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Background
3.6 million individuals are expected to live with an amputation by 2050 [1]. Histori-
cal data show that approximately 35% of amputations are related to upper extremities 
and the majority of these (i.e. over 90%) are partial hand amputation [1]. Partial hand 
amputation (amputation of digits or hands), which is also known as minor upper-limb 
loss, can impose a notable influence on the person’s life. It can have an adverse effect on 
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their self-image, can cause loss of job and emotional distress [2]. Epidemiological studies 
show that the number of partial hand amputations per year is one every 18,000–20,000 
residents [3]. A 2018 report indicates that there were 209,053 hospital visits specifically 
related to hand and digit injuries between 2002 and 2010, and 5000 work-related finger 
amputations in 2010 in the United States alone [4]. Although the minor amputation is a 
common injury, due to the vulnerability of the fingers, the research in the field of partial 
hand amputation has moderately progressed compared to the research in major upper 
limb amputation filed [3, 5]. One solution to resolve some of the problems regarding 
the amputation is to fit partial hand amputees with a prosthesis [3]. Several prosthesis 
options have been investigated and marketed by researchers and companies. Some of 
these options include passive, body-powered, activity-specific, and externally-powered 
prostheses [6]. The externally-powered prostheses use myosignals (signal from muscles 
activation and function) from the user to predict their intention to control the hand. 
In the commercially available externally-powered prosthesis, surface electromyography 
(sEMG) is more frequently used due to its portability and non-invasiveness.1.

The commercial prostheses provide a set of pre-programmed hand gestures for the 
user. With correct sensor placement and training, the user can control the hand to shape 
one of the pre-programmed hand gestures. Although this classification approach can 
achieve a high classification accuracy, it limits the user to some specific hand gestures 
[7].

The user of an externally powered prosthesis will not be limited to a set of hand ges-
tures if they can control each finger continuously. To provide such control for the users, 
researchers have investigated different regression methods to predict continuous finger 
movements and grasping actions using sEMG [8–10]. The majority of the researchers 
asked the participant to keep their hand in a specific position and did not consider the 
effect of wrist movement on the performance of their technique. As a result, Pan et al. 
[11] collected data in different wrist positions from the Middle finger of six able-bodied 
participants and the Index finger of two partial-hand amputees. The result of their study 
showed the possibility of predicting the finger movement in the presence of wrist move-
ment with sEMG signal.

Although the sEMG signal is a common signal to control prostheses, it has some dis-
advantages. The sEMG signal can be unstable due to the environmental factors, like 
electrical noise, and user-based factors, such as sweating. This disadvantages resulted 
in marginal progress despite extensive research on the signal [12]. A low-cost alterna-
tive to sEMG to control a prosthesis is FMG. FMG is defined as tracking the volumetric 
changes in a muscle associated with the muscles contraction or relaxation during the 
functional movement of the limb [13]. The FMG technique presents some advantages 
over sEMG technique. Unlike the sEMG technique the FMG technique does not need 
skin preparation; the signal is not sensitive to the users sweating; and the electrical noise 
does not affect the signal [14]. Researchers have investigated FMG for hand gesture clas-
sification and continuous force prediction during the past decade [13, 15–18]. In two 
separate researches Connan et al. [19] and Jiang et al. [18] studied the FMG and sEMG 

1  https​://vince​ntsys​tems.de/en/; https​://www.touch​bioni​cs.com/

https://vincentsystems.de/en/
https://www.touchbionics.com/
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signals that were collected from the participants at the same time while they were hold-
ing specific wrist positions or hand gesture. They have shown that FMG has a compara-
ble performance to sEMG, during hand and wrist movement classification.

Cho et al. [20] used FMG signal collected from the residual and intact limb of tran-
sradial amputees to classify different hand gestures. They compare the classification 
accuracy between the signal collected from the residual limb and the intact limb. Their 
investigation indicate that the residual limb has a lower accuracy during the classifica-
tion, due to the degraded muscle tone. However, they were able to classify six hand ges-
tures with good accuracy in the residual limb. The work of Cho et  al. [20] along with 
other works [21, 22], have showed FMG has the potential to yield promising result when 
used to control a prosthetic arm in transradial amputee. During the experiment Cho 
et al. [20] asked the participants hold their elbow in a 90° angle. To investigate the pos-
sibility of resolving this constrain, Radmand et al. [17] introduced a high density FMG. 
They were able to classify hand and wrist motions with a low classification error. The 
authors also suggested to include data from eight different static positions in the train-
ing dataset. This positions were defined as specific locations in 3D space in front of the 
participant to cover a person’s workspace and ensure proper performance with limb 
position variation. Using different static positions resulted in classifying hand and wrist 
gestures in 3D space with a high classification accuracy.

As FMG signal demonstrates promising results for hand and wrist classification, Kad-
khodayan et  al. [23] used the signal for continuous finger movement prediction. They 
recorded the relative displacement of the tip of the Index finger, the Middle finger and 
the Thumb with respect to a reference point on the hand, during three hand move-
ments. The authors asked the participants to keep their hand in a strictly fixed position. 
They used a support vector regression (SVR) with a Radial bases kernel function as their 
regression algorithm. The authors used ten-fold cross-validation to validate the model’s 
performance. The work of Kadkhodayan et al. [23] can indicate the potential use of FMG 
signal for continuous grasping movement prediction.

One point about the work of Kadkhodayan et  al. [23] is worth mentioning. Kadk-
hodayan et al. [23] asked participants to keep their hand in a stationary position. In par-
tial hand amputees with a functional wrist, the attempt to perform a hand grasp, either 
with the remaining digits or to control a prosthesis, is accompanied by wrist movement. 
Pan et al. [11] mentioned since the wrist movement affects the myosignal it has a nega-
tive effect on the system’s performance during continuous movement prediction. In 
other words, the system trained in a fixed hand position may not be able to perform as 
well with different hand positioning [5]. The same effect might be observed in prediction 
using FMG signal.

In our study, the performance of FMG for continuous grasping prediction is investi-
gated. To build upon the work of Kadkhodayan et al. [23], we included different wrist 
positions in the study. To the authors’ best knowledge the effect of the wrist positioning 
on the FMG performance for predicting continuous grasping movement has not been 
investigated. In this paper we propose to use random forest (RF) algorithm [24] as our 
prediction algorithm, due to its potential advantages to the conventional algorithms. 
Some of the advantages are as follows. The RF algorithm is robust to overfitting; it has 
only two parameters to optimize (the number of variables in the random subset at each 
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node to split and the number of trees in the forest), while it is not very sensitive to these 
parameters [24, 25]. The features of the RF algorithm can make it a potential alternative 
to the conventional algorithms, for the goal of this study. Four regression methods, lin-
ear regression (LR), SVR, neural network regression (NNR), RF, and three classification 
methods, linear discriminate analysis (LDA), support vector machine (SVM), and RF 
had been investigated and compared in the present work. After determining the model 
to predict the continuous grasping movement, the effect of the variation of the wrist 
positioning on the performance of the model was investigated. The investigation was 
done to determine if it is possible to train on a fixed wrist position and predict the grasp-
ing movement in different wrist positions. In addition to that, the minimum number of 
the wrist positions that need to be included in the training phase was examined. The 
result of this work can create the groundwork for a further investigation of the potential 
of the FMG technique to be used as a controlling technique for continuously controlling 
a prosthesis device.

This paper is organized as follows: next section explains the proposed experimental 
protocol and processing of the experimental data; after that, an overview of experimen-
tal results is provided. Discussion and concluding remarks are presented at the end.

Methods
This section describes the setup and methods that were used for the data collection. It 
also specifies the different grasp types and wrist positions that were used during the data 
collection. In addition to that the processing of the data and the machine learning algo-
rithms are defined. The last part presents the outcome measures to evaluate the perfor-
mance of the models.

Experimental setup

An array of 18 force sensing resistors (FSR® 400, Short, Interlink Electronics, Westlake 
Village, CA) were placed in a flexible band, cut from 2 mm thick foam. Figure 1a shows 

Fig. 1  a The configuration of the hard backing and the foam on the FSR, b the FMG data collection band, c 
the FSR circuitry. VOUT is recorded with the microprocessor



Page 5 of 22Sadeghi Chegani and Menon ﻿BioMed Eng OnLine          (2018) 17:159 

a close view of a FSR. FSRs are polymer thick film (PTF) sensors that show a decrease in 
resistance by increasing the applied force on their surfaces. This specific model can be 
activated with 0.2 N force, and its sensitivity range is up to 20 N [26]. As the FSRs are 
flexible devices, by wrapping the band around the participant’s wrist, each FSR will bend. 
To stop the FSRs from bending, each FSR was supported with a piece of 1.5 mm thick 
acrylic sheet which was cut to the FSR’s exact shape and dimensions. The acrylic piece 
provided a hard backing for the FSR which stopped it from bending. A piece of 1.5 mm 
thick foam was placed on each FSR, to concentrate the pressure from the wrist on the 
FSR’s sensing area. The sensors were placed on the flexible band, 4 mm apart from each 
other. Figure  1b illustrates the FMG data collection band. As mentioned in Interlink 
Electronics [27] to have a simple force reading the sensor was connected to a resistor in 
a voltage divider circuit (Fig. 1c). The value of the output voltage read from the resistor 
(VOUT in Fig. 1c) was used as a measure of the applied pressure. An Atmega 32 micro-
processor was used to read this value. The microprocessor was connected to an on-site 
computer with a USB cable, to record the data. A velcro strap and a buckle were used 
to wrap the band around the participants’ limb. The band placement was kept uniform 
among the participants. It was placed on the upper limb above the head of Ulna bone. 
The buckle of the band was kept on the Radius bone. The reasoning behind this place-
ment is that, the muscles and tendons that control hand digits are mostly deep muscles. 
The nature of FMG is to pick up the effect of limb volume changes, from muscle and 
tendon movements, on the skin surface. On the forearm, moving from the elbow to the 
wrist, the digit controlling muscles get closer to the skin surface, and the changes would 
be more localized for the FMG band. It is worth mentioning that these changes are vis-
ible on forearm belly muscle as well, but they are more localized near the wrist. As the 
changes regarding the digit movements were of great interest in this research this spe-
cific placement was selected.

The participants sat behind a desk with an adjustable height. The height of the desk 
and their chair was adjusted in a way that participants could rest their elbow on the 
table. Since the goal of this study was to investigate the effect of the wrist position on 
the FMG, to eliminate any other unwanted movement, participants’ hand and fore-
arm were fixed in a brace (Fig.  2). To maintain participants’ comfort pieces of the 
polystyrene foam were used as support for forearm, wrist, and hand in the brace. The 
brace included a joint under the wrist. For moving to each wrist position the nut and 
screw of the wrist joint were unlocked. Then the participant was asked to move their 

Fig. 2  Participant’s hand placement in the brace to eliminate undesirable movement
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hand to the specific position. The nut and screw were locked after hand positioning. 
With this consideration, the elbow was kept relaxed, and the wrist was fixed in a spe-
cific position during each data collection session.

A motion capture system (Qualisys AB, Gothenburg, Sweden) was used to track 
the finger movements. The system consisted of eight cameras, 15 markers, and the 
motion capture software which is called QTM. The markers were placed on the 
participants’ hand, wrist and forearm (Fig.  3). On the index and the Middle finger, 
markers were placed on fingertips, proximal interphalangeal (PIP) joint, and metacar-
pophalangeal (MCP) joint. On the Thumb, the markers were placed on the Thumb’s 
tip, interphalangeal (IP) joint, and MCP joint. On the wrist, the marker was placed on 
the Radiocarpal joint. On the forearm, the markers were placed on the Radius bone 
in line with the wrist marker and between the Ulna and Radius perpendicular to the 
Radius’s marker. Two markers were placed on the Little and Ring fingers’ tips as well. 
The data collected from the markers using the cameras was used to create a 3D model 
of the hand, fingers, and forearm to track their movements.

Each marker on the participant’s hand should be visible to at least three cameras 
during data collection, for the QTM software to track the position of the marker in 
3D space. Figure  4 shows the camera placement and the participant. Cameras were 
placed around the participant, to cover approximately 250° of the area around them. 

Fig. 3  Band and marker placement on the participant’s hand

Fig. 4  The camera placement around the subject
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The camera placement guaranteed that all the markers were at least visible to three 
cameras, during data collection.

A program in C# was coded, to collect data from the FMG band and the motion cap-
ture system at the same time. The program consisted of two threads, main thread and 
background thread. The band was read in the background thread and the motion cap-
ture data was read in the main thread. Every time the program received a data point 
from the band, the corresponding 3D location data of the markers from the motion cap-
ture system was read. The sampling frequency of the motion capture system was set to 
100 Hz. The sampling rate of the FMG band was set to 15 Hz. This was sufficient to track 
finger movements in this study, which is slower than 1 Hz [23].

Grasp types and wrist positions

Three hand grasps were selected, to investigate the effect of the continuous grasping 
movements on the FMG. In an attempt to estimate the continuous grasping move-
ment Kadkhodayan et al. [23] selected three grasp types, as a subcategory from Cut-
kosky’s grasp taxonomy [28]. To build upon the work of Kadkhodayan et al. [23] the 
same grasp types were selected, and the investigation of the effect of the wrist move-
ment variations was added. The three grasps are opposed Thumb-Index Finger grip, 
opposed Thumb-two Finger grip, and Heavy wrap-Large Diameter. Figure  5 shows 
the snapshots of the grasp types during flexing and extending fingers. The first two 

Fig. 5  Snap shots of the hand’s motion. a–c Opposed Thumb-Index Finger grip, d–f opposed Thumb-Two 
Finger grip. g–i Heavy wrap-Large Diameter
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grasps are precision grasps which mainly are used for manipulating a small object 
with fingertips. The third grasp is a power grasp and is mainly used for grasping large 
cylindrical objects. For simplicity the grasps were called “Index Finger-Thumb”, “Two 
Fingers-Thumb” and “Large Diameter” grasp, for the rest of the paper.

Since three-finger robotic hands and prosthetic hands are commonly used [29–31], 
the movement of the Index finger, Middle finger, and Thumb were studied in this 
work. The participants did the grasps repeatedly, which provided data from three 
dynamic hand movements.

In addition to the grasping movement, we looked at the effect of the position of the 
wrist on the FMG. To do this six static wrist positions were used to collect data. These 
positions included keeping the wrist in Extension, Flexion, Neutral, Pronation, Radial 
deviation, and Ulnar deviation. Figure 6 illustrates the wrist positions. This study is 
a feasibility study regarding the investigation of the effect of the wrist position on 
the FMG signal, and is a first step toward removing the wrist position effect. Thus, 
only the six static wrist position following the work of Pan et al. [11] were included 
in this study, and wrist transition between the static positions was not considered. 
As the motion capture system was not able to see the markers on the fingers during 
the hand movements in Supination wrist position, this position was not included in 

Fig. 6  Snap shots of wrist positions. a Extension, b Flexion, c Neutral, d Pronation, e Radial deviation, f Ulnar 
deviation
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the study. The mentioned grasp types and wrist positions were demonstrated for the 
participants. After fixing the participant’s elbow and wrist position, they were asked 
to flex and extend their fingers and Thumb as if they were grasping objects of differ-
ent sizes. The participants did not hold or squeeze any object. The effect of applying 
force on an object or surface is not investigated in this study, since it is a feasibility 
study on the wrist movement effect on the signal. The participants were asked to do 
each grasp for 10 s. As there are three hand movements this adds up to 30 s in total. 
The participants repeat the hand movements 30 times. Since the sampling frequency 
of the band was set to 15 Hz, the repetitions provided approximately 13500 data point 
for each wrist position. The dataset for each data collection session nearly included 
81000 data points. Participants could rest between the repetitions. Participants were 
asked if they need a rest every 10 min. In addition, there was a mandatory rest half 
way through the experiment for 15 min. There were no limitations on the speed, and 
participants performed the motion at their natural pace. With the considerations 
above, the data collection session for each participant, including setup, rest between 
repetitions, and recording data, was approximately 3 h long. It is worth mentioning 
that the fatigue has a lower influence on FMG signal than sEMG signal [19].

In the partial prosthetic hands usually the individual control of each finger joint is not 
provided, and the hand does not have the same kinematic of the real hand. As a result, 
if the finger joints are predicted, to control a prosthesis they need to be converted to the 
kinematics of the prosthesis to be able to control it. This motivated us to select measures 
different than the finger joint angles for the grasping movement. Kadkhodayan et al. [23] 
used the length of a vector connecting the fingertips to a reference point on the hand. 
As this vector can be affected by the size of the participant’s hand, we selected another 
measure independent of the hand’s dimensions. The angle between Index finger and 
Thumb and Middle finger and Thumb were selected (Fig. 7).

The processing of the motion capture data

The collected data from the location of the markers were used to calculate three vec-
tors. The first one was defined as the vector starting from the MCP joint of the Thumb 
and ending at the Thumb’s tip ( VMT ). The second vector started at the MCP joint of the 
Thumb and ended at the Index finger’s tip ( VMI ). The last vector started at the MCP joint 
of the Thumb and ended at the Middle finger’s tip ( VMM ). These vectors were used to 

a b
Fig. 7  a The angle between Middle finger and Thumb, b the angle between Index finger and Thumb



Page 10 of 22Sadeghi Chegani and Menon ﻿BioMed Eng OnLine          (2018) 17:159 

calculate the angle between the Index finger and the Thumb ( θTI ), and the angle between 
the Middle finger and the Thumb ( θTM ). Figure 7 illustrates the angles. Formulas 1 and 2 
show the calculation of each angle.

Considering the six wrist positions and three hand movements, the dataset included 18 
different states (3 hand movements in 6 wrist positions) for θTI . As the Middle finger 
was not moving in Index Finger-Thumb grasp, the data from this movement was not 
included in the dataset of θTM . This provided 12 states (2 hand movements in 6 wrist 
positions) for the investigation of θTM.

Classification and regression

For predicting grasp movements, two approaches were explored and compared. The 
approaches are one-step regression and two-step regression. The changes in the value of 
θTI and θTM were used as the target variable in training and testing phases, and the FMG 
data was used as the predictor variable. All data processing and analysis were done in an 
offline setting. The training and testing were performed on a server running Cenots ver. 
6.9 equipped with four twelve-core (2 threads per core) Intel(R) Xeon(R) processors (E7-
4860 v2 @ 2.60GHz) and 1000 GB RAM. To have a fair comparison between different 
models and approaches, all programs were run with a single core.

One‑step regression

In the first approach, one-step regression, a single regression model was used for train-
ing the model and testing it, regardless of the hand movement or the position of the 
wrist. Both training and testing datasets included data from all static wrist positions 
and dynamic hand movements. Four regression models, namely LR, SVR, NNR, and 
RF regression were trained, tested and compared to identify which one performs better 
toward the goal of this paper. To the authors’ best knowledge, RF has not been used on 
FMG data before. Thus the algorithm will be explained in short.

Random forest is an ensemble of un-pruned trees. Consider a dataset that has N data 
points, and each data point is constructed from M features. In the random forest algo-
rithm developed by Breiman [24], to construct each tree a random subset of the samples 
including N ′ data points is selected. In a standard tree each node is split based on all M 
features, but in the algorithm developed by Breiman [24], each node is divided using the 
best guess among a random subset of the features. So instead of using all M feature to 
make a decision at each node, M′ features are used to make a decision. The prediction of 
a new sample is made by aggregating (the majority of votes for classification and averag-
ing for regression) the prediction of the whole forest.

(1)θTI = tan
−1

(

| �VMT × �VMI |
�VMT . �VMI

)

(2)θTM = tan
−1

(

| �VMT × �VMM |
�VMT . �VMM

)
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In this paper, the random forest package of Matlab (introduced in R2009a) was used. 
The number of trees was set to 100. Matlab’s default was used for the number of random 
features to use for splitting at each node ( M′ ), which was the square root of the num-
ber of features for classification ( M′ =

√
M ) and one-third of the number of features for 

regression ( M′ = M
3

 ). Matlab’s default was also used to determine the size of the random 
subset of the data ( N ′ ) to construct each tree, which was the same as the training dataset 
( N ′ = N  ). In our case, we have 18 sensors which provided 18 channels; thus four ran-
dom features were used for classification and six random features were used for splitting 
at each node for regression.

Two‑step regression

Previous works on sEMG signal have shown that the movement of the wrist degrades 
the signal and there is a need to define separate models for different wrist positions 
[5, 11]. Pan et  al. [11] indicated when sEMG is used with different models for differ-
ent wrist positions, it is possible to estimate the continuous finger movements. The two-
step regression approach was designed with an inspiration of their work. Comparing this 
approach and the one-step regression approach can indicate that whether FMG needs 
different models for different wrist position, similar to sEMG. In addition, by including 
the two approaches we can roughly compare sEMG and FMG for the same application.

This approach consisted of a six-class classifier and six regression models correspond-
ing to six wrist positions. At the first step, the data points belonging to each wrist posi-
tion were gathered together. For each group, a regression model was trained. Then a 
classification model was trained to classify the wrist positions. To test a new data point, 
first, the classifier found the wrist position that the point was in. Then based on the pre-
dicted wrist position the corresponding regression model was selected and used to pre-
dict the angle.

Three classification methods were explored, to choose the appropriate classification 
method for the second approach. As LDA and SVM with a Gaussian kernel have been 
used in the literature to classify wrist and hand movements using FMG, these two classi-
fiers were tested [14, 18, 32]. In addition to those algorithms RF [24, 25] is introduced for 
classification using the FMG signal.

Analysis of the effect of the wrist position variation

As it was mention in the “Background” section, the movement of the wrist can affect 
the performance of the prediction. To analyze how the wrist position affects the perfor-
mance first, one wrist position was included in the training phase, while all six positions 
were included in the testing set. The result of this part can confirm whether it is neces-
sary to train on different wrist positions or not. One-way ANOVA and Tukey HSD test 
for post-hoc analysis were used to compare including six wrist positions, and including 
just one of the wrist positions in the training dataset. After that, the possibility of includ-
ing less than six positions in the training phase, and the inclusion of all six positions in 
the testing phase was investigated.

To do the investigation, the data of one or a set of wrist positions were left out of the 
training dataset, while their data were included in the testing dataset. The reasoning behind 
it was if for instance, the data in the Neutral wrist position was similar to the data in the 
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Pronation wrist position, it would be possible to include just the data from one of those 
wrist positions in training data while including both of them in the testing phase.

Five cases were considered. In each case, one, two, three, four or five static wrist positions 
were removed from the training set, while their data was included in the test dataset. In 
case of removing two to five wrist positions, all combinations of removing wrist positions 
from the training data were considered. For instance, in case of removing two wrist posi-
tions, 15 combinations needed to be considered. Considering all combinations provides 62 
different options in total. The performance of each option was calculated and compared to 
the performance of the system when all six positions were used for the training phase. One-
way ANOVA and Tukey HSD test were used to determine which combinations do not have 
a statistically significant difference with including all six positions in the training dataset.

In all statistical analysis a confidence interval of 95% was considered ( α = 0.05 ). The sta-
tistical significance test was run on θTI and θTM independently. For each angle, the statistic 
tests were run on two outcome measures, namely R2 , and the percentage root mean square 
error ( RMSE% ). The combinations that did not demonstrate a statistically significant dif-
ference with including six wrist positions in the training test were identified for each angle, 
and each outcome measure. The identified combinations that were overlapped between 
two angles, and within the two outcome measures, were selected as the combinations that 
can be used instead of including all wrist positions, without influencing the performance of 
the prediction.

Outcome measures

Each of the approaches was investigated separately for θTI and θTM . The collected dataset 
included thirty repetitions of each hand movement in each wrist position. In this work, a 
cross-repetition method was used for evaluating the performance. In a cross-repetition 
method, the data collected from a set of repetitions were left out as the testing dataset and 
were not used for the model optimization. To shape training and testing datasets, for each 
approach, six repetitions out of thirty repetitions were randomly selected, without replace-
ment and set out for testing and other twenty-four repetitions were used for training. 
Which means 20% of the data were used in the testing phase and 80% were used in the 
training phase. The selection of test data set was made five times, to make sure that each 
repetition has been in the test set at least once. The result is reported as an average among 
repetitions and participants. R2 , RMSE% , the average training time, and the estimated pre-
diction time for a new data point were measured as ways to evaluate the performance of the 
modeling.

(3)R2 = 1−

N
∑

i=1

(yi − yi′)2

N
∑

i=1

(yi − ȳi)2

(4)
RMSE% =

√

1

N

N
∑

i=1

(yi − yi′)2

ymax − ymin
× 100
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Formula 3 shows the calculation of R2 , and Formula 4 shows the calculation of RMSE% 
value. The expected value is shown with y, and y′ shows the predicted value, ȳ indicates 
the average of y in the test set and N indicates the number of data points in the test set. 
To measure the estimated prediction time for a new data point, the prediction time for 
the testing phase was measured and divided by the number of data points in the test 
dataset.

Concerning the two-step regression approach, it is essential to keep in mind that the 
evaluation measurements were calculated using the final output, which is the predicted 
value of θ.

Before training the algorithms, the dataset was scanned. If an angle data point was 
missing the corresponding FMG data was ignored, and the data point was removed. 
No other pre-processing was done on the FMG signal, and the raw FMG data was used 
for classification and regression. Train and test datasets were the same in the one-step 
regression and two-step regression. The same sets were also used for analyzing the effect 
of the wrist position variation.

Results
Ten able-bodied subjects, six males and four females, age 23–41 participated in this 
study. The experiment received ethics approval from Simon Fraser University, and par-
ticipants gave their written informed consent. The result of each approach is presented 
separately. The comparison between two approaches helps to identify the appropriate 
approach, among two for estimating grasping movement. At last, the effect of the wrist 
position variation on the performance of the model is investigated.

One‑step regression

Table 1 shows the results for θTI . The R2
θTI

 values for LR, SVR, NNR and RF were 0.694, 
0.868, 0.813 and 0.872 respectively. The R2

θTI
 value indicated that RF performed slightly 

better than SVR, and NNR, while it significantly outperformed LR. The RF algorithm 
was about four times faster than SVR and more than 49 times faster than NNR during 
the training phase. The RF algorithm is also significantly faster than SVR and NNR to 
predict the output for a new data point.

Table 2 indicates the results for θTM . The R2
θTM

 values for LR, SVR, NNR and RF were 
0.873, 0.941, 0.911 and 0.941 respectively. Looking at the result of θTM regression, it 
showed the similarity between SVR and RF, while RF was over two times faster than SVR 
during the training, and more than seven times faster during testing. RF also performs 
slightly better than NNR, and the NNR is about 33 times slower than the RF algorithm 

Table 1  Regression algorithms comparison for θTI , one-step regression approach

R
2 RMSE% Training time (min) Estimated prediction time 

(ms) for each sample point

LR 0.6945 ± 0.07 14.59 ± 1.71 0.011 ± 0.012 0.0006

SVR 0.8680 ± 0.03 9.55 ± 1.07 6.172 ± 0.946 1.097

NNR 0.8129 ± 0.06 11.29 ± 1.51 72.925 ± 7.40 3.730

RF 0.8718 ± 0.03 9.40 ± 1.05 1.487 ± 0.14 0.076
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in both training and testing. The result confirms that the RF algorithm is a good alterna-
tive to the other three conventional algorithms for this research.

Figure 8 illustrates an example of predicting θTM using one-step regression approach 
with RF regression algorithm. Using RF regression R2 value of 0.872 and 0.941 were 
obtained for θTI and θTM respectively.

Two‑step regression

Based on the result of the first approach, RF was selected as the regression model. 
Table 3 indicates the result of the classifiers comparison. The accuracy of 85.01%, 95.55%, 
and 95.76% were obtained for LDA, SVM, and RF on average. RF algorithm was able to 
do the classification marginally better than SVM, while it was 1.5 times faster, and it 
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Fig. 8  Comparison between predicted value and real value, one-step regression approach using random 
forest, for θTM , subject #10, repetition #19, Large Diameter grasp, in Pronation wrist position

Table 2  Regression algorithms comparison for θTM , one-step regression

R
2 RMSE% Training time (min) Estimated prediction time 

(ms) for each sample point

LR 0.8734 ± 0.05 8.98 ± 1.27 0.008 ± 0.01 0.0006

SVR 0.9415 ± 0.02 6.12 ± 0.83 2.35 ± 0.45 0.585

NNR 0.9110 ± 0.03 7.53 ± 0.97 32.00 ± 3.38 2.449

RF 0.9411 ± 0.02 6.13 ± 0.84 0.95 ± 0.08 0.076

Table 3  Classification algorithms comparison for classifying six wrist positions

Accuracy (%) Sensitivity (%) Specificity (%) Time (s)

LDA 85.01 ± 9.55 90.65 ± 11.06 97.87 ± 3.22 0.10 ± 0.07

SVM 95.55 ± 4.41 97.46 ± 4.71 99.52 ± 0.78 58.82 ± 33.26

RF 95.76 ± 4.37 97.42 ± 4.48 99.45 ± 0.92 38.77 ± 3.91
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outperforms the LDA classifier. The result and training time confirm that RF algorithm 
can perform as an alternative to LDA and SVM to classify wrist position using FMG sig-
nal. Figure 9 illustrates the RF algorithm’s confusion matrix. The confusion matrix indi-
cates that the Pronation and Radial wrist positions are more likely to be miss-classified 
as each other compared to the other wrist positions. This miss-classification can be a 
result of the small deviation angle during the Radial deviation, which was an average of 
18° for the participants. 

Table  4 indicates the average results of the second approach. The R2
θTI

= 0.874 and 
R2
θTM

= 0.942 were obtained. Figure 10 shows a sample of the target and predicted value 
using the two-step regression approach. The training and testing dataset were the same 
as Fig. 8.

Figure 11 shows the average R2 of two-step regression in six static wrist positions. 
The data were grouped into the wrist positions based on the result of the classifier.

Two one-sided t-test (TOST) [33] to test the equivalence was run on the R2
θTI

 and 
R2
θTM

 to compare the two approaches. The value of level of significance was set to 
0.05 ( α = 0.05 ), the lower limit of the equivalence interval was set to −  0.015 and 
the upper limit of the equivalence interval was set to 0.015. The null hypothesis was 
set as: (µR2one-step

− µR2two-step
) > 0.015 or (µR2one-step

− µR2two-step
) < −0.015 , and the alterna-

tive hypothesis was set as: −0.015 < (µR2one-step
− µR2two-step

) < 0.015 . The test resulted 

The confusion matrix of RF algorithm
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Fig. 9  The confusion matrix of RF algorithm during classifying six wrist positions

Table 4  The results of two-step regression approach

Classification 
accuracy (%)

R
2 RMSE% Training time (min) Estimated prediction time 

(ms) for each sample point

θTI 95.76 ± 4.38 0.8744 ± 0.03 9.31 ± 1.07 2.498 ± 0.179 68.174

θTM 96.45 ± 3.91 0.9424 ± 0.02 6.06 ± 0.87 1.665 ± 0.117 52.682
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in p < α for both R2
θTI

 and R2
θTM

 , which rejects the null hypothesis. Furthermore the 
confidence interval of the difference falls entirely inside the equivalence limits. This 
indicates the results from the two approaches are equivalent and they are not dif-
ferent from each other. The result indicates that the second approach had a similar 
performance to the first approach while it was more than 1.5 times slower than the 
one-step regression approach in training phase and significantly slower during the 
prediction of  a new data point. The results suggest that one regression model for 
each angle ( θTI and θTM ) can predict the angle value in the presence of variations of 
the position of the wrist. Subsequently, the first approach was selected to investigate 
the effect of the wrist position variation on the result.

Analysis of the effect of the wrist position variation

All the possible combinations of removing one or more wrist positions from the training 
dataset were explored. Each combination was compared to the case of including all the 
wrist positions in the training dataset.
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Fig. 10  Comparison between predicted value and real value, two-step regression approach using random 
forest, for θTM , subject #10, repetition #19, Large Diameter grasp, in Pronation wrist position
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Table 5 indicate the result of including only one wrist position in the training dataset. 
As the result indicates, training on only one wrist position can notably decrease the R2 
value and increase the RMSE% . In all cases for both θTI and θTM the statistical analysis 
for R2 and RMSE% resulted in, p ≪ α . The p-value means we cannot conclude that there 
was no statistically significant difference between including all six positions in the train-
ing dataset or just including one wrist position. The result can confirm that including 
more than one wrist position in the training dataset is necessary, to predict continuous 
grasping movement in the presence of wrist position variations.

After that by comparing all different options for removing wrist positions from the 
training dataset, the positions that can be removed, without significant influence on the 
result of the prediction are identified. In case of removing one of the wrist positions from 
the training dataset, four options resulted in a p-value of more than 0.05. The p > 0.05 
indicates that no statistically significant difference can be established between that spe-
cific option and including all six wrist position in the training dataset.

Table 6 presents the result of the wrist positions that need to be included in the train-
ing dataset and their corresponding R2 and RMSE% value. The results indicated that the 
Extension, Pronation, Radial, or Ulnar wrist position could be removed from the train-
ing dataset. By removing any of these four wrist positions, no statistically significant 
difference can be established between the calculated R2 and RMSE% with the values 
calculated with including all the six positions in the training dataset. The full result of 
the statistical analysis of each angle, with R2 and RMSE% , is provided in supplementary 

Table 5  The result of including only one wrist position in the training dataset, using one-
step regression

Included wrist 
positions in training 
dataset

θTI θTM

R
2 RMSE% R

2 RMSE%

Extension, Flexion, 
Neutral, Pronation, 
Radial, Ulnar

0.872 ± 0.034 9.402 ± 1.052 0.941 ± 0.021 6.133 ± 0.843

Extension 0.412 ± 0.230 19.90 ± 2.79 0.566 ± 0.304 15.740 ± 4.460

Flexion 0.553 ± 0.345 22.64 ± 4.16 0.436 ± 0.339 18.359 ± 4.007

Neutral 0.550 ± 0.214 20.70 ± 3.50 0.593 ± 0.163 16.067 ± 2.818

Pronation 0.372 ± 0.160 17.56 ± 2.73 0.700 ± 0.170 13.533 ± 2.924

Radial 0.231 ± 0.157 17.45 ± 2.60 0.631 ± 0.203 15.027 ± 3.305

Ulnar 0.412 ± 0.277 18.10 ± 3.66 0.641 ± 0.277 14.120 ± 3.550

Table 6  The result of the algorithm using five wrist positions in the training dataset, one-
step regression

Included wrist position in training dataset θTI θTM

R
2 RMSE% R

2 RMSE%

Extension, Flexion, Neutral, Pronation, Radial, 
Ulnar

0.872 ± 0.034 9.402 ± 1.052 0.941 ± 0.021 6.133 ± 0.843

Flexion, Neutral, Pronation, Radial, Ulnar 0.821 ± 0.056 11.072 ± 1.375 0.901 ± 0.051 7.810 ± 1.575

Extension, Flexion, Neutral, Radial, Ulnar 0.842 ± 0.046 10.432 ± 1.362 0.927 ± 0.034 6.748 ± 1.221

Extension, Flexion, Neutral, Pronation, Ulnar 0.845 ± 0.046 10.320 ± 1.343 0.925 ± 0.039 6.797 ± 1.187

Extension, Flexion, Neutral, Pronation, Radial 0.832 ± 0.051 10.722 ±1.238 0.919 ± 0.039 7.239 ± 1.070
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material (Additional file 1), which is the pair-wise comparison between all the 62 com-
binations and including all six wrist position in the training dataset. In addition, a sam-
ple of the FMG signal in different hand movements and wrist positions is provided in 
the supplementary material. Additional file 2 indicates that despite notable differences 
between some wrist positions in a hand movement, for example Extension and Prona-
tion wrist positions, there are similarities in others, like Pronation and Ulnar deviation.

Discussion
The FMG signal was investigated for continuous grasping movements estimation, with 
ten able-bodied participants. Concerning the goal of the study, two different methods 
were explored. The first was using a regression algorithm to predict the grasping move-
ments; and the second was using a classification prior to the regression algorithm and 
six regression models corresponding to the wrist positions. The angle between Index fin-
ger and Thumb ( θTI ) and Middle finger and Thumb ( θTM ) were selected as the measures 
of the grasping movement.

Based on the presented result the two approaches had similar performance. However, 
the second approach is slower than the first approach, during both training and pre-
diction phases. One regression model for the θTI angle and a regression model for θTM 
were able to estimate the continues grasping movement with an average R2 of 0.906 and 
RMSE% of 7.77%. Pan et  al. [11] were able to predict continuous finger movement in 
static wrist positions using sEMG with an average R2 about 0.8. They used a switching 
regime approach and trained different regression models for different wrist positions. In 
addition, Pan et al. [11] estimates the testing time for a new data point to be 53.011 ms. 
Our work shows that FMG can predict a new data point in approximately 0.076 ms dur-
ing the first approach. The present study implies that the FMG signal demonstrates com-
parable performance to sEMG in the same application, while there is no need to have 
different models for different wrist positions, as long as the data from different wrist 
positions are provided during the training.

This study demonstrated a more comprehensive approach compared to the work of Kad-
khodayan et al. [23], and took one step closer to a practical case, as the effect of the wrist 
variation was considered in this work. Adewuyi et al. [5] investigate the possibility of train-
ing the system on one wrist position and use it with variations in the position of the wrist, 
using sEMG signal. Their result indicated that the variation of the wrist position can have a 
negative effect on the performance of the model. Our result shows that the same effect can 
be observed in FMG signal. If the system was only trained on one wrist positing, it was not 
able to predict the continuous grasping movement, with wrist position variation, with an 
average R2 more than 0.6. Our further investigations revealed that it is possible to include 
five wrist positions in the training dataset and include all six positions in the testing phase. 
In other words, it is possible to remove Extension, Pronation, Radial, or Ulnar wrist position 
from the training dataset, without any statistically significant effect on the performance of 
the model. This provides four options for the training dataset, that include five wrist posi-
tions instead of six wrist positions (Table 6, rows 2–5). The Tukey HSD test was run to do 
a pairwise analysis between the four options, which provided six combinations. The results 
showed p > 0.05 in all six combinations. The p-value indicated no statistically significant 
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differences can be established between the four options. In conclusion, it is possible to use 
any of them without degrading the performance of the system.

With respect to one step regression, the RF algorithm was able to have comparable 
results to SVR, and NNR while it was faster. In addition to that, the time of the training 
using RF algorithm was not sensitive to the size of the dataset. As mentioned in “Motion 
Data Processing” the θTM included 12 states and θTI included 18 states. The time of the 
training using the RF algorithm was 1.49 and 0.95 min for θTI and θTM respectively, and the 
training time of SVR algorithm was 6.17 and 2.35 for the angles respectively. This training 
time indicated that in RF algorithm by increasing the size of the dataset the training time 
did not increase drastically. The training time using SVR algorithm for θTI is over 2.5 times 
more than the training time for θTM with fewer data points. Regarding the NNR algorithm, 
the training time of the θTI is about twice the training time of the θTM . The training times 
indicated the sensitivity of the SVR and NNR models to the size of the training dataset. The 
result for θTM dataset also indicates that the RF regression was a good alternative for the 
other commonly used regression models for the goal of this paper.

The results indicated, independent of the approach, θTI has a lower R2 and higher RMSE% 
than θTM . This result can be justified by looking at the hand movements that are included in 
the dataset for each angle. As it was mentioned in the “Methods” section, since the Middle 
finger is not moving in the Index Finger-Thumb movement, this movement is not included 
in the dataset of θTM . The Index Finger-Thumb movement is more challenging to predict 
than the other two hand movements. The FMG band is placed on the forearm near the 
wrist. The tendons and muscles responsible for the movement of fingers, Thumb, and wrist 
are passing from this location. Keeping three hand movements in mind, in the Index Fin-
ger-Thumb movement, only Index and Thumb were moving. This means only the tendons 
and muscles that are controlling the Thumb and Index fingers were affecting the sensors 
that collect FMG, in a fixed wrist position. While in Two Fingers-Thumb movements the 
tendons and muscles responsible for moving Middle finger were influencing the signal as 
well. In the Large Diameter grip, all the fingers were moving, and there were more changes 
in each sensor’s reading in this movement. Every one of the sensors in the band can provide 
information for machine learning algorithm. Since in the Two Finger-Thumb movement 
and Large Diameter grip more sensors are influenced, more information is provided for the 
machine learning algorithm. This results in a better performance in estimating the angle in 
these two hand movements. Despite the facts mentioned above, it is worth noticing that 
both methods were able to estimate θTI with a R2 more than 0.8.

Conclusion
In this study, FMG signal was introduced and explored to provide continuous grasp-
ing movement prediction toward controlling partial hand prosthesis. With having the 
importance of the effect of the wrist movement on the performance of the grasping 
movement prediction in mind, the effect of the wrist movement on the FMG signals 
performance during predicting continuous grasping movement was explored. To the 
authors’ best knowledge this is the first work that considers the effect of the wrist move-
ment on the performance of the FMG during continuous grasping movement prediction.

Two approaches were defined and examined for predicting continuous grasping move-
ment in the presence of different wrist positioning. The first approach was to use one 
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regression model for grasping movement prediction, irrespective of hand movements 
and wrist positions. During the second approach first, a classifier determined the wrist 
position that participant was in and after that, a regression model, trained for that 
wrist position, was used to predict the measures of the grasping movement. The two 
approaches had a similar performance, while the first approach was faster than the sec-
ond approach. This indicates one regression model with adequate training data was able 
to predict the grasping movement.

The effect of the variations in the wrist position was investigated. The result concluded 
that it is necessary to include at least five wrist positions in the training dataset to be able 
to predict continuous grasping movement in different wrist positions.

In short, the presented study indicates the potential of FMG signal to be used as a 
control technology to provide continuous grasping movement control for partial hand 
amputees. Future works can investigate the possibility of improving the performance by 
adding feature extraction from the FMG signal and studying deep learning algorithms 
for regression. Additionally, more grasping movements can be included in the study as 
the number of the grasping movements covered in this study were limited to three grasp 
movements. To continue the work in the future, it is essential to test the ability of the 
signal to perform grasping movement regression, while the wrist is not constrained to 
specific angles and include a continuous wrist movement estimation in the algorithm if 
it is needed. It is also necessary to test the signal to control a simulated hand or a robotic 
hand gripper in real-time. In addition, the effect of the FMG band placement on the limb 
as well as the effect of the fatigue on performance of the system should be investigated. 
Also, the effect of object handling and the resistance from holding and squeezing an 
object should be investigated. At last, it is important to test the result of the study with 
partial hand amputee participants and test the potential and limitations of the signal and 
the algorithm.

Additional files

Additional file 1. Full results of the statistical analyses of the Effect of the wrist position variation. This file includes 
the result of pairwise analysis between all the 62 options for removing wrist positions from the training dataset and 
including all six positions in the training dataset. The analysis are done for θTI  and θTM independently. For each angle 
the analysis are done on R2 and RMSE%.

Additional file 2. Snap shot of hand movement signal in different wrist positions. This file includes a graph that 
shows the FMG signal in different hand movements and wrist positions. The graph shows a sample repetition for 
each movement in each wrist position form one of the subjects.
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