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Abstract 

Background:  Recently, deep learning technologies have rapidly expanded into medi-
cal image analysis, including both disease detection and classification. As far as we 
know, migraine is a disabling and common neurological disorder, typically character-
ized by unilateral, throbbing and pulsating headaches. Unfortunately, a large number 
of migraineurs do not receive the accurate diagnosis when using traditional diagnostic 
criteria based on the guidelines of the International Headache Society. As such, there 
is substantial interest in developing automated methods to assist in the diagnosis of 
migraine.

Methods:  To the best of our knowledge, no studies have evaluated the potential of 
deep learning technologies in assisting with the classification of migraine patients. 
Here, we used deep learning methods in combination with three functional measures 
(the amplitude of low-frequency fluctuations, regional homogeneity and regional 
functional correlation strength) based on rs-fMRI data to distinguish not only between 
migraineurs and healthy controls, but also between the two subtypes of migraine. We 
employed 21 migraine patients without aura, 15 migraineurs with aura, and 28 healthy 
controls.

Results:  Compared with the traditional support vector machine classifier, which has 
an accuracy of 83.67%, our Inception module-based convolutional neural network 
approach showed a significant improvement in classification output (over 86.18%). 
Our data also indicate that the Inception module-based CNN performs better than the 
AlexNet-based CNN (Inception module-based CNN reached an accuracy of 99.25%). 
Finally, we also found that regional functional correlation strength (RFCS) could be 
regarded as the optimum input out of the three indices (ALFF, ReHo, RFCS).

Conclusions:  Overall, our study shows that combining the three functional meas-
ures of rs-fMRI with deep learning classification is a powerful method to distinguish 
between migraineurs and healthy individuals. Our data also highlight that deep 
learning-based frameworks could be used to develop more complicated models or 
systems to aid in clinical decision making in the future.
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Background
A migraine is a common, chronic, incapacitating neurovascular disorder that is charac-
terized by attacks of severe headaches, autonomic nervous system dysfunction, and in 
some patients, aura-associated neurologic symptoms [1]. A recent survey by the World 
Health Organization highlighted that migraine ranks as the third most prevalent disor-
der, affecting roughly 12% of adults globally. Moreover, people who experience migraines 
may have an increased risk of ischemic stroke, unstable angina, and/or affective disor-
der [2–5]. In migraine without aura (MWoA), previously known as common migraine, 
attacks are usually associated with nausea, vomiting, and/or sensitivity to light, sound, or 
movement. The other major subtype of migraine, which is known as migraine with aura 
(MWA), is accompanied by early symptoms. As the diagnosis of migraines is based on a 
combination of features and it is relatively difficult to exclude possible causes, achieving 
an accurate diagnosis using traditional methods (e.g., symptoms analysis, medical tests) 
is not easy. In fact, according to American Migraine Studies, only 65.2% of migraineurs 
receive the correct diagnosis [6]. Undoubtedly, there has been substantial interest in 
developing automated methods with the potential to assist in the diagnosis of migraines.

In recent years, resting-state functional magnetic resonance imaging (rs-fMRI) has 
attracted considerable attention for studying neural mechanisms. This approach not only 
overcomes the potential limitation associated with task paradigms in fMRI studies, but is 
also a non-invasive imaging technique capable of measuring spontaneous brain activity. 
In this approach low-frequency fluctuations in blood oxygen level-dependent (BOLD) 
signals are used to identify areas of increased or decreased neuronal activity [7–9]. By 
using resting-state fMRI, researchers have demonstrated that migraines are related to 
different indices of functional brain alterations, including amplitude of low-frequency 
fluctuations (ALFF), regional homogeneity (ReHo), and regional functional correlation 
strength (RFCS). For instance, compared with the healthy subjects, migraineurs showed 
significant changes in ALFF within the anterior cingulate cortex and prefrontal cortex, 
Moreover, a correlation analysis demonstrated that in migraineurs, ReHo values changes 
in the prefrontal cortex [10], and orbitofrontal cortex [11]. Despite these results dem-
onstrating that migraines might contribute to functional brain alterations due to the 
repetitive occurrence of pain-related processes, very few studies have considered the 
possibility of using these functional features to improve the classification and diagnosis 
of migraines.

Deep learning is a relatively new technique in the field of computational medical imag-
ing [12, 13]. This technique automatically creates multilevel models with hierarchical 
representations of the input data and permits powerful automatic feature extraction. 
Deep learning models are being used more frequently to improve diagnostic abilities 
and to discover the diverse patterns in patients’ data that are characteristic of a disease 
[14, 15]. Convolutional neural networks (CNNs) is a deep learning model that has been 
applied successfully in the diagnosis of diseases based on MRI. For instance, Li et al. [16] 
constructed a CNN with two convolutional layers and one fully connected layer to iden-
tify the Alzheimer’s disease (AD). They obtained a final recognition rate of up to 92.87% 
when comparing AD and healthy controls (HC). Similarly, Sarraf et al. [17] were able to 
make early diagnosis of Alzheimer’s disease based on GoogleNet [18], a successful net-
work that is broadly used for object recognition and classification. This network based 
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on a modern design module called “Inception”, and this module was come up with to 
enhance the performance of classifier, which resulted in a higher accurate, reaching to 
98.74% between AD and HC [19]. These deep learning-based frameworks have impli-
cations for numerous applications in classifying brain disorders in clinical trials and 
large-scale research studies. In light of these previous findings, it is evident that the clas-
sification accuracy for a specific disease can be further improved by choosing the proper 
deep learning model.

Here, we used two deep learning-based classifiers to distinguish between healthy 
brains, brains affected by MWA and brains affected by MWoA. The first model we used 
was the CNN network based on AlexNet [21], and the second model was the CNN 
with Google’s Inception module. As a lot of information can be lost when decomposing 
4D rs-fMRI data into 2D data, many fMRI studies use feature mapping instead of raw 
data as the original input [17, 20]. Thus, after preprocessing, we extracted three indi-
ces—ALFF, ReHo and RFCS—as inputs to improve the classification results for migraine 
patients. We compare the classification results obtained using a 3-way classifier (MWA 
vs. MWoA vs. HC) and two binary classifiers (migraines vs. HC, and MWA vs. MWoA). 
To the best of our knowledge, this is one of the first studies to examine the performance 
of different deep learning-based frameworks and to apply them specifically for migraine 
discrimination. Taken together, our results could help improve diagnostic accuracy for 
patients suffering from migraines.

Methods
Subjects

Our study population included 21 migraine patients without aura, 15 migraineurs with 
aura, and 28 healthy controls. The age and gender differences between the three groups 
were tested using the t-test and no significant difference was observed (p > 0.05). In addi-
tion, the diagnosis of migraineurs was made by neurologic practitioners according to the 
criteria from the Second Edition of the International Classification of Headache Disor-
ders (ICHD-II) [22]. All subjects were right-handed, aged between 18 and 50 years, and 
underwent brain scans at the Huaxi MR Research Center of the West China Hospital. 
The patients were attack-free for at least 72  h prior to the brain scan, and 48  h after 
the scan. Patients with chronic migraine, other chronic or current pain disorders, a his-
tory of mental disease, or other neurological disorders were excluded from this study. 
The study was approved by the Medical Ethics Committee of the West China Hospital, 
Sichuan University, and written informed consent was obtained from each participant. 
Table 1 lists the demographic and clinical data of the 64 subjects.

Data preprocessing

All data were acquired using a 3.0 Tesla MRI system (Trio Tim, Siemens, Erlan-
gen, Germany). Subjects were instructed simply to rest with their eyes closed, not 
to think of anything, and not to fall asleep. Imaging data were collected transversely 
by using an echo-planar imaging (EPI) sequence with the following settings: rep-
etition time/echo time (TR/TE) = 1900/2.26  ms, flip angle = 9°, slice thickness/
gap = 1/0  mm, field of view (FOV) = 256 × 256  mm2, matrix = 256 × 256, and voxel 
size = 1 × 1×1  mm3. The rs-fMRI data were also collected using an echo planar 
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imaging (EPI) sequence but with the following settings: TR/TE = 2000/30  ms, flip 
angle = 90°, slice thickness/gap = 5/0  mm, FOV = 240 × 240  mm2, matrix = 64 × 64, 
and voxel size = 3.75 × 3.75 × 5  mm3. Resting-state functional images were analyzed 
with the Statistical Parametric Mapping software (SPM8, http://www.fil.ion.ucl.ac.uk/
spm) and the Data Processing Assistant for Resting-State fMRI (DPARSF, http://rfmri​
.org/DPARS​F) toolbox. The first 10 EPI volumes of each functional data were dis-
carded due to instability of the initial MRI signal and adaptation of the participants 
to the situation. The remaining volumes first underwent slices-timing correction, and 
were then realigned to the first volume to correct for susceptibility-by-movement 
interaction. None of the subjects’ heads in this study had a movement in any direction 
that exceeded a 2-mm displacement or a 2° of rotation. Then, the resulting images 
were spatially normalized into a standard stereotaxic space at 3-mm isotropic voxels 
using the Montreal Neurological Institute (MNI) template. Next, band-pass-filtering 
(0.01–0.08 Hz) was performed on the time series of each voxel to reduce the effect of 
low-frequency drifts and high-frequency physiological noise [23]. Finally, the ALFF, 
ReHo and RFCS were calculated as described below.

Feature mapping

ALFF is an effective indicator of regional intrinsic or spontaneous neuronal activity in 
the brain [24]. The time series for each voxel was first transformed to the frequency 
domain using a Fast Fourier Transform, and the power spectrum was obtained. The 
square root of the power spectrum was computed, and subsequently averaged across 
a predefined frequency interval. When calculating ALFF, the normalized and resliced 
images were smoothed using a 4-mm FWHM Gaussian kernel. In our study, the ALFF 
within the 0.01–0.08 Hz frequency band was calculated for each voxel using the Rest-
ing-State fMRI Data Analysis Toolkit (REST, http://rest.restf​mri.net). To reduce the 
global effects of variability across participants, the ALFF of each voxel for a certain 
subject was divided by the global mean ALFF value. ReHo was used to measure the 
similarity between the time series of a given voxel and that of its nearest neighbor. 
It is calculated using Kendall’s coefficient of concordance, which produces reliable 
results in rs-fMRI data analysis. In our study, we used cubic cluster of 27 voxels for 
each normalized and resliced image and assigned the ReHo value of every cubic clus-
ter to the central voxel. A larger ReHo value for a given voxel indicates a higher local 

Table 1  Demographic and clinical characteristics of the 64 participants

SD standard deviation, HAMD Hamilton Depression Scale, HAMA Hamilton Anxiety Scale

Variables 
(mean ± SD)

MWoA MWA HC p-value

MWoA vs. HC MWA vs. HC MWoA vs. MWA

Sex (male/female) 7/14 4/11 13/15 0.366 0.216 0.679

Age (years) 29.67 ± 6.45 32.2 ± 7.68 31.57 ± 6.72 0.323 0.782 0.291

Education (years) 16.90 ± 4.40 15.07 ± 1.98 16.36 ± 2.87 0.601 0.129 0.141

24-HAMD 5.95 ± 6.76 8.73 ± 5.13 3.57 ± 2.41 0.012 0.002 0.190

14-HAMA 4.28 ± 5.53 7.47 ± 6.13 2.07 ± 2.38 0.031 0.005 0.113

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://rfmri.org/DPARSF
http://rfmri.org/DPARSF
http://rest.restfmri.net
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synchronization of rs-fMRI signals among neighboring voxels. As for ALFF, the ReHo 
of each voxel was also divided by the global mean ReHo value for each subject. All 
these procedures were performed using REST software.

By measuring functional connectivity (FC) of the distinct brain regions, rs-fMRI can 
be used to evaluate the brain function. To reduce the effect of the region of interest 
(ROI) selection strategy on the FC results, we employed the RFCS method, which meas-
ures the extent of the average correlation of a given brain region with all other regions 
[25]. To compute resting-state FC, we repressed the spurious effects of nuisance covari-
ates [26]. We parcellated the rs-fMRI into 116 ROIs according to the Automated Ana-
tomical Labeling (AAL) template, and thereby obtained 116 FC results for each subject. 
The RFCS values were then calculated using a previously described method [27]. The 
RFCS was defined as:

where, Rj is the result of the FC in a certain region of the AAL, Si represents the average 
activation level, and the N is the number of regions.

For each subject, we therefore obtained three functional maps: ALFF, ReHo and RFCS. 
To some extents, three features respectively reflect the degree of activity, the degree 
of synchronization and the degree of global synchronization of spontaneous neuronal 
activity.

Convolutional neural network

We used a deep CNN that was based on AlexNet and limited by the amount of data: 
three convolutional layers, two pooling layers and two fully connected layers (Fig.  1). 
With respect to the input layer, the post-feature mapping fMRI images were used as 
input data, with the convolutional layer playing the most important role in the CNN 
architectures as it is the core building block of such networks. The parameters of the 
convolutional layer consist of a set of learnable filters, where very filter is spatially small 
but extends through the full depth of the input volume. In our study, the filters had a size 
of 3 × 3 and computed the output of the neurons that were connected to local regions 
in the input. Thus, each output is computed as a dot product between its weight and 
the region that it is connected to the input volume. The pooling layer performs a down-
sampling operation along the spatial dimensions, and to reduce hyper parameters and 
control overfitting, we exploited the max pooling layer in our framework. The normali-
zation layer also plays an important role in CNN architecture. Here we used the rectified 
linear units (ReLu) layer, which applies an element-wise activation function, such as max 
(0, x) thresholding at zero. This layer does not change the size of the image volume [28, 
29]. Next, the fully connected (FC) layer, as the name implies, each neuron in this layer 
is connected to all the numbers in the previous volume [16], and computes the class 
scores, resulting in the volume of the number of classes. The main goal when using a 
dropout layer is to avoid overfitting [30], especially in cases of limited training data. The 
dropout layer randomly drops neurons with some probability, p, which in our study, is 
equal to 0.5. In addition, we also exploited Adam [31] as an optimizer, which is a simple 
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and computationally efficient algorithm for gradient-based optimization of stochastic 
objective functions.

Inception module

GoogleNet, which was developed by Szegedy et al. [18], is a successful network broadly 
used for object recognition and classification. The architecture of GoogleNet consists of 
a deep network based on a modern design module called Inception (Fig. 2). This module 

Fig. 1  AlexNet-based CNN for fMRI data
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allows for a significant increase in the number of units at each layer without increasing 
computational complexity until later stages. This is achieved through a global dimen-
sionally reduction prior to costly convolutions with larger patch sizes.

In our second frames, we use this module to improve the performance of the classi-
fier. Before development of the Inception module, the fundamental approaches used to 
improve accuracy of CNN architecture were to increase the size of the layers and make 
the network deeper. However, this straightforward solution causes two major issues. 
First, a large number of hyper parameters require more training data and can result in 
overfitting, especially in the case of limited training data. Second, uniform increases in 
network size dramatically increase interactions with computational resources, thereby 
affecting both the timing performance and cost of providing infrastructure. In consid-
eration of our datasets, our frame as shown in Fig. 3 (Additional file 1: TableS1).

Training

The preprocessed rs-fMRI time series data were first loaded into memory using the neu-
roimaging package Nibabel (http://nipy.org/nibab​el/) and were then decomposed into 
2D (x, y) matrices along z and time (t) axes. Next, the 2D matrices were converted to 
lossless PNG format using the Python and OpenCV (opencv.org). To improve the per-
formance of the classifier, we removed some slices of each time course because they 
included no functional information. During the training process, about 80% of the sub-
jects from the three groups (51 individuals in total) were assigned to the training dataset, 
and the remaining 20% were used for testing purposes. This ensures the relative inde-
pendence between the training set and the testing set. In the data conversion process, 
a total of 5760 images were produced, including 1890 for MWoA, 1350 for MWA and 
2520 for normal control PNG samples. These training and testing images were randomly 
shuffled and resized to 63 × 63 pixels. For these images, we have exploited data augmen-
tation, such as cropping, rotating, and flipping input images [32], to avoid overfitting. 
Then they were converted to h5py-formatted data through Tensorflow, which is a Deep 

Fig. 2  Inception module in our architecture

http://nipy.org/nibabel/
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learning platform (http://www.tenso​rflow​.org) used for this classification experiment. 
In our study, we divided the data into three groups, migraine vs. HC, HC vs. MWoA 
vs. MWA, and MWA vs. MWOA, and used them as three different inputs. Then, we 
adopted two different deep learning frameworks and compared the identification results 
obtained between the two. The general flow of the classification process is depicted in 
Fig. 4.

The weights of hidden layers are randomly initialized, and for the output layer, we 
choose the SoftMax function as the classifier. The numbers of the units in the output 
layer represent the conditional probabilities that the input belongs to each of the classes. 
In the training phase, the learning rate drops every 10 epochs; we started with 0.01 and 
divided it by 10 every 10 epochs. We used the cross-entropy as our cost function, J (w, b), 
as it is commonly used for classification tasks [29]. This function is:

where, N is the number of MRI images, j is the sum over the number of classes, hw,b 
is the function computed by the network, and x, y are the input and label of image, 
respectively.

(2)−
1

N

N
∑
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Fig. 3  CNN with the Inception module for fMRI data

http://www.tensorflow.org
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Results
Here, we made classifications based on different feature types and used test examples 
(unseen examples) to evaluate the performance of the models. For robustness and repro-
ducibility purposes, we repeated cross-validation of the deep neural networks four times 
(fourfold cross validation) [33]. The final accuracy of each CNN was subsequently com-
puted by averaging the accuracies across the four runs (Tables 2, 3).

The best performer out of three different features was the RFCS, and the highest iden-
tification rate achieved was 99.25% when using the Inception module-based CNN to dis-
tinguish between the HC and migraine groups. According to the experimental data, the 
recognition rate of the AlexNet-based CNN was lower than that of the Inception module-
based CNN, especially in terms of the ALFF feature. As expected, the Inception module-
based CNN improved the classification performance in most cases. It was relatively hard 
for either framework to distinguish between the MWoA and MWA groups, with the 
AlexNet-based CNN showing an identification rate of just 86.43%. In addition, compared 
with other features, the RFCS feature mapping improved the classification accuracy of both 
of the deep learning-based models, with a noticeable difference between the two.

Fig. 4  Schematic illustration of the classification. ALFF, ReHo, RFCS are used to map resting-state brain 
function, respectively. Two CNN networks are designed to classify a variety of groups

Table 2  The accuracy of testing dataset in CNN based on AlexNet is demonstrated

Feature Data group Accuracy

ALFF HC vs. migraine 89.56% ± 0.24%

HC vs. MWoA vs. MWA 87.31% ± 0.26%

MWoA vs. MWA 86.43% ± 0.54%

ReHo HC vs. migraine 93.42% ± 0.13%

HC vs. MWoA vs. MWA 92.66% ± 0.21%

MWoA vs. MWA 87.39% ± 0.27%

RFCS HC vs. migraine 98.63% ± 0.28%

HC vs. MWoA vs. MWA 98.78% ± 0.36%

MWoA vs. MWA 96.87% ± 0.43%
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ROC curve

The area under the receiver operating characteristic (ROC) curve is the most popular met-
ric to measure the performance of a classifier [34]. It is a plot of the true positive rate against 
the false positive rate. Here, we calculated the true positive, true negative, false positive, and 
false negative rates from 0 to 1 based on the prediction results. Next, for each classifier, the 
sensitivity, specificity and accuracy were calculated as follows:

where, in the case of the HC vs. migraine group, TP denotes the number of patients cor-
rectly classified, FN denotes the number of controls correctly predicted, and FP denotes 
the number of controls classified as patients. To evaluate the performance of the two 
classifiers, we plotted the ROC (Fig. 5) and calculated the area under curve (AUC), for 
which a greater AUC represents a more accurate test (better classification). For com-
parison purposes, we focused on the RFCS feature and the HC vs. migraine group. We 
found an AUC of 0.99 for the Inception-based CNN, a value that indicates an excellent 
discrimination power.

Discussion
Here, we examined the ability of deep learning-based frameworks to discriminate 
between MWoA, MWA, and HC using features extracted from rs-fMRI data. Our 
results indicate that with each of these features—ALFF, ReHo and RFCS—it is possi-
ble to achieve relatively high accuracies when classifying the three groups of datasets. 
Noteworthy, in both CNN models, highest accuracies were achieved when using the 
RFCS feature. Upon comparing the results obtained using the two different CNNS, 
we found that the Inception module-based CNN shows a better performance than the 

(3)Sensitivity = True Positive Rate (TPR) =
TP

P
=

TP

TP + FN

(4)Specificity = True Negative Rate (TNR) =
TN

N
=

TN

FP + TN

(5)Accuracy =
TP + TN

TP + FN + FP + TN

Table 3  The accuracy of  testing dataset in  CNN with  Inception module is  demonstrated 
below

Feature Data group Accuracy

ALFF HC vs. migraine 92.38% ± 0.14%

HC vs. MWoA vs. MWA 92.31% ± 0.15%

MWoA vs. MWA 89.77% ± 0.39%

ReHo HC vs. migraine 95.07% ± 0.19%

HC vs. MWoA vs. MWA 94.81% ± 0.35%

MWoA vs. MWA 93.44% ± 0.20%

RFCS HC vs. migraine 99.25% ± 0.36%

HC vs. MWoA vs. MWA 98.69% ± 0.29%

MWoA vs. MWA 96.13% ± 0.22%
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AlexNet-based CNN. Compared with the support vector machine classifier that we pre-
viously analyzed (a final classification accuracy of 83.67%) [20], our approach provides 
preliminary support for deep learning methods combined with the fMRI features as a 
method for improving the discriminative power for migraine. In fact, we obtained an 
accuracy as high as 99.25% when using the RFCS feature in deep learning-based frame-
works. Resting-state functional connectivity has been defined as the identification of 
correlation patterns between fluctuations measured in different brain areas [35]. The 
RFCS measures the average correlation of a given brain region with all other regions. 
Our results suggest that RFCS holds the potential to increase the translation of fMRI 
data into clinical diagnosis.

Many studies have reported the existence of strong functional connections in the rest-
ing state [36]. These resting-state networks consist of anatomically separated, but func-
tionally linked brain regions that show a high level of ongoing functional connectivity 
during rest. For example, abnormal functional connectivity has been reported in the 
prefrontal and temporal regions [11] and in the amygdala and visceroceptive cortex [10] 
of migraine sufferers (as compared to healthy control individuals). These regions may 
thereby contribute more in the classification. When measuring the functional connectiv-
ity among regions, global alterations emerge that may carry important information for 
enhancing accuracy rates. This could explain the higher levels of accuracy that we found 
in the present study. In addition, we found that considering ReHo and ALFF also led to 
good performance levels. Thus, we conclude that the deep learning-based frameworks 
can help identify migraine patients when using these fMRI features. We also noticed that 
classification accuracies were lower when comparing MWoA with MWA, especially in 
the ALFF group. Perhaps all subjects in the MWoA vs. MWA group experienced head-
ache symptoms and as such, had more similar imaging markers as compared with the 
HC group.

For all features tested, the Inception module-based CNN resulted in a higher level of 
accuracy than the AlexNet-based CNN. A considerable amount of research has demon-
strated the feasibility and effectiveness of the Inception module by stacking the convolu-
tion layers and pooling layers of different scales, which allows for training a high-quality 
network on training sets of relatively modest sizes. Szegedy et al. [18] exploited Incep-
tion models, reaching a multi-crop evaluation top-5 error of 3.5% (a 25% reduction with 

Fig. 5  ROC curves show the tradeoff between sensitivity (y-axis) and specificity (x-axis) for the a 
AlexNet-based CNN and b Inception module-based CNN
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respect to the best published value). In our models, the Inception module uses paral-
lel 1 × 1, 3 × 3, and 5 × 5 convolutions along with a max-pooling layer in parallel. These 
characteristics enable our models to capture a variety of features in the parallel and have 
a filter concatenation layer. This type of structure helps to automatically choose the 
appropriate kernel size in convolutional layers, as well as to concatenate the outputs of 
all these parallel layers. This in turn contributes to the combination of different sized 
features and it is helpful in the classification of migraine. Our approach provides initial 
evidence for a rapid and accessible method that has the potential to aid in making clini-
cal decisions.

Besides identifying migraine and HC, our method was also able to distinguish between 
MWoA and MWA data. These two subtypes of migraine likely reflect differences in 
pathogenesis, and thus, the ability to identify different subtypes of migraine presents an 
advantage for clinical diagnoses and treatment. Using fMRI, Datta et al. [37] compared 
the responsiveness of MWA, MWoA and HC to visual stimuli and found that only the 
occipital and lateral geniculate cortex of MWA patients exhibited high reactivity. This 
high reactivity in the visual cortex is believed to be directly related to the aura. As the 
subtypes of migraine differ in their symptoms, choosing the most appropriate treat-
ments for each subtype is a major challenge. Our research makes it possible to identify 
subtypes of migraine headache based on differences in precipitating factors, an achieve-
ment that will prove useful in clinical diagnosis.

Several limitations of this study should be noted. First, we only included 5760 images 
in the deep learning-based frameworks, the dataset was indeed small. To avoid overfit-
ting, the frameworks we exploited were relatively shallow. In neuroimaging studies using 
data from migraine patients, it is difficult to obtain a large number of samples. However, 
the recent trend in the research community toward a greater level of sharing of neuro-
imaging data should increase the availability of training sets for future studies. The use of 
larger datasets would be useful to determine whether or not our approach can be applied 
on a larger scope and be used to make generalizations. Second, although we tried to 
extract the features, ALFF, ReHo and RFCS features to improve the performance of the 
classifier, there is no combination of models that relate to specific brain regions. This in 
fact, should be the aim of further research. Moreover, there is still no definite conclusion 
as to whether using the original rs-fMRI or the image after feature mapping in the deep 
learning framework generates better results. Nonetheless, our group has achieved good 
performances in the discrimination of post-traumatic stress disorder (PTSD) using these 
three indices [38]. Third, for this method to be applied in clinical practice, it is important 
to enhance transparency (due to the “black box” models) and generate a higher level of 
trust. Based on our results of these deep learning-based frameworks, our future goal is 
to visualize the brain regions that are most affected by migraines. Altogether, this infor-
mation will ultimately help strengthen our understanding of the pathogenesis of this 
disorder.
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Conclusion
Compared with traditional support vector machine, we were able to improve classifi-
cation performance using CNN. Moreover, RFCS, ReHo and ALFF, these three func-
tional indices we employed, can be used to represent different degrees of classification 
features. RFCS, which reflects the global alterations for one subject, carries important 
information for enhancing accuracy rates and obtaining the optimum classification 
results. Furthermore, using these three functional measures of rs-fMRI combined with 
deep learning frameworks is a powerful method that can potentially improve the clinical 
diagnosis of migraine and other brain disorders.

Additional file

Additional file 1: Table S1. The architecture of convolutional embedding function.
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