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Background
Liver fibrosis refers to the abnormal proliferation of connective tissues, such as colla-
gen fiber, elastic fiber, and matrix components amino polysaccharide hyperplasia. It is 
more prominent in the case of collagen fiber. The disease is potentially caused by various 
types of chronic liver lesions, such as alcohol, viruses, and drugs. It is a long process of 
dynamic development. During its initial stage, Liver fibrosis can regress if the cause is 
reversible. Therefore, it is of great importance from the clinical point of view to detect 
and assess the fibrosis at early stage, as well as to monitor the liver fibrogenic progress 
and to guide the therapeutic intervention.

Abstract 

Background:  The purpose of this study is to explore the potential of phase contrast 
imaging to detect fibrotic progress in its early stage; to investigate the feasibility of tex-
ture features for quantified diagnosis of liver fibrosis; and to evaluate the performance 
of back propagation (BP) neural net classifier for characterization and classification of 
liver fibrosis.

Methods:  Fibrous mouse liver samples were imaged by X-ray phase contrast imag-
ing, nine texture measures based on gray-level co-occurrence matrix were calculated 
and the feasibility of texture features in the characterization and discrimination of liver 
fibrosis at early stages was investigated. Furthermore, 36 or 18 features were applied to 
the input of BP classifier; the classification performance was evaluated using receiver 
operating characteristic curve.

Results:  The phase contrast images displayed a vary degree of texture pattern from 
normal to severe fibrosis stages. The BP classifier could distinguish liver fibrosis among 
normal, mild, moderate and severe stages; the average accuracy was 95.1% for 36 
features, and 91.1% for 18 features.

Conclusion:  The study shows that early stages of liver fibrosis can be discriminated by 
the morphological features on the phase contrast images. BP network model based on 
combination of texture features is demonstrated effective for staging liver fibrosis.

Keywords:  Liver fibrosis, Mouse liver specimen, Phase contrast imaging, Texture 
features, Neural network
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To date, liver biopsy is still considered as the reference test to assess the severity of liver 
fibrosis. Samples are paraffin-embedded, and cut for several micrometers. The slices are 
then stained, dehydrated and imaged by optical microscopic. On the basis of the grad-
ing standard, the pathologists assess the fibrosis severity according to their experiences. 
Since the formation of liver fibrosis is a long and complicated process, there may be sig-
nificant difference in a local region, and also, the process of fibrosis with static and active 
shows discontinuity. Thus, liver biopsy examinations may lead to false negative results 
due to inadequate liver tissue sampling. The research by Bedossa et al. shows that even if 
the length of liver biopsy specimens reaches 25 mill, there is still 25% misjudgment rate 
of fibrosis [1]. Moreover, liver biopsy is an invasive procedure with side effect of pain or 
even death, hence it is infeasible to repeat the process frequently.

With the development of imaging techniques, imaging modalities such as ultrasonog-
raphy, computed tomography (CT) and magnetic resonance imaging (MRI) are becom-
ing more effective measures for assessing the fibrous disease [2–5]. Studies have shown 
that these methods can detect some signs of liver fibrosis, such as the stiffness, outline, 
and size of the liver. The associated findings relate to blood vessel diameter, blood flow 
direction, etc. However, these means are proven not to be sensitive enough to diagnose 
the fibrous disease due to the limited sensitivity and specificity [6].

Texture patterns are important features for diagnosing of the fibrosis on CT or MR 
images. Accurate assessment of the disease based on the fibrous morphology changes is 
clinically challenging, especially for inexperienced residents or general radiologists. In 
recent years, computer-aided diagnosis (CAD) based on texture features were developed 
to assess the fibrosis. By choosing small sizes of regions of interest (ROI), textures fea-
tures were quantified and classification of fibrosis was obtained. However, these studies 
were mainly concerning the cirrhotic and non-cirrhotic stages, it cannot differentiate the 
fibrosis, especially at the early stages, and also, the accuracy rate is low owing to the lim-
ited resolution of the images [7, 8].

X-ray phase contrast imaging modality has gained tremendous attention these years 
[9–13], it has already been demonstrated to have high contrast and spatial resolution for 
visualizing biological soft tissues that have similar attenuation characteristics [14–16]. 
Analyzer-based phase contrast imaging (ABPCI) method utilizes refraction effect of 
X-rays with sample, thus, it is particularly sensitive to the boundaries between different 
tissues, resulting in greatly enhanced image contrast. Studies have demonstrated great 
potential for medical applications. Li et al. have applied the imaging modality to rat liver 
samples, and found that liver fibrosis could be discriminated for different stages, and the 
selected features were found to reflect the coarseness of liver textures [17].

This study mainly focused on the investigation of effectiveness of texture features for 
quantified diagnosis of liver fibrosis; moreover, the performance of neural net classifier 
for the characterization and classification of fibrosis was evaluated.

Materials and methods
Samples

The samples of fibrous mouse liver were prepared in Peking University Health Science 
Center. Hepatic fibrosis in mouse was induced by carbon tetrachloride (CCL4). The liver 
specimens were fixed in 10% formalin solution. Sections with thickness of approximately 
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2.0 mm were cut for ABPCI imaging. Procedures involving animals and their care were 
conducted in conformity with NIH guidelines (NIH Pub. No. 85–23, revised 1996). After 
imaging, the samples were dehydrated and paraffin embedded, serial sections of 5 μm 
were cut and stained for Massontrichrome. The histology pictures were reviewed by a 
pathologist from Peking University Third Hospital. The livers’ fibrosis stages were evalu-
ated according to the METAVIR scoring system [6], which included four stages (F1–F4), 
from mild to cirrhosis. In this paper, the liver samples of normal (F0), mild (F1), moder-
ate (F2) and severe (F3) fibrosis were included for imaging analysis.

Phase contrast imaging

The interaction of X-rays with matter can be expressed as n = 1− δ − iβ . The real part 
δ represents the phase term, while the imaginary part  β corresponds to the absorption. 
Conventional X-ray imaging is a kind of absorption contrast imaging modality; it uses 
the absorption term as image contrast. Phase-contrast X-ray imaging utilizes phase term 
as image contrast. For hard X-rays, the phase term can be approximately 1000 times 
greater than the absorption term; therefore, the phase contrast imaging techniques 
are more efficient than the conventional methods for imaging soft tissues. As a kind of 
phase contrast imaging, ABPCI technique is accomplished by inserting an analyzer crys-
tal between the sample and the detector. X-rays passing through borders of tissues will 
deviate from their original directions due to refract effect, the refraction causes small 
angular changes in the beam. The analyzer crystal converts the refraction change into 
intensity change, resulting in enhancement of the image contrast.

Experiments

The ABPCI images were acquired at the beamline 4W1A of Beijing synchrotron radia-
tion facility (BSRF). The experimental hutch is approximately 43  m downstream from 
the source, consisting of two Si (111) crystals, one acts as the monochromator crystal 
and the other one acts as the analyzer crystal, the tunable energy range is 8–22 keV. Dur-
ing the experiment, the X-ray energy was set at 12 keV. A CCD camera with an effective 
pixel size of 10.9 μm was used to acquire projection images. X-rays are first monochro-
matic by the Si (111) crystal, the transmitted beams then strike the sample. They are 
absorbed, scattered, and diffracted by small angles (of the order of a few microradians) 
due to the tiny variations in the refractive index of tissues. The emerging refracted and 
scattered X-rays then hit the analyzer crystal. Only those X-rays which satisfy the Bragg 
condition of the analyzer crystal can be diffracted by the analyzer on to the detector, 
others are rejected. The angular acceptance is called the rocking curve (RC) of the crys-
tal. Images are obtained by turning the analyzer at different positions of the RC. At the 
peak position, images acquired similar to conventional absorption but with enhanced 
contrast due to the scatter rejection. When setting the analyzer on the full width at half 
maximum (FWHM) positions of the RC, the slop images are acquired, where the refrac-
tion effect is heighted, boundaries within tissues are greatly heightened [10, 18].

In this study, the ABPCI images were acquired at the FWHM angular positions 
along the RC in order to acquire the best contrast images of hepatic tissues. For com-
parison, conventional absorption contrast images were obtained. To acquire absorption 
image, samples were set behind the analyzer crystal, just before the CCD camera. The 
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experimental condition of the absorption imaging was the same with that of the phase 
contrast imaging.

The texture features

The texture features were quantified by use of gray-level co-occurrence matrix (GLCM), 
which characterizes statistic levels and spatial relationship of pixels in an image. The 
commonly used nine texture features, including energy, contrast, homogeneity, correla-
tion, entropy, sum average, sum entropy, difference average, and difference entropy, were 
evaluated in this study [19].

The FWHM images of normal, mild, moderate and severe fibrosis were selected. Back-
ground subtraction was performed first for texture calculation.

Calculation of texture features

Regions of interest (ROIs) with size of 100*100 pixels were chosen in each image, the 
step length setting at 20 pixels, within the tissue region. The original images were seg-
mented into 3332 ROIs for the normal, 4695 ROIs for the mild, 4180 ROIs for the mod-
erate, and 4214 ROIs for the severe tissue, respectively. Background regions and large 
blood vessels within the liver images were excluded.

In this study, two sets of features were used as input to the classifier performance. One 
was that the proceeding nine texture features were calculated in four regular directions, 
namely 0°, 45°, 90° and 135°, respectively, and the 36 features were used as input to the 
classifier. The other was that texture features were calculated in four regular directions 
first, means on four directions and the corresponding variances were then calculated, 
thereby 18 features were obtained and used as input to the classifier.

Back propagation (BP) neural net classifier

BP is based on gradient descent algorithm. It is a kind of classical and successful learning 
method of feed forward, which is widely used in image classification. In this study, BP 
classifier was performed in order to evaluate the capability of texture features to distin-
guish stages of liver fibrosis. In the modelling procedure, 36 or 18 features were applied 
to the input of the first layer, the signals then propagated through the network, and the 
output values were read, showing the classified accuracy of fibrosis. The output layer 
was 4 dimensions (normal, mild, moderate and severe). Neural networks with 10 hidden 
nodes were chosen for classification.

The data set was randomly divided into a training set of 70% samples, a verification 
set of 15% samples, and a test set of 15% samples. The sample sizes for training set, test 
set, and verification set were 11,495, 2463, and 2463, respectively; and a total of 16,421 
samples were used.

Receiver operating characteristic (ROC) curve

Performance of the classifier was evaluated using ROC curve. The ROC curve is a plot 
of the true positive rate against the false positive rate across all possible choice of cut-
points of a diagnostic test. The closer the curve is to the upper left border, the higher the 
overall accuracy of the test [20].
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Results
The ABPCI and absorption images

The ABPCI images of fibrous mouse liver specimen are shown in Fig. 1. The normal 
liver image (Fig.  1a) shows that liver textures are uniform and homogenous, walls 
of vessel trees are smooth. Image of mild fibrous liver tissue (Fig. 1b) indicates that 
liver textures, as well as walls of blood vessels are not smooth anymore. The moder-
ate fibrous image (Fig. 1c) shows that liver textures become rough; blood vessels tend 
to be distorted. The severe fibrous image (Fig. 1d) reveals fibrous scar tissues; branch 
vessel structures emerge, indicating blood flow ways reconstruction. The ABPCI 
images demonstrate vary degrees of texture patterns from normal to severe fibrous 
stage.

Figure  2 shows the conventional absorption contrast image of fibrous liver tissue. 
Compared to the ABPCI image, liver architecture is almost invisible in the absorption 
image.

Fig. 1  ABPCI images of fibrous samples. a Normal. b Mild. c Moderate. d Severe
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Calculation of the texture features

The probability density functions of 36 features

The above nine texture features based on GLCM in four directions were performed 
on ABPCI images, and the probability density functions of 36 features were plotted. 
Through analyzing the curves, we found that there was no significant effect of the direc-
tion on the probability density function of feature. Representative results are shown in 
Fig. 3.

Figure 3 shows that there is no obvious difference in the curves of features on direc-
tion of 0° and 90°. For the feature of entropy, there is a clear distinction between normal 
and severe fibrosis; while for mild and moderate patterns, though they can be discrimi-
nated, much overlap exists. Sum entropy is with the same behavior. For the feature of 
homogeneity, there is a clear distinction between normal and severe fibrosis, while mild 
and moderate patterns are almost overlapping. Contrast, energy, sum average, difference 
average and difference entropy are with the same behaviors. The feature of correlation 
shows almost no difference for degrees of fibrous tissues.

The results also indicate that with the fibrosis progress, the overall values of entropy, 
contrast, sum average, difference average, sum entropy, and difference entropy tend to 
increase; while values of homogeneity and energy tend to decrease.

The ability of texture features to differentiate degree of fibrosis is different: entropy and 
sum entropy show better performances in the classification of fibrosis than features of 
homogeneity, contrast, energy, sum average, difference average and difference entropy, 
and the correlation is the least effective. In future studies, it would be more efficient to 
select features based on these results.

The probability density functions of 18 features

The probability density functions of 18 features were obtained. Results of a few repre-
sentative features are provided in Fig.  4. It shows that characteristics of the averages 
are similar to those shown in Fig. 3; however, the corresponding variances have special 

Fig. 2  Conventional absorption image of the moderate fibrous sample
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characteristics. The results indicate that no matter how the value of texture feature 
changes with development of fibrosis, the value of the variance tends to increase; with 
the normal tissue having the minimal value, and the severe fibrous tissue having the 
maximal value. The reasons lie in that the normal tissues have smooth surface of liver 
architectures, with smooth vessel trees. With the development of fibrosis, rough struc-
tures emerge; fibrous scar tissues appear, etc., thus, liver architectures become far more 
volatile. These results indicate that the feature of variance is efficient at reflecting the 
uniformity of fibrous architectures. Moreover, variances of entropy, sum entropy, and 
homogeneity possess better discriminative ability for degree of fibrosis than others.
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Performance of the BP classifier

Confusion matrix of BP neural net classifier was used to evaluate the result of classifica-
tion. Test confusion matrixes based on 36 and 18 features are shown in Fig. 5a, b. The 
results of 36 features indicate that 92.7% of normal samples are correctly classified as 
normal (F0); 93.7% of mild samples are correctly classified as mild (F1); 97.7% of moder-
ate samples are correctly classified as moderate (F2); and 96.0% of severe samples are 
correctly classified as severe (F3). While for samples which classified by BP as F0, F1, F2, 
and F3 stages, 92.1%, 93.3%, 97.1%, and 97.5% are classified as F0, F1, F2, and F3 stages 
by histology. The average accuracy is 95.1%. As for the results of 18 features, the aver-
age accuracy is 91.1%, which shows that the classification of 36 features exhibiting 
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better performance than the classification of 18 features, with no significant difference. 
The result indicates that BP classifier achieves higher recognition rate in moderate and 
severe fibrosis than in normal and mild fibrosis.

ROC curves based on 36 features and 18 features are shown in Fig. 5c, d. The accu-
racy rates are higher for the severe and moderate groups than for the normal and mild 
groups, which is consistent with performance of the confusion matrix. The ROC curve 
exhibits much high accuracy rate, demonstrating the feasibility and effectiveness of tex-
ture features on classification of hepatic fibrosis.

Discussion
Assessing the severity of fibrosis is really important in therapeutic decision-mak-
ing. Nowadays, liver biopsy is still used as the reference test to determine the cause 
and stage of liver fibrosis, and is considered to be the gold-standard. It is an inva-
sive procedure with side effects, including sampling error, subjective interpretation, 

Fig. 5  Performance of the BP classifier (1, 2, 3 and 4 represent normal (F0), mild (F1), moderate (F2), and  
severe (F3) fibrosis, respectively). a Test confusion matrix of BP for 36 features. b Test confusion matrix of BP for 
18 features. c ROC curve for 36 features. d ROC curve for 18 features
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complicated and costly, etc. In the past decade, noninvasive techniques, such as 
ultrasonography, CT or MRI have been developed and implanted in clinical practice. 
Though they are reliable in discriminating early from advanced fibrosis or cirrhosis, 
they cannot differentiate stages of fibrosis [21].

Texture patterns of hepatic fibrosis are one of the important features to diagnose 
the liver disease on CT or MRI. In the last decade, computer-aided diagnosis (CAD) 
based on texture features for CT or MR images were developed to assess the fibro-
sis. The study by Zhang et al. [7] indicated that MR images had advantages over CT 
images, with regards to the performance of average accuracy, the best result was 
about 70% in MR image. The study was mainly concerning the cirrhotic and non-
cirrhotic stages; it could not differentiate the fibrosis, especially at the early stage. 
Besides, the accuracy was low due to the limited resolution of the images.

Phase contrast imaging is specifically sensitive to the refraction properties of tis-
sues; thus, it is able to enhance edges of structures, making soft tissue architectures 
more discernible in comparison to conventional X-ray imaging. Its potential for med-
ical imaging with micrometer resolution has been explored [15, 16], and the appli-
cability of this imaging modality for visualizing liver fibrosis has been demonstrated 
previously [17]. This study primarily focuses on the application of the classifier of BP 
neural network based on textures features obtained from the ABPCI images for char-
acterizing and staging liver fibrosis.

Our study demonstrates image texture calculations based on ABPCI images allow 
for the quantification of fibrous structures in the early stages. Features of entropy and 
sum entropy are effective at differentiating fibrosis, possibly due to the fact that these 
features emphasize edge-related differences between tissues. Although studies based 
on single feature analysis can be informative, however, the distributions overlap can-
not distinguish normal and stages of fibrosis thoroughly; multivariable features are 
expected to more comprehensively characterize fibrous structures. Therefore, feature 
combination was utilized as input of the classifier and classification accuracy was 
evaluated.

BP neural net classifier was exploited as quantification and classification of liver 
fibrosis, and 36 or 18 features were applied as input of the classifier. Results of the 36 
features indicated that no substantial difference in the texture features in four direc-
tions, indicating that features in an ROI are approximately rotationally invariant. An 
average of the feature values over the four directions and the corresponding variances 
were used as input of the classifier to simplify feature selection and reduce comput-
ing time. The higher recognition rate of BP classifier indicates that this method has 
better applicable effect on staging fibrosis, especially for the early stages. However, 
selection of combination of texture features for best performance at classifying and 
staging fibrosis are need to be further studied, and the efficiency and accuracy of the 
BP classifier in comparison with other classifiers will also need to be investigated. In 
this regard, those are the focuses of on-going investigations.

Early detection and regular monitoring of fibrosis are challenge for clinical imag-
ing. Our results demonstrated that ABPCI image modality can be a potential imaging 
method for the early diagnosis of liver fibrosis, and computerized texture features are 
feasible in classifying the disease.
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The results presented in this study were obtained on excised mouse liver specimens. 
The future research will be extended to in vivo study by using living animals. Moreover, 
large samples will be utilized to make the study results more efficient and reliable for 
being viable to clinical practice.

Conclusions
Mouse fibrous liver samples were imaged by ABPCI. The study demonstrated that early 
stages of fibrosis can be discriminated by the morphological features of liver tissues. 
Moreover, texture features were quantified, and BP network model based on combina-
tion of features was demonstrated effective for staging fibrosis. These initial experiment 
results are promising. More research needs to be investigated to make this method a 
viable imaging and staging technique for liver fibrosis.
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