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Abstract 

Background:  Age-related macular degeneration (AMD) is a degenerative ocular 
disease that develops by the formation of drusen in the macula region leading to 
blindness. This condition can be detected automatically by automated image process-
ing techniques applied in spectral domain optical coherence tomography (SD-OCT) 
volumes. The most common approach is the individualized analysis of each slice 
(B-Scan) of the SD-OCT volumes. However, it ends up losing the correlation between 
pixels of neighboring slices. The retina representation by topographic maps reveals the 
similarity of these structures with geographic relief maps, which can be represented by 
geostatistical descriptors. In this paper, we present a methodology based on geostatis-
tical functions for the automatic diagnosis of AMD in SD-OCT.

Methods:  The proposed methodology is based on the construction of a topographic 
map of the macular region. Over the topographic map, we compute geostatistical 
features using semivariogram and semimadogram functions as texture descriptors. The 
extracted descriptors are then used as input for a Support Vector Machine classifier.

Results:  For training of the classifier and tests, a database composed of 384 OCT 
exams (269 volumes of eyes exhibiting AMD and 115 control volumes) with layers seg-
mented and validated by specialists were used. The best classification model, validated 
with cross-validation k-fold, achieved an accuracy of 95.2% and an AUROC of 0.989.

Conclusion:  The presented methodology exclusively uses geostatistical descriptors 
for the diagnosis of AMD in SD-OCT images of the macular region. The results are 
promising and the methodology is competitive considering previous results published 
in literature.

Keywords:  Medical images, Optical coherence tomography, CAD-x, Semivariogram, 
Semimadogram
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Background
Age-related macular degeneration (AMD) is a progressive chronic disease of the central 
retina and a leading cause of vision loss worldwide [1]. Its development is characterized 
by the appearance of soft drusen (discrete deposits of residues) and abnormalities in pig-
mentation of the retinal sublayer known as retinal pigment epithelium (RPE) [2]. Dam-
age in this region causes the inability to read, to recognize faces, etc. Its progression can 
lead to vision impairment, or even total blindness.

It is estimated that AMD is the cause of 8.7% of cases of blindness worldwide, with a 
higher incidence in developed countries and people over 60 years of age. For 2020, the 
global projected number of cases is of 196 million and this estimation reaches 288 mil-
lion for the year 2040 [3].

Recent advances in retinal imaging technology have allowed the handling of age-
related macular degeneration through the creation of spectral domain optical coher-
ence tomography (SD-OCT). It is a noncontact, noninvasive, three-dimensional imaging 
technique that obtains images representing a sectional view of retina at micrometer res-
olution [4].

This examination modality reconstructs the tomographic image by measuring the 
optical backscattering of tissues. This technique has gained space as a diagnostic tool for 
AMD, mainly due to its quickness to acquire images and dispenses the use of contrasts 
and thus the risks involved.

The evaluation of AMD by SD-OCT occurs through the analysis of successive sec-
tional cuts in search of morphological changes caused by the disease. SD-OCT acqui-
sition generates a large number of sectional images, which requires that the expert 
visualize and evaluate a large number of volume slices seeking for changes, especially if 
they are minimal and sparse in the early stages of pathology [5].

A typical SD-OCT examination produces about 100 images with a resolution of 
512× 1000 pixels (fast acquisition protocol). This demands considerable human effort 
for evaluation. If we consider that a physician is responsible for the care and follow-up of 
dozens of patients, there is a necessity for technologies that support the clinical practice 
of SD-OCT image analysis.

Accordingly, the development of computer aided diagnostic methods (CADx) can col-
laborate with the specialist for the detection of AMD by taking advantage of the ability 
to evaluate the large amount of data that the SD-OCT examination can provide. Even in 
its variations, a large amount of anatomical retinal information is available to character-
ize the disease [6].

Typically, we have two main approaches for automated AMD diagnosis based on SD-
OCT. One of the approaches involves the following steps to be effectively addressed: (a) 
obtaining relevant biomedical characteristics for the differentiation between healthy 
and compromised retinas; (b) use of classifiers to accurately determine the presence or 
absence of the disease; and (c) validation of the method for generating reliable results 
from a properly classified image database [4, 5, 7–13]. This approach has the advantage 
of constructing robust classifiers, based on fixed mathematical models that can charac-
terize well a specific pathology.

Another approach is based on the use of deep neural networks techniques [14] to 
identify pathologies that compromise the retina [15–19]. These methods present the 
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main advantage of flexibility for training to discriminate various conditions, especially 
AMD and diabetic macular edema, and also do not require the search for discriminatory 
characteristics which are determined by the deep learning framework.

In general, these methods use the reflectance values of retinal pixels. They use simple 
segmentation techniques based on the elimination of the background [8], a warping of 
the image from flattening the retina [4, 13, 17], a cut of predefined dimensions in the 
region of greatest intensity of pixels [9] or even semi-automatic segmentation of retinal 
layers [5] to delimit the region of interest.

The main related works are compared in Table 1. We can notice that in some works the 
images are pre-processed for the normalization of intensity values of pixels [7] and noise 
reduction. This filtering is normally done with filters based on wavelet [20] or with the 
Total Variation algorithm [8, 10]. The main advantage of these techniques is providing 
better definition of anatomic alterations that distinguish images compromised by AMD.

Most described methods are based on the individual analysis of the SD-OCT volumes’ 
B-Scans, not considering the correlation between successive slices as seen in [12, 13, 15, 
21]. This type of application is common mainly due to being more accessible to define a 
region of interest from a B-Scan than from any other volume representation. Normally, 
the successive slices suffer a misalignment caused by eye movement during capture. 
Thus, it becomes more practical that each slice be processed individually.

The main disadvantage of methods that analyze individual B-scans is to disregard the 
correlation between pixels of successive slices. Moreover, after the step of detecting 
characteristics that indicate the presence of AMD per slice, a new classification is neces-
sary to indicate the presence of the disease by volume.

The approach presented in [5] differs from others by representing the SD-OCT vol-
ume in thickness maps of total retina (TR), neurosensory retina (NSR), and especially 
of the retinal pigmented epithelium and drusen complex (RPEDC), which region has 
a higher incidence of AMD-induced alterations. With this, it is possible to generate a 
representation of a whole SD-OCT volume for the detection of AMD. Following, the 
topographic maps generated are redimensioned from 1000× 100 to 1001× 1001 pixels, 
reconstructing the original appearance of the retina, however at the expense of inserting 
interpolated data in the image.

From this point, they generate mean thickness maps and determine superior and infe-
rior limits for the classification of retinas compromised or not by AMD. Despite this 
work presenting good results (AUROC =  0.991), we believe it is very dependent on 
the mean thickness measures and does not analyze how the local variation of thickness 
occurs along the RPEDC surface. So, we realize it is possible to propose a new approach 
for describing RPEDC conditions with local thickness variation analysis. Submitting 
these features to a classification method allows us to develop a methodology for the 
detection of AMD in human eyes.

Given the similarity of the generated retinal topographic maps with geological investi-
gation maps like soil analysis and remote sensing [22], we propose using the geostatisti-
cal functions of semivariogram and semimadogram as descriptors for characterization 
of the macular region of the retina.

These geostatistical functions have already been used with success in biomedical con-
texts such as lung nodule detection [23] and breast cancer classification [24]. In these 
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works, geostatistical functions are applied directly on the intensity values of pixels in 
regions of the image to differentiate between healthy tissue or tissue compromised by 
cancer. In [25], these functions are used to automatically detect eyes, differentiating 
them from other facial features. We can see that these methods well describe the texture 
of tissue or a topographic map, like proposed in this work.

The main advantage of using geostatistical functions over topographic maps is that 
they allow a representation of the volume as a whole, not limiting the analysis by indi-
vidual slices (not being subject to the misalignment of slices problem) and providing a 
local analysis of thickness variation along the RPEDC in macular region.

In this work, we used the topographic map proposed by [5] but, innovate on not use 
the topographic map to describe only the thickness of the layers. Otherwise, we try to 
describe the global texture presented in the topographic map. The texture representa-
tion of the topographic map is the central contribution/innovation point of the proposed 
work.

To describe the macular region texture we propose the use of the semivariogram and 
semimadogram functions that we believe can describe the layers thickness variations of 
the total retina, NSR, e RPEDC. Thus, the complete methodology is innovative in itself, 
as it is the use of geostatistical functions to discriminate against the texture of the topo-
graphic map. This is a way to represent the retina globally.

Our approach is innovative in the sense that it uses the analysis of local variation of the 
thickness as a texture map, based on the assumption that druse formation modifies these 
measures. This gives us a way to evaluate thickness information with their spatial loca-
tion building a robust method for AMD detection.

The occurrence of druses interferes in the retinal layers morphology, deforming them 
which reflects on generated topographic maps. Thus, our method of AMD diagnosis is 
based on the evaluation of the retinal layers thickness alterations. The topographic maps 
describe how their thickness is varying along the macular region. So it is an appropriate 
tool to be used in automatic methods. We developed a way to describe these variations 
based on the assumption that the texture representation of this maps will be a strong 
indication of healthy and unhealthy patients.

So, we believe this methodology may be useful to more robustly distinguish impair-
ment cases and let us develop a computer-based method for automatic diagnosis of 
AMD impairment. Such a system can offer a second opinion, to provide more informa-
tion to the specialist, supporting their clinical decision. Processing that data through 
machine learning methods can allow rapid studies, facilitating population screening, 
remote diagnosis and even early detection of the disease. The problem addressed in 
this research will be research on a methodology for the automatic diagnosis of AMD by 
using SD-OCT exams.

Methods
The methodology proposed in this work for the development of a CADx architecture is 
based on the following stages: (1) image acquisition, (2) image representation, (3) fea-
tures extraction and (4) classification. The flow chart of the proposed methodology is 
shown in Fig. 1.
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In the first step, the images are acquired from the database provided by [5] which con-
tain precise markings of the borders of the total retina, RPEDC, and neurosensory ret-
ina. In the second step, we generate topographic maps and reconstruction en face of the 
SD-OCT volumes. The third step is the central part of the proposed methodology where 
we extract geostatistical features on the topographic maps obtained from SD-OCT vol-
umes. Finally, in the fourth stage, we submit the extracted features to a classifier method 
to determine if an SD-OCT volume is whether or not affected by AMD. We detail each 
step below.

Image acquisition

The image set used for the validation of the proposed methodology belongs to the data-
base provided by [5]. It is a subset of the AREDS2 [26] database containing 269 eye 
volumes with AMD and 115 control volumes (eyes considered normal). This data was 
collected for the purpose of studying quantitative indicators on the presence of AMD in 
adults.

The main population characteristics of the AREDS2 trials are: Mean age, 74 years; 57% 
female; 97% white; 7% current smokers; 19% with prior cardiovascular disease; and 44% 
and 50% taking statin-class cholesterol-lowering drugs and aspirin, respectively. Ocular 
characteristics include 59% with large bilateral drusen, 32% with advanced AMD in 1 eye 
and mean visual acuity of 20/32 in eyes without advanced AMD [26].

The SD-OCT examinations were captured at four clinics using SD-OCT scan-
ners manufactured by Bioptigen, Inc (Research Triangle Park, NC). The volumes were 
acquired in the rectangular region of 6.7mm× 6.7 mm centered on the fovea with rapid 
scan protocol, resulting in volumes of size 1000× 512× 100 voxels.

The subset provided by [5] (also used in this work) has subjects aged between 50 and 
85 years exhibiting intermediate AMD with druses greater than 125µ m in both eyes or 
large drusen in one eligible eye and advanced AMD in the fellow eye, with no history 
of vitreoretinal surgery or ophthalmologic disease that might affect acuity in either eye. 
The control group selection used the same inclusion criteria in the AREDS2 study with 
the exception that the subject did not present any evidence of the presence of drusen.

This image set provided segmented retinal layer borders that limit the total retina 
(inner limiting membrane and Bruch’s membrane) that were segmented altogether with 
the border of the retinal pigment epithelium. This segmentation was initially performed 
automatically by the software DOCTRAP, developed by Duke University, and subjected 
to careful review and adjustments by certified specialists from Duke Advanced Research 

Step 1 Step 3

Representation

Topographic maps of three
retinal borders
En face reconstruction of
RPE

Feature extraction

Semimadogram
Semivariogram

Classification

Two class non-linear
Support Vector Machine

Step 2 Step 4

Acquisition

384 SD-OCT volumes with
RPEDC segmented by
experts

Fig. 1  Flow chart of the proposed methodology. This picture shows a view of the necessary stages to 
perform AMD diagnosis over SD-OCT images
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in Spectral Domain OCT Imaging Laboratory. We present a single B-Scan of an SD-
OCT volume in Fig. 2.

After segmentation, the specialists manually marked the center point of the fovea. 
From this marking, they delimited a cylinder centered at this point as the area of interest 
of each volume. For tests and validation of this step, we utilized all 384 provided volumes 
and its layers boundaries marks.

In spite of the existence of automated segmentation techniques, at the moment, we 
use the segmentation provided with the base due to it being reviewed by specialists. 
This gives us greater security for validation of the proposed method since segmentation 
errors may impact its accuracy.

Image representation

In this step, we generated two-dimensional representations based on topographic maps 
and reconstruction en face for each SD-OCT 3D volume of the image set. Topographic 
maps represent the thickness of the retina (as well as the neurosensory layer and the 
RPEDC) for each point on its surface. The reconstruction en face generates images that 
correspond to the reflectance values of the SD-OCT on the border of the RPE. The image 
set used represents borders reviewed by specialists as surfaces Bi = (x, y) , i ∈ {1, 2, 3} . 
These three areas correspond respectively to the i limiting membrane (ILM), border of 
the pigment epithelium and the border of Bruch’s membrane (BM). These surfaces are 
used for the representations as detailed below.

Generation of topographic maps

From the surfaces defining the borders of the layers, we generated three two-dimen-
sional surfaces Li(x, y) , where i ∈ {1, 2, 3} , to represent each SD-OCT 3D volume. The 
coordinate zi = Li(x, y) corresponds to the axial depth of a point located in the coordi-
nates (x, y) in a substructure of the retina. This is done by summing the amount of voxels 

Fig. 2  Representation of SD-OCT layer’s boundaries marks. The image on the left represents the surfaces 
that determine the marking of the borders of the retina divisions. The right image, in turn, is a B-Scan of 
the same volume extracted from the image base provided by [5] with emphasis on the demarcation of the 
borders. In both images the borders that delimit the neurosensorial retina (NSR) and the retinal pigmented 
epithelium and drusen complex (RPEDC) are represented. The NSR is delineared by internal layer membrane 
(IML, colored red) and the pigmented epithelium border (PEB, colored blue). In turn, the retinal pigmented 
epithelium and drusen complex (RPEDC) is delineared by PEB and Bruch’s membrane (BM, colored green) 
including the drusenoids alterations. The total retina (TR) comprehend the whole region between IML and 
BM
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existing between the two borders, or simply calculating L1 = B3 − B1 , L2 = B2 − B1 and 
L3 = B3 − B2.

The first topographic map generated (surface L1 ) represents the total retina thick-
ness, corresponding to the region between the border of the internal limiting membrane 
(ILM) and the border of Bruch’s membrane (BM). The second map (surface L2 ) uses the 
neurosensorial retina (NSR), region between the ILM and the border of the pigment epi-
thelium. The last topographic map ( L3 ) corresponds to the retinal pigment epithelium 
and drusen complex (RPEDC), which is the region between the BM and the border of 
the RPE. In order to better illustrate, Fig. 3 presents the generation of the topographic 
map for the surface L1.

En face reconstruction of RPE

The reconstruction en face of the border of the pigment epithelium generates a two-
dimensional surface FRPE representing the SD-OCT volume in which the reflectance val-
ues existing in the inner border of the pigment epithelium are associated to each pixel. 
Thus, an image is extracted bearing resemblance to a depiction of an eye fundus. How-
ever, each pixel presented corresponds to the voxels located on the border of the RPE, in 
accordance to:

where, R is the L2 surface reflectance for position x, y and z.
A distance parameter d can be specified to take into account 2D neighboring voxels 

located at the maximum distance of d up or down. Therefore, the representation en face 
is generated by the average values obtained from this set of voxels. The purpose of this 
representation by average is to render it more robust in relation to noise.

(1)FRPE = R(L2, x, y, z)

Fig. 3  Total retinal topographic map generation from a SD-OCT volume. Complete volume is represented 
in A. B and C presents successive elimination of unnecessary regions. B also demonstrates the delimitation 
of a ROI with radius r = 5 mm centered in the marking of fovea marked by specialists. Finally, D presents the 
topographic map that represents the thickness of the retina for each point
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Figure 4 presents the reconstruction en face of the border of REP for a random volume 
with AMD and another considered normal. It is possible to visually perceive variations 
in the texture of the two images, where the darker regions correspond to points of lesser 
reflectance such as blood vessels and drusen formation.

Feature extraction

A key concept in geostatistical image analysis is the notion of spatial continuity, which 
represents the likelihood of a particular pixel value at a determined location given neigh-
boring or regional data values [27]. Thus, it allows the study of the randomness of the 
sampled data in order to identify possible spatial structures. Events occurring in a par-
ticular location tend to have similar behavior in neighboring locations. This character-
izes what we call spatial dependence.

The degree of spatial dependence (or variablity of the data) between samples (pixels, 
in this case) can be measured by semivariance. It analyzes the variance between pairs 
of data points over a range of distances. Its magnitude is directly proportional to the 
distance between the points, so the larger the distance, the larger the semivariance value.

Semivariogram

The semivariance values as a function of distance between pair of points is called semi-
variogram and can be written as [28]:

where the parameter hi,j called lag is the distance between the pairs of points located in i 
and j where DNi and DNj are respectively the values of pixels i and j. N(h) is the number 
of points separated by h.

(2)γ (h) =
1

2N (h)

∑

(i,j)|hij=h

(DNi − DNj)
2

Fig. 4  Reconstruction en face of the border of the RPE. The figure shows the surface of the pigmented 
epithelium for a retina of the control group (a) and a retina with a diagnosis of AMD (b). The clearer values 
represent points of greater reflectance
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The semivariogram usually displays a characteristic curve (Fig. 5) in which semivari-
ance grows from small lags to large lags. At a given distance the semivariance becomes 
approximately constant. The plateau where γ stabilizes is called the sill.

The distance at which the sill is reached is called range. At this point, the semivariance 
is equal to the variance of the data of the sample considered, meaning that there is no 
relation between the pairs of observations considered at this distance [23]. On the other 
hand, if the distance h is very small, the compared points are very similar to each other, 
which implies very low values of semivariance for these initial distances, hence the value 
of the semivariogram will start with very low values γ > 0 . This value, as well as the 
range and the sill, also represents a characteristic of the semivariogram called the nugget 
effect, or simply nugget.

Some parameters are used for the calculation of the semivariogram: the direction, 
the measurement (or lag distance), the maximum bandwidth, the lag tolerance and the 
angular tolerance. Setting these values limits which pixels will be considered for the cal-
culation. Figure 5 show an illustration of the boundaries applied by these parameters to 
the pairs of pixels.

Semimadograma

Similar to the semivariogram, the semimadogram is another function also used to meas-
ure spatial dependence [23]. It is given by the mean of the absolute difference measured 
in the sample pairs as a function of distance and direction. The function is defined by:

where h is the lag, xi and yi are the values of pixels of an image separated by h. N(h) is the 
number of pairs from the distance h.

To represent the instances in feature vectors, we calculated semivariogram and semi-
madogram over the topographic maps of RT(L1 ), NSR(L2 ) and RPEDC(L3 ). These func-
tions were also calculated on the reconstruction en face of the border of the RPE. The 
calculations were performed in four directions ( 0◦, 45◦, 90◦ and 135◦ ) that are commonly 
used in computational image processing. The values of lag = h ∈ {1, 2, 3, ..., 15} , the 
tolerance for lag �h = ±3 , tolerance for the direction angle was equal to 10◦ and the 

(3)m(h) =
1

2N (h)

N (h)∑

i=1

|xi − yi|

Fig. 5  Semivariogram parameters (left) and the characteristic curve (right)
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maximum bandwidth of 3 pixels. The feature vectors are used as inputs for the classifica-
tion step.

Classification

To classify between AMD and non-AMD cases, we have used the Support Vector 
Machines (SVM) [29] which is a supervised learning method for data classification and 
pattern recognition. Its principle is based on separating data in a sample space from 
training on a set of previously labeled data. The separation of these data is done through 
hyperplanes that segment the sample space into partitions, thus separating the instances 
into distinct classes [30].

SVM is a proven effective method for general classification tasks. In spite of other 
classifiers that require large amounts of data, such as deep learning [14], SVM is a very 
robust classifier for tests with a few amount of samples (384 in our case).

For evaluating the performance of the classifier, we used the measures of sensitiv-
ity, specificity, accuracy, AUROC and Cohen’s kappa [31]. Sensitivity is defined by 
TP/(TP + FN ) , specificity is defined by TN/(TN + FP) , and accuracy is defined by 
(TP + TN )/(TP + TN + FP + FN ) , where TN, is true-negative, FN is false-negative, FP 
is false-positive, and TP is true-positive.

Results
To evaluate the performance of the proposed methodology, we run an experiment with 
the 383 SD-OCT volumes provided by [5]. The missing volume was not used due to a 
smaller number of B-Scans it contains in comparison with the others (80 B-Scans versus 
100 in the other volumes). Testing was performed on a computer with an Intel Core i7 
processor with 8 GB of RAM. The implementation was fully developed in the Python 3.5 
language in a Debian Linux environment.

The semivariogram and semimadogram for different topographic maps were calcu-
lated by generating eight different arrangements of maps/geostatistical functions to be 
evaluated for the ability to distinguish examination affected by AMD from those con-
sidered healthy. The arrangements are: (1) total retina (semivariogram), (2) total retina 
(semimadogram), (3) neurosensorial retina (semivariogram), (4) neurosensorial retina 
(semimadogram), (5) RPEDC (semivariogram), (6) RPEDC (semivariogram), (7) RPEDC 
en face (semivariogram) and (8) RPEDC en face (semimadogram).

For each arrangement, the geostatistical functions provide values that show local spa-
tial dependency of the chosen maps. In Fig. 6, we show the output given by the geosta-
tistical functions for two cases diagnosed with AMD and two control cases. This data is 
then submitted to the SVM classifier permitting the realization of tests and validation.

The validation tests were performed using the k-fold technique with repetitions. For 
training, we divided the data into 5 folds with 100 repetitions, setting a ratio of 80% 
for training and 20% for tests in each interaction. Using a large number of repetitions 
increases the reliability of the results given the fact that it decreases the contribution of 
folds that present overfitting to the overall result. We calculated the mean values, stand-
ard deviations for each test (Table 2).

As can be seen in Table  2, we describe that both the semivariogram and semi-
madogram when calculated on the topographic map of the total retina have low 
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differentiation capacity between the two classes. The average AUROC found for these 
tests are, respectively, 0.576 and 0.756.

When using the topographic map of the neurosensory retina, we obtained better 
results in terms of sensitivity, specificity and AUROC. The best results for this map 
were obtained by the semimadogram function with average sensitivity of 90.0%, spec-
ificity mean of 84.3%, accuracy mean of 88.3%, and AUROC mean of 0.950. The kappa 
index of 0.724 indicates a substantial agreement.

We obtained the best results with topographic maps of the RPEDC, especially 
with semivariogram function. The average accuracy of 95.2% shows that this model 
has an excellent diagnostic differentiation capability for AMD, presenting an average 
AUROC of 0.989.

Fig. 6  Semivariogram and semimadogram response for RPEDC Maps. Rows A and B correspond to exams 
afflicted by AMD, while C and D present control volumes. The first image of each row corresponds to the 
volume’s representation through RPEDC’s topographic map and the last two columns respectively show the 
semivariogram and semimadogram functions in the 45◦ direction
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On the other hand, the semivariogram an semimadogram functions applied on 
RPE’s reconstruction en face, which considered the reflectance of the points in the 
upper border of this layer, did not demonstrate expressive ability to differentiate the 
control tests from examinations affected by AMD (average AUROC of 0.505 and 
0.778, respectively).

For a visual comparison, in Fig.  7 we present the semivariograms and semima-
dograms responses calculated for the topographic maps. These were calculated for 
direction of 45◦ and a volume with AMD and a control one are directly compared.

We further compare the performance of our best method (semivariogram over 
RPEDC) to the classical texture descriptors (Haralick) [32, 33] and with the Local 
Binary Patterns (LBP) [33] to evaluate the performance of our methods in compari-
son to the commonly used descriptors that were previously mentioned (Fig. 8).

Table 2  Results of AMD classification based on geostatistical features

The data in italics represents the best values obtained

Feature Fold Sensitivity (%) Specificity (%) Accuracy (%) AUROC Kappa

TR (SV) Average 76.0 42.3 65.8 0.576 0.180

Std 5.7 10.2 4.7 0.071 0.101

Max acc 84.5 61.1 78.9 0.306 0.439

Max kappa 84.5 61.1 78.9 0.306 0.439

TR (SM) Average 91.9 26.0 71.7 0.756 0.204

Std 5.7 13.9 5.3 0.052 0.123

Max acc 96.7 50.0 86.8 0.846 0.541

Max kappa 91.2 63.2 84.2 0.821 0.564

NSR (SV) average 88.8 65.7 81.9 0.802 0.554

Std 4.1 9.6 3.8 0.060 0.091

Max acc 96.5 80.0 92.2 0.861 0.791

Max kappa 96.5 80.0 92.2 0.861 0.791

NSR (SM) Average 90.0 84.3 88.3 0.950 0.724

Std 4.0 7.0 3.2 0.023 0.076

Max acc 98.2 95.5 97.4 0.993 0.936

Max kappa 98.0 96.3 97.4 0.996 0.943

RPEDC (SV) Average 94.2 97.5 95.2 0.989 0.886

Std 3.1 3.2 2.3 0.010 0.054

Max acc 100.0 100.0 100.0 1.000 1.000

Max kappa 100.0 100.0 100.0 1.000 1.000

RPEDC (SM) Average 90.2 91.6 90.5 0.977 0.780

Std 4.5 7.5 3.5 0.014 0.080

Max acc 100.0 95.7 98.7 0.999 0.969

Max kappa 98.0 100.0 98.7 0.992 0.971

RPEDC en face (SV) Average 100.0 0.0 70.2 0.505 0.000

Std 0.0 0.0 4.7 0.008 0.000

Max acc 100.0 0.0 84.4 0.542 0.000

Max kappa 100.0 0.0 71.4 0.500 0.000

RPEDC en face (SM) Average 90.2 41.5 75.5 0.778 0.347

Std 4.7 10.1 4.3 0.051 0.098

Max acc 95.1 62.5 88.3 0.844 0.619

Max kappa 95.1 62.5 88.3 0.844 0.619
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The results of these experiments (Table 3) show that the commonly used descriptors 
possess lower values in comparison to the semivariogram descriptor. Specifically, the 
LBP and Haralick descriptor methods achieved AUROCs of 0.968 and 0.862 respec-
tively. These values are lower than the best result presented in this work (arrangement 
5: AUROC = 0.989). Table 3 presents the comparison between these results and Fig. 9 
shows a graphical comparison of the different AUROC values.

Fig. 7  Semivariogram and semimadogram functions plots for 45◦ of the retinal layers. The vertical scale is 
different for each layer
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Fig. 8  ROC plots of each generated SVM model. The best obtained value was 0.989

Fig. 9  ROC plot for comparison of semivariogram peformance with another methods. The best obtained 
value was 0.989

Table 3  Comparison with others techniques over same data

Test Sen (%) Spc (%) Acc (%) AUROC Kappa

Classical texture features 88.7 77.4 85.3 0.862 0.651

Local Binary Patterns 93.0 86.1 90.9 0.968 0.784

Semivariogram (this work) 94.2 97.5 95.2 0.989 0.886
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Discussion
Table 2 describes that both the semivariogram and the semimadogram when calculated 
on the topographic map of the total retina have low differentiation capacity for AMD 
detection. This was also demonstrated in [5] by using thickness average maps. Specifi-
cally in our work, this result indicates that there is no significant difference in terms of 
spatial dependence between classes when considering the total retina.

When using the topographic map of the neurosensory retina, the kappa index of 0.724 
indicates a substantial agreement. Notwithstanding, these values are still slightly below 
the results found in the literature. The main difference between the results obtained by 
the maps of the total retina and the neurosensory retina is that the last map is calculated 
from the upper border of the RPE, a layer that is directly deformed from the accumula-
tion of drusen.

The best results (semivariogram on the RPEDC) achieved an AUROC of 0.989, a result 
very close to that achieved by [5]. The value of kappa = 0.886 also indicates that despite 
being validated with an unbalanced sample, the model’s performance possesses a high 
concordance between classes.

On the other hand, the semivariogram applied on the reconstruction en face of the 
RPE, which solely considered the reflectance of points in the upper border of this layer, 
did not demonstrate expressive ability to differentiate the control tests of the exami-
nations affected by AMD. Especially the semivariogram, which resulted in an average 
AUROC of 0.505, which is a result too similar to a random classifier. A slightly better 
AUROC (0.778) was achieved when using the semimadogram for this reconstruction. 
However, a lower kappa value (0.347) indicates that the generated model is biased and 
tends to present a high number of mismatched classifications.

The poorest performance of this last test against the promising results obtained with 
the topographic map of the RPEDC is due to the fact that the AMD does not cause sig-
nificant changes in the reflectance of points on the border of the RPE as with the map of 
thickness. These variations are best observed when evaluating the deformations caused 
in this layer by the appearance of drusen and possibly choroidal neovascularization. In 
future work, we can take into consideration not only the border, but also an axial inte-
gration of the pixels of the RPE and thus identify whether reflectance changes in this 
layer are significant for the detection of AMD.

In Fig. 7 we present a visual comparison between the plotting of semivariogram and 
semimadogram functions relating to various tests performed. Therefrom, we can per-
ceive that the semivariogram function produces very close values for the classes when 
applied on the map of the total retina and reconstruction en face of the RPE. The values, 
in turn, become well differentiated when applied on the topographic map of RPEDC, 
congruent with the best generated model.

Considering the results achieved, we verified that the best model generated for the 
diagnosis of AMD using topographic maps is arrangement 5 (RPEDC/Semivariogram). 
We noticed that the performance of the proposed model is greater than various works 
that are based in reflectance values. A comparison with related works is presented in 
Table 4.

Some works have presented slightly higher accuracy, however they use smaller image 
sets for validation, and other ones have used individualized B-Scans. They do not 
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perform an overall evaluation of the retina, which makes it difficult to compare the work 
directly. It is also important to note that the performance information is not presented in 
some papers.

Among the works that make use of the same SD-OCT volumes base [5, 11] along with 
the tests that were made with the Haralick and LBP techniques, we show through the 
results achieved with the semivariogram over RPEDC’s topographic map that the pro-
posed method is robust for the detection of AMD.

With the direct comparison between AUROC values, we can see that the results are 
really promising. The work of [5] (which presents better AUROC) is based on the mean 
thickness of the retinal layers, which may vary slightly depending on the AMD stage and 
it does not consider the local variation of these values. We believe that our method has 
the advantage of acting on the pattern of the distribution of anatomical changes caused 
by AMD.

Haralick descriptors also do not make use of a spatial distribution parameter in their 
analysis. Lastly, although LBP does consider the data’s spatial localization, it was not able 
to adequately discriminate volumes with compromised retinas, which brings us to con-
sider the use of a some type of pre-processing for this technique.

Also, we intend to investigate this in the future with other databases that are available, 
or with a base generated in conjunction with a local clinic.

We believe that the proposed method’s results, which is based on the local thickness vari-
ation, are promising. Although the AUROC found is slightly smaller than [5], it must be 
emphasized that the used base is small and there also exists the necessity of testing our 
method with bases that present cases of early AMD or that contain smaller differences in 
RPEDC thickness.

Table 4  Comparison of  performance of  the  main methodologies presented in  related 
works

Work Volumes Acc Sen Spc AUROC

Liu et al. [4] 457 89.3% – – 0.975

Serrano et al. [7] 200 – 96.0% 92.0% –

Albarrak et al. [8] 140 91.4% 92.4% 90.5% 0.944

Zhang et al. [10] 140 92.06% 91.82% 92.3% –

Farsiu et al. [5] 384 – – – 0.991

Srinivasan et al. [9] 45 – 100% – –

Venhuizen et al. [11] 384 – – – 0.984

Wang et al. [12] 45 93.3% – – 0.995

Sun et al. [13] 45 100% – – –

678 B-Scans 99.6% – – –

Ravenscroft et al. [15] 75 83.3% – – –

Fang et al. [16] 45 100% 100% 100% 1.00

54 92.2% 96.9% 95.4% –

Karri et al. [17] 45 89.0% – – –

Lee et al. [18] 100,000 B-scans 88.98% 85.41% 93.82% 0.938

Kermany et al. [19] 207,130 B-scans 99% 98% 99.2% 0.999

This work 383 95.2% 94.2% 97.5% 0.989
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Conclusions
In this article, we proposed a methodology for automated diagnostic of AMD in SD-OCT 
images using geoestatistical semivariogram and semimadogram functions as descriptors. 
These descriptors were applied to the topographic map of the total retina as well as sub-
layers (neurosensory and retinal pigment epithelium) of the macular region together with 
the reconstruction en face of the pigment epithelium surface. The data was submitted to a 
Suport Vector Machine classifier after the feature extraction.

We exclusively applied geostatistical texture descriptors for the detection of AMD in 
optical coherence tomography images base. This is done by a texture classification of the 
topographic map of human retina layers and this method can be used as a disease screening 
tool or follow-up in studies of new treatments and prevention methods.

Considering that the main objective of this work was to demonstrate that these descrip-
tors are effective for the diagnosis of AMD, we believe that we have achieved this goal with 
assuredly promising results. The best performed model presented an AUROC of 0.989. 
The validation of this model demonstrates that the proposed methodology can distinguish 
with excellent accuracy AMD from unafflicted eyes. Nevertheless, it is advisable to test 
with a larger database with larger varieties of thickness and even try the method with other 
pathologies that may affect the retina.
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