRs): E-D1/E-D2 illustrate 
short-/long-separation channels, respectively (MBLL modified Beer–Lambert law)
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Equation (1) is rewritten as follows:

where φ(t) = [u(t) Δu(t) Δ2u(t) ySS(t) sin(2πf1t) sin(2πf2t) … sin(2πfqt) 1]T denotes the 
regression vector, β(t) = [a1 a2 … a4 b1… bq b0]T denotes the unknown coefficient vector, 
and the superscript T denotes the transpose operator. Additionally, β(t) is estimated by 
the RLSE approach. According to previous works in the control field, the RLSE algo-
rithm gives a good performance in parameter estimation [49–52] and could be uti-
lized in real-time applications [53–56]. Therefore, this algorithm is chosen to estimate 
unknown parameter vector β(t). Thus, by using Eq.  (2), the estimated brain activity is 
represented as follows:

where ^ denotes the estimated values. We denote β̂(t) =
[

â1 â2 . . . â4 b̂1 . . . b̂q b̂0

]T
 

as the estimated parameter vector, which is obtained by optimizing the cost function 
J (β , t) = 1

2

∑t
k=1 �

t−k(y(k)− ϕT (k)β)2 (where λ denotes the forgetting factor). Its 
recursive update law is given as follows [57]:

where P(t) denotes the covariance matrix. We assume that e(t) = y(t)− ϕT β̂(t) is the 
estimation error.

Figure 1 illustrates a schematic for brain activity estimation. The detectors’ light intensi-
ties are acquired by dual-wavelength CW-fNIRS (i.e., 760 and 830 nm). We assume that s(t) 
is the (arbitrary) stimuli that activates a certain brain region, which corresponds the input 
signal to the state-space model. The output of the box is termed as the expected/desired HR 
because we expect the HR to exhibit this type of a response. Additionally, its first and sec-
ond derivatives are used in Eq. (1) as components in the regression vector. The difference 
between the measured data and the estimated data (i.e., e(t)) was utilized in updating the 
parameter vector β̂(t) , see (4). In the present study, the proposed method was applied to 
detect right-finger-movements in the left motor cortex.

Thus, to illustrate the necessity to estimate the frequencies of physiological noises, two 
cases are discussed (i.e., fm vs. f̂m , fixed and estimated). First, to eliminate a possible contri-
bution of superficial noises in the comparison, the SS channels are ignored. Therefore, the 
two following models are utilized.

(2)y(t) = ϕT (t)β(t)+ ε(t),

(3)ŷ(t) = ϕT (t)β̂(t)+ ε(t),

(4)
β̂(t + 1) = β̂(t)+ P(t)ϕ(t)(y(t + 1)− ϕT (t)β̂(t)),

P(t) = P(t − 1)− P(t − 1)ϕ(t)ϕT (t)P(t − 1) / (1+ ϕT (t)P(t − 1)ϕ(t))

(5)ŷ(t) = â1u(t)+ â2�u(t)+ â3�
2u(t)+

q
∑

m=1

b̂m sin(2π fmt)+ b̂0yb + ε(t),

(6)ŷ(t) = â1u(t)+ â2�u(t)+ â3�
2u(t)+

q
∑

m=1

b̂m sin(2π f̂mt)+ b̂0yb + ε(t).
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It is noted that the fixed frequencies of fm (0.1  Hz, 0.25  Hz, and 1  Hz) in (5) were 
obtained from [10, 37] and the estimated frequencies f̂m in (6) were obtained from the 
measured data during the resting state by using the fft function available in MATLAB.

The main objective of the current study is to reduce both physiological and superficial 
noises. In addition, â1u(t)+ â2�u(t)+ â3�

2u(t) from (3) is extracted for the estimated 
HR. It is noted that the physiological noise frequencies are estimated on-line and are 
subsequently included in (3). The parameters are estimated using the RLSE approach. 
Both numerical and real experimental data are processed. The RLSE method is utilized 
to estimate the weights of the linear combination of the expected HR and physiological 
noises (i.e., heart and respiratory waves).

Numerical validation of RLSE

Numerical simulations are performed to validate the appropriateness of using of the 
RLSE algorithm for decoding brain hemodynamics. First, five related signals are inten-
tionally mixed, see Fig.  2: a the expected HbO signal, b a cardiac signal, c a respira-
tory signal, d a typical Mayer wave, and e a white noise with zero mean and standard 
deviation of 10−4. The mixed signal of five signals is shown in Fig.  2f. In the process, 
the values of the amplitudes and frequencies of physiological noises were adopted from 
[36]. The proposed method of Eqs.  (1)–(4) is applied to the mixed signal to estimate 

Fig. 2  Numerical verification of the proposed recursive least squares estimation (RLSE) method with an 
exponential forgetting factor to extract physiological noises: a Expected HbO, b cardiac, c respiratory, d 
Mayer wave, and e white noise with zero mean and standard deviation of 10−4, f mixed signal of a–e; a* a 
comparison of f and the estimated signal of a; b*–d* the estimated signals of b–d; b**–d** the spectra of 
b*–d*, respectively
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the original five signals as shown in Fig.  2a* and a**. Specifically, the estimated HbO 
(the red thick curve) in Fig. 2a** was obtained by computing the first three terms, i.e., 
â1u(t)+ â2�u(t)+ â3�

2u(t) . Figures  2b*–d* correspond to the estimated physiologi-
cal noises of Fig. 2b–d, respectively. Figures 2b**–d** denote the spectra of Fig. 2b*–d*, 
respectively. As shown in Fig.  2a**, the estimated HbO (the red curve) is gradually 
updated to the desired HbO (the blue curve in Fig.  2a). Furthermore, the estimated 
frequencies of cardiac (0.9 Hz), respiratory (0.26 Hz), and Mayer (0.13 Hz) waves (see 
Fig.  2b**–d**) are sufficiently close to the known ones in Fig.  2b–d, respectively. The 
result demonstrates that the proposed method effectively extracts the correct HbO and 
the physiological noises.

Experimental paradigm design and verification

Figure 3a shows an optode arrangement for verifying the developed method in which 
multiple emitters and detectors are placed side by side (as a bundle) to form multiple 
short- and long-separation channels [58, 59] Additionally, according to Zhang et al. [33], 
since short-separation less than 9 mm was robust in various layers, all short-separation 
channels with 5 mm distance are therefore configured in the current study. And each 
optode is used as either an emitter or a detector. Figure 3b depicts a set of short- and 
long-separation channels: The squares in Fig. 3b represent emitters, and the circles are 
detectors. Specifically, the pairs 1–2, 3–4, 5–6, and 7–8 are SS channels (0.5 cm apart). 
The long separation channels (i.e., approximately 1.5–4.0  cm apart) are numbered in 
plain text underneath, i.e., 1–4, 1–5, 1–6, 1–7, and 1–8.

In Ch. 1, which is composed of emitter 1 and detector 4, two SS measurements are 
considered (i.e., 1–2 or 3–4). Either measurement is included in Eq. (1). Five long-sep-
aration channels are considered when optode 1 emits light. Similarly, an additional five 
channels are formed from the right to the left when optode 8 shoots light. Therefore, ten 
channels are created in each row. In the study, only a total of 40 channels (eight chan-
nels for five distances: 1.5, 2.5, 3.0, 3.5, and 4.0 cm) were included in computation owing 
to the computation time constraints. Figure 3c illustrates the experimental paradigm to 
detect right-finger-movement brain activity.

Study participants

Five healthy male participants (mean age 36.2; range: approximately 33–37 years) with 
shaved hair were invited to perform experiments (thumb and little-finger movements) 
involving the left motor cortex. None of the subjects exhibited any neurological impair-
ments or mental disorders. Four of the subjects were right-handed. To eliminate any 
interference from the external noise, the experiments were conducted in a dark and 
quiet room. The subjects were asked to sit comfortably on a chair and not to move their 
body during the experiment. Prior to starting the experiment, the subjects were carefully 
trained in how to move their fingers.

Figure 3c illustrates the experimental paradigm: An experiment comprised of ten tri-
als of little-finger and thumb movements; and a trial consisted of a 10 s task and a 20 s 
rest. After a 20 s initial rest period prior to the first trial, each subject was asked to move 
their fingers (i.e., flexion and extension) for 10 s by watching the screen in which each 
finger randomly appeared five times. Therefore, an experiment corresponded to a total 



Page 8 of 23Nguyen et al. BioMed Eng OnLine          (2018) 17:180 

of 320  s. To increase the brain activity during the 10  s task period, the subjects were 
asked to move their (right) little-finger/thumb as fast as possible without paying atten-
tion to the number of flexions/extensions and to relax during the 20  s rest period. A 
laptop computer with a 15-inch screen was utilized to display pictures indicating each 
finger. The distance between the subject’s eyes and the laptop screen was adjusted as 
approximately 60 cm such that the subjects could clearly see the indicated fingers. The 
subjects were also instructed to keep their eyes open during the experiments. During the 
rest period, a black screen was displayed to relax the subjects’ eyes.

The optodes in Fig. 3a were positioned over the subject’s left motor cortex to record 
the HRs to the right finger movements. Prior to the experiments, the nature of the 

Fig. 3  a Bundled-optode configuration of 40 channels to detect right-finger movements in the left 
motor cortex (squares and circles represent emitters and detectors, respectively); b an example of 
short-/long-channel measurements (short: 1–2, 3–4, 5–6, 7–8; long: 1–4, 1–5, 1–6, 1–8, etc.; for instance, if Ch. 1 
is composed of emitter 1 and detector 4, pairs 1–2 and 3–4 are used as a SS channel for Ch.1′s noise removal); 
and c experimental paradigm (five trials for thumb and little-finger movements each, which were randomly 
performed)
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experimental procedures was clearly explained to the subjects. All the experiments in 
the study were performed following the guidelines of the Institutional Review Board of 
Pusan National University, and informed consent were obtained from all the subjects 
based on the Declaration of Helsinki.

Equipment and data conversion

Dual-wavelength continuous-wave fNIRS (DYNOT, NIRx, USA) was utilized to meas-
ure the brain’s hemodynamic responses. The intensities of the detected light were con-
verted to hemoglobin concentration changes by using the MBLL. A total of 40 channels 
over the left motor cortex were configured at a sampling rate of 1.81 Hz. In the present 
study, the recorded fNIRS data drifted in time [45, 58, 59], and thus a baseline-correc-
tion method was applied. Specifically, a 4th order polynomial was fit to the data, and the 
obtained curve was subtracted from the original data to remove the drift [59, 60].

Contrast‑to‑noise ratio

The contrast-to-noise ratio (CNR) denotes the weighted difference between the mean of 
the signal during the task and that during the rest period [23, 59]. To validate our pro-
posed method, the CNRs were used to check the signal-to-noise ratio, since a high CNR 
value indicates a high ratio of the signal upon the task relative to that to noise. The CNR 
is computed as follows:

where “task” indicates the task period and “rest” denotes the rest period prior to finger 
movement. In the present study, the “task” window was set to a duration of approxi-
mately 4–14 s, and the “rest” window was set to a duration of approximately to -6–0 s 
from the onset.

Results and discussion
Physiological noises during the rest state

Figure  4 compares the average frequencies of Mayer, respiratory, and cardiac signals 
during the initial 20 s resting period (see Fig. 3c) over 5 subjects. As observed, the aver-
aged frequencies (Mayer, respiratory, cardiac: 0.14, 0.3, and 0.89  Hz, respectively) are 
extremely consistent throughout the channels. The result also agrees with those in pre-
vious studies [47, 48, 61]. However, variations exist per subject (and per time, for e.g., 
morning and afternoon), and thus, these frequencies are estimated online for each 
experiment by using the initial resting state data. Finally, the estimated frequencies were 
reflected as shown in (3).

Verification of the proposed method

Our main objective involved reducing the physiological and superficial noises and sub-
sequently extracting the correct HR from fNIRS data. In extant studies, Abdelnour and 
Huppert [10] proposed a brain activity model including two main components, namely 
the expected HR and the sum of three sinusoidal functions representing the physi-
ological noises. Their proposed method demonstrated a significant reduction in the 

(7)CNR = mean(task)−mean(rest)√
var(task)+ var(rest)

,
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physiological noises although the frequencies of those noises were assumed constant. 
In the study, we use a linear model in which the physiological noise frequencies are esti-
mated online during the initial resting state (prior to the first trial). Thus, by using the fft 
function, they are computed at the initial 20 s resting period per channel. Additionally, 
those estimated frequencies are included into the fm in Eq. (3).

A SS measurement records the extra-cortical noise in the superficial layer while a 
long-separation channel includes the brain HR from both the cerebral cortex and the 
superficial layer [41–43, 62]. In the current study, SS measurements were utilized as ref-
erence channels to remove noises in the superficial layer.

To investigate whether the extra-cortical noise and the physiological noise are related, 
the correlation coefficients between the raw SS signals and the active long-separation 
channel data during the initial 20 s resting period were computed. In most channels, the 
correlation coefficients were less than 0.34. Figure 5a depicts an example of SS data and 
a long-separation channel (Ch. 14, Sub. 2): In this case, the correlation coefficient was 
− 0.15. The peak(s) in the dashed line is due to the shift of an optode during the experi-
ment. Ch.14 was specifically chosen because the correlation coefficient between the 
channel and its short-separation channel was the lowest with respect to all the channels. 
Additionally, in most cases, the correlation coefficients between the filtered SS data and 
the active long-separation signals were less than 0.38. Figure 5b compares the entire data 
(320 s) of a SS signal and Ch. 14 of Sub. 2 in which the correlation is only 0.099. Thus, it 
is concluded that the extra-cortical noise and the physiological noises are not correlated. 
The experimental data confirmed that the SS data only contained the extra-cortical noise 
and did not include brain-activity related physiological noises.

Physiological noises between known and estimated frequencies

To investigate the effectiveness of physiological noise frequency estimation, we com-
pared the two brain activity models in (5) and (6), respectively. In (5), three frequen-
cies (i.e., 0.1 Hz, 0.25 Hz, and 1 Hz) corresponded to fixed constants in three sinusoidal 

Fig. 4  Averaged frequencies (over five subjects) of all 40 channels during the initial 20 s resting period prior 
to the first trial
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functions. However, as shown in (6), the frequencies were estimated online from the ini-
tial 20 s resting-state period, and the estimated values per experiment were then used in 
the RLSE method.

Figure 6 compares the correlation coefficients between the desired HR and the esti-
mated HR that was obtained by using the fixed frequencies (blue bars) and the estimated 
physiological frequencies (red bars) over 40 channels and 5 subjects. The results show 
that the percentage improvement in terms of the number of improved channels of Subs. 
1–5 by using the estimated frequencies over the fixed ones correspond to 55, 30, 47.5, 
45, and 47.5%, respectively. Thus, this indicates that the estimation of the physiological 
noise frequency did not result in a significant improvement.

Figure  7 plots the estimated HbO of a representative channel (Ch. 16, Sub. 2) by 
using our proposed method in which Ch. 16 was created by optodes 5 and 17. Figure 7a 

Fig. 5  Comparison of a SS channel and an active long-separation channel (Sub. 2, Ch. 14 was formed by 
optodes 4 and 28 in Fig. 3a): a Raw data during the initial 20 s resting period (the peak in blue curve is due 
to head movement). Correlation (r = − 0.15) of raw short- and active long-separation channel in the 20 s 
resting state. b Band-pass-filtered signals (cut-off frequencies: 0.01 and 0.15 Hz) of both data for the entire 
experimental period. Correlation (r = 0.099) of short- and active long-separation channel
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illustrates the raw HbO data (blue curve) and the estimated data (red thick curve, ŷ(t) in 
Eq. (3)). Figure 7b compares the power spectra of both raw and filtered HbOs approxi-
mately within the 0–1 Hz range. As shown in Fig. 7b, the proposed method significantly 
reduced the physiological noises.

The proposed method was compared with a conventional method. The low-pass 
filtering (LPF) approach was popular, and thus a cut-off frequency of 0.15  Hz was 
applied to the raw data in Fig. 7a: The thick red curve in Fig. 8a denotes the LPF-ed 
HbO, and its power spectra is shown Fig. 8b. The result reveals that it was not pos-
sible to eliminate the physiological noises at 0.012, 0.069, and 0.12 Hz frequencies, by 
using the LPF method.

For further validation, an ICA based approach was utilized to reconstruct the HR 
[45]. The task of the ICA approach involved recovering the unknown source signals 
from the measured fNIRS data. In the process, the number of source signals was 
assumed as equal to the number of measured signals [63]. The steps of ICA included 
preliminary whitening of the measured data and estimation of orthogonal ICA trans-
form to obtain the weight vector of all channels. Finally, the independent component 
(IC) or source signals were estimated from the estimated weight vector and meas-
ured data (see [45, 63, 64] for more details). The ICA decomposition was performed 
several times to yield similar ICs [64]. Figure 9a shows a reconstructed HbO by the 
ICA approach in which the data of 40 long-separation channels (Sub. 2) are used. As 
shown in Fig. 9b, the noise frequencies of 0.07 and 0.11 Hz were not eliminated.
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Fig. 6  Comparison of correlation coefficients between the desired HRs and the estimated HRs (blue bars: 
fixed frequencies, red bars: estimated frequencies): For Sub. 1, the number of red bars that exceed the 
number of blue bars is 22 (out of 40), and this results in 55%
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To further validate the proposed method, CNRs in Eq.  (7) were compared for both 
the LPF method and the proposed approach. In the process, the time windows approxi-
mately in the range of 4–14  s and − 6–0  s were assigned as “task” and “rest”, respec-
tively. Figure 10 compares the CNRs of the HbOs obtained by two methods: LPF and 
the proposed method (Sub. 2). As shown, the CNRs of the proposed method (red bars) 
exceeded those of the LPF method (blue bars). Additionally, the CNRs of the HbRs 
obtained by the two approaches are shown in Fig. 11. The results indicated that CNRs 
of the proposed method exceeded those computed by the LPF method in all channels. 
The result demonstrates that the proposed method extracted the expected HR more pre-
cisely by significantly reducing noise.

Comparison with/without the sum of sinusoidal functions

Figure 12 compares the estimated HbOs obtained by the proposed model with and with-
out the addition of the sum of three sinusoidal functions (Ch. 21, Sub. 3) as follows: Ch. 
21 was composed of optodes 18 and 30 and was selected because it presented distin-
guishable results for two methods. The results show that when the physiological noise 
frequencies are estimated during the 20  s initial resting period prior to the first trial, 

Fig. 7  a Raw HbO data (blue curve) relative to the estimated HbO (red thick curve) by using the proposed 
method, b power spectra of a (Ch. 16, Sub. 2)
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the proposed method with sinusoidal functions reduced the trial-to-trial variation [65] 
while the approach without using these terms did not reflect this.

Comparison with Kalman filter

Kalman filter is a recursive tracking estimator. The approach estimates the states of a 
process by using an updated regularized linear inversion scheme [38, 52, 66, 67]. There-
fore, the performance of our proposed method was compared with that of a Kalman 
filter. In the study, the same linear model in Gagnon et al. [40] consisting of two com-
ponents (canonical HR and SS measurement) is used. It is noted that the canonical 
HR is a set of 15 Gaussian functions. Additionally, the initial state and process noise 
covariance matrices were set to identity matrices with diagonal entries of 1 × 10−1 and 
5 × 10−4, respectively, which are the same as those in Gagnon et al. [40]. Figure 13 shows 
a comparison of the HbOs obtained by a Kalman estimator (blue dashed curve) and the 
proposed method (red thick curve). The results indicate that our proposed method was 
comparable with the Kalman filter.

To further evaluate the proposed method, the HbOs obtained by three different meth-
ods (Kalman filter, LPF, and the proposed method) for five subjects were compared. 
Figure 14 plots the averaged HbOs over all active channels by using the Kalman filter 

Fig. 8  a Raw HbO data (blue curve) relative to the low-passed filtered HbO (thick red curve) with 0.15 Hz 
cut-off frequency, b the power spectra of a that shows the existence of physiological noises
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(blue dashed curves), LPF (green solid curves), and the proposed method (red thick 
curves). The results suggest that the proposed method is comparable with both the 
expected HbO (black dotted-dashed curve) and the Kalman-filter-based HbO. A one-
way test of variance was performed to evaluate the obtained HRs in Fig. 14. In the case 
of Kalman filter, the obtained HRs from Sub. 1 indicated significantly different means 
(p = 1.04 × 10−7). In the case of LPF, the means of the obtained HRs from Subs. 1 and 

Fig. 9  a A reconstructed HbO (red thick line) by using the ICA approach (Sub. 2), b the spectrum of a: ICA 
decompositions were run 10 times; and the reconstructed one is the one with the highest t-value in each trial
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method (red bars) (Sub. 2)

Fig. 12  Comparison of HbOs obtained by the proposed model with (red thick curve) and without (blue 
dashed curve) by using the sum of sinusoidal functions (Ch. 21, Sub.3)
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4 were significantly different (p = 3.1 × 10−6). However, the results from the proposed 
method for all five subjects were not significantly different (p = 0.03). This demonstrates 
that the proposed approach gives the extracted HR more consistently than LPF and 
Kalman filter methods.

To further compare our proposed method with Kalman filter and LPF methods, 
t-values of the HbOs against the expected HbO were computed by using the robustfit 
function available in MATLAB [58, 59, 68]. As shown in Fig. 15, the t-values obtained 
by using the proposed method exceed those obtained with the Kalman filter and LPF 
approaches for four out of five subjects.

Figure 16 compares the CNRs of the raw HbOs and the HbOs obtained by the pro-
posed method across five subjects. The noise-reduction percentages (in terms of the 
number of channels) of the estimated HbO and HbR in comparison with the raw HbO 
and HbR were computed by comparing them with the raw fNIRS CNR data. The results 
indicated that the proposed method demonstrated an average noise reduction of 77% for 
HbO (see Fig. 16) and 99% for HbR (see Fig. 17). This revealed that the proposed method 
effectively removed physiological and superficial noises. Additionally, the accuracy of 
the obtained HRs was significantly improved.

To implement the proposed method for brain imaging, right-finger-movement tasks 
in the left motor cortex were performed by using a bundled-optode arrangement. In 
our experiment, the available sampling rate for the bundled arrangement (a total of 32 
optodes) was limited to 1.81 Hz. Therefore, with respect to the acquired fNIRS data, the 
proposed method deduced the cardiac frequency as within approximately 0.8–0.9 Hz. 
the issues of measuring different brain regions and motion-artifact removal are lim-
ited in our current work. Several relevant reports proposed that motion artifacts are 
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(blue dashed curve)
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measured by means of an accelerometer [2, 22]. If motion artifacts are measured in this 
manner, then they are included in our model as a new additional component and esti-
mated by the RLSE approach. Specifically, we expect that motion artifacts are effectively 
reduced in this manner. In addition, in the future works, measured fNIRS data of differ-
ent brain regions will be checked using our proposed method.

Actually, the proposed method reduces noises online. Therefore, it is appropriate for 
BCI applications [69–79] based on effective classifiers (e.g., linear discriminant analysis, 
principle component analysis, and support vector machine) [80–87] and studies on cog-
nitive functions in daily life [88, 89]. The precisely extracted commands from measured 
data controls external devices if noises are perfectly removed, (i.e., robot arms, wheel-
chairs, and prosthetic arms) [90, 91].

Conclusions
In the study, we presented a novel adaptive-filtering-based approach to reduce physi-
ological and superficial noises and decomposition of the HRs in fNIRS data. Our 
experimental results revealed that the proposed method improved the accuracy of 
the estimated HR and significantly reduced physiological noises. The averaged noise 
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Fig. 14  Comparison of the HbOs: Kalman filter, LPF, and the proposed method
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Fig. 15  Comparison of t-values of the HbOs obtained by three methods (Kalman filter, proposed method, 
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Fig. 16  Comparison of CNRs between raw HbOs and the HbOs estimated by the proposed method (the 
average reduction from five subjects is 77%)
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reductions for HbO and HbR were 77 and 99%, respectively. The results strongly sug-
gest that the proposed model can be utilized for noise removal and HR extraction in 
both offline and online applications.
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