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Abstract 

Background:  Intravascular ultrasound (IVUS) is a commonly used diagnostic imag-
ing method for coronary artery disease. Virtual histology (VH) characterizes the plaque 
components into fibrous tissue (FT), fibro-fatty tissue (FFT), necrotic core (NC), or 
dense calcium (DC). However, VH can obtain only a single-frame image in one car-
diac cycle, and specific software is needed to obtain the radio frequency data. This 
study proposed a novel intensity-based multi-level classification model for plaque 
characterization.

Methods:  The plaque-containing regions between the intima and the media-adven-
titia were segmented manually for all IVUS frames. A total of 54 features including first 
order statistics, grey level co-occurrence matrix, Law’s energy measures, extended grey 
level run length matrix, intensity, and local binary pattern were estimated from the 
plaque-containing regions. After feature extraction, optimal features were selected 
using principle component analysis (PCA), and these were utilized as the input for the 
classification models. Plaque components were classified into FT, FFT, NC, or DC using 
an intensity-based multi-level classification model consisting of three different nets. 
Net 1 differentiated low-intensity components into FT/FFT and NC/DC groups. Then, 
net 2 subsequently divided FT/FFT into FT or FFT, whereas the remainder and high-
intensity components were classified into NC or DC via net 3. To improve classification 
accuracy, each net utilized three different input features obtained by PCA. Classification 
performance was evaluated in terms of sensitivity, specificity, accuracy, and receiver 
operating characteristic curve.

Results:  Quantitative results indicated that the proposed method showed signifi-
cantly high classification accuracy for all tissue types. The classifiers had classification 
accuracies of 85.1%, 71.9%, and 77.2%, respectively, and the areas under the curve were 
0.845, 0.704, and 0.783. In particular, the proposed method achieved relatively high 
sensitivity (82.0%) and specificity (87.1%) for differentiating between the FT/FFT and 
NC/DC groups.
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Conclusions:  These results confirmed the clinical applicability of the proposed 
approach for IVUS-based tissue characterization.

Background
Intravascular ultrasound (IVUS) is a commonly used diagnostic imaging method for cor-
onary artery disease. It takes cross sectional images of the arteries in real time by using 
catheter with a ultrasound probe and provides diverse information that includes lumen 
size, plaque rupture, and plaque components. This information is clinically important to 
determine how to treat a lesion before angioplasty, because different treatment should 
be apply to each patient according to form of lesion. It also can be used to observe the 
prognosis after treatment. Additionally, it is useful for early diagnosis of a vulnerable 
plaque that may cause a stroke or heart attack.

In general, the components of a coronary plaque are manually analysed using visual 
interpretation method based on grey scale IUVS images. However, each component of 
plaque shows complicated pattern, which, if not properly recognized, may lead to misdi-
agnosis of coronary artery disease [1]. Also, diagnostic accuracy mainly depends on the 
experience of the individual reviewing the images. Therefore, many studies have been 
automatically classify the plaque components to improve diagnostic results. Among the 
various methods, virtual histogram (VH), which uses radio frequency (RF) signal data, is 
regarded as the gold standard in diagnosing coronary artery disease.

VH characterizes the plaque components into fibrous tissue (FT), fibro-fatty tissue 
(FFT), necrotic core (NC), or dense calcium (DC) based on a combination of infor-
mation that includes envelope amplitude and underlying frequency content of the RF 
signal [2]. This information is provided as a colour map, and it can be applied to the 
diagnosis of various coronary artery diseases that involve a thin-cap fibroatheroma. VH 
showed high clinical effectiveness for the classification of plaque components, and it 
has been verified in many previous studies [3, 4]. However, VH showed two main limi-
tations. First, VH can acquire only a single-frame image in one cardiac cycle, because 
it uses electrocardiogram-gated acquisition [5]. This limits the number of images that 
can be taken as well as the longitudinal resolution. Also, specific software is needed to 
obtain the RF signal data [1]. Therefore, it is difficult to apply the VH into the existing 
equipment.

This study proposed a novel intensity-based multi-level classification model to classify 
the components of coronary plaque. The proposed method extracts six texture feature 
sets from the plaque region of an IVUS image. These features were optimized using prin-
ciple component analysis (PCA). Then, the proposed classification model characterizes 
plaque components into FT, FFT, NC, or DC.

Main contribution of this study is to improve the classification ability of plaque com-
ponents in IVUS image by using the new concept of a model, intensity-based multi-level 
classifier. In addition, extensive features were analysed and optimal feature set was selected 
among these features. Proposed approach achieved significant classification results to dif-
ferentiate plaque components. The rest of this paper is laid out as follows. “Methods” sec-
tion describes the methods, which consist of image acquisition, feature extraction, feature 
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selection, classification, and performance evaluation. Then, “Results” section conveys the 
experimental results of the proposed method, and “Discussion” section provides the discus-
sion. Finally, “Conclusions” section presents the conclusion of this study.

Methods
Image acquisition

This study acquired sequential IVUS images from 11 coronary artery disease patients. It 
was performed with a 20 MHz 2.9 F phased-array transducer catheter (Eagle Eye, Volcano 
Corp., Rancho Cordova, California), and grey scale IVUS wasacquired at a constant speed 
of 0.5 mm/s using a pullback device. The IVUS images consist of 252 frames of 400 × 400 
images. The regions of plaque between the intima and media-adventitia were manually seg-
mented by an expert to obtain information regarding the plaque. Segmented images include 
1,230,159 pixels that consist of FT, FFT, NC, and DC tissue. This study was approved by 
Institutional Review Board of Ulsan University Hospital. Written informed consent was 
obtained from all patients.

Feature extraction

Feature extraction is the important process of analysing the texture data in images and 
obtaining meaningful information for the diagnosis of diseases. To obtain sufficient infor-
mation of pixel, each feature was extracted from a 5 × 5 window region. However, a 3 × 3 
window was used to establish a local binary pattern (LBP) in order to analyse the feature 
information based on neighbour pixels adjacent to the central pixel. Table  1 shows first 
order statistics (FOS), grey level co-occurrence matrix (GLCM), Law’s energy measures 
(LEM), extended grey level run length matrix (GLRLM), intensity, and LBP features that 
were extracted from each mask region.

First order statistics

FOS [6] analyzes an original image based on the gray-scale value of each pixel. Unlike sec-
ond order statistics, it extracts features without considering the relationship between pixels. 
This study extracted 5 features, mean, variance, standard deviation, kurtosis, and skewness, 
from 5 × 5 window region. Each feature was calculated using Eqs. (1–5).
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where G(i, j) is the grey scale value of each pixel in the IVUS image. I and J are the 
dimensions of the matrix.

Grey level co‑occurrence matrix

Haralick [7] suggested the GLCM, which extracts features based on information on the 
spatial relationship between pixels. GLCM generates a co-occurrence matrix P(i, j|d, θ) 
from the original image by calculating the frequency of a pair of pixels with distance d 
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Table 1  Total feature set obtained in the process of feature extraction

Feature set Feature Feature set Feature

FOS Mean
Variance
Standard deviation
Kurtosis
Skewness

LEM MSS S5S5
MSS R5S5/S5R5
MSS R5R5
MAS E5L5/L5E5
MAS S5L5/L5S5
MAS R5L5/L5R5
MAS E5E5
MAS S5E5/E5S5
MAS R5E5/E5R5
MAS S5S5
MAS R5S5/S5R5
MAS R5R5

GLCM Autocorrelation
Contrast
Cluster prominence
Cluster shade
Dissimilarity
Energy
Entropy
Homogeneity
Maximum probability
Variance
Sum average
Sum variance
Sum entropy
Difference variance
Difference entropy
Information measure of correla-

tion
Normalized inverse difference 

moment

Intensity Intensity

GLRLM Short run emphasis
Long run emphasis
Grey level nonuni-

formity
Run length nonuni-

formity
Run percentage
Low grey level run 

emphasis
High grey level run 

emphasis
Short run low 

grey level run 
emphasis

Short run high 
grey level run 
emphasis

Long run low 
grey level run 
emphasis

Long run high 
grey level run 
emphasis

LEM MSS E5L5/L5E5
MSS S5L5/L5S5
MSS R5L5/L5R5
MSS E5E5
MSS S5E5/E5S5
MSS R5E5/E5R5

LBP Basic LBP
Uniform LBP
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and angle θ [8]. In this procedure, i and j represent the gray-scale values of two pixels. 
In this study, distance 1 was adapted to minimize computational time. The angle was set 
as 135°. By this procedure, 17 features were extracted from each window, as shown in 
Table 1.

Law’s energy measures

LEM [9, 10] extracts texture information from the original image based on the texture 
energy transform. To analyze the image, LEM uses the five Laws’ vectors, which are 
L5, E5, S5, R5, and W5. These vectors represents the level, edge, spot, ripple, and wave, 
respectively.

The Laws’ vectors are multiplied with one another, and 5 × 5 image masks are thusly 
generated. In this procedure, the mean values of image masks were used for the trans-
pose matrixes, such as E5L5 and L5E5. Image masks were convoluted with the window 
of the IVUS image, and then nine texture images were acquired as defined in Eq. (6).

Finally, the mean value of the square sum (MSS) and the mean value of the absolute 
sum (MAS) were calculated from texture images using Eqs. (7) and (8).

where G(x, y) is the grey scale value of each pixel in the IVUS image. In this study, 18 
LEM features were extracted from each window of the IVUS image.

Intensity

Intensity is a simple texture feature that signifies the grey scale value of a pixel. Each 
plaque component commonly shows a different intensity distribution (Fig. 1). NC and 
DC are associated with higher intensity than are FT and FFT. In particular, DC involves 
the highest intensity components, because it is echogenic on ultrasound. In this study, 
intensity was extracted for each plaque component in order to improve classification 
accuracy.

Extended grey level run length matrix

GLRLM [11–15] extracts higher order statistical texture information. It reconstitutes 
the original image into a two-dimensional matrix based on the grey scale values of the 
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pixels. Run length matrix P(i, j|θ) was calculated by counting the repeated number of 
grey scale value i with run length j in condition of angle θ. In many previous studies, 
five conventional GLRM features, short run emphasis, long run emphasis, grey level 
non-uniformity, run length non-uniformity, and run percentage, were generally used for 
analysis of plaque components. However, previous experimental results were not sat-
isfactory, because they only considered the length of runs when analysing the texture 
information of IVUS images [1]. Therefore, in this study, the extended GLRLM features 
that include six additional features compared with conventional GLRLM were extracted 
to obtain diverse texture information from IVUS images (Table 1).

Local binary pattern

LBP [1, 12] analyses the binary pattern based on local structural information of the orig-
inal image and detects uniform texture features. To accomplish this, LBP appoints the 
circular symmetric neighbourhood pixels that are at distance of radius R from the cen-
tral pixel. Then, a binary digit value is obtained by subtracting the central pixel from 
each neighbour pixel as shown in Eq. (9). This value was passed to Eq. (10), and the basic 
LBP was calculated.

(9)s(x) =
{

1, if x ≥ 0

0, if x < 0

Fig. 1  Histogram for the components of plaque (a fibrous tissue, b fibro-fatty tissue, c necrotic core, and d 
dense calcium)
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where Gn and Gc represent the grey scale values of the neighbour and central pixel, 
respectively. N is the number of neighbour pixels and s(x) is the thresholding function.

The rotation invariant uniform LBP (LBPriu2) that was defined by Ojala [13] was also 
calculated based on Eq.  (11) [14]. The function U counted the number of transitions 
between 0 and 1 in the binary digit, as shown in Eq. (12).

In our study, two LBP features were extracted form a 3 × 3 window of an IVUS image 
through the process discussed above.

Feature selection

Feature selection is the process that chooses the optimal feature set to improve the clas-
sification accuracy for the lesion. If the whole of features that is acquired in the pro-
cess of feature extraction is used as input for the classification, computational time will 
be unnecessarily long. Furthermore, a large amount of the data may occur the curse of 
dimensionality that decreases the classification accuracy. Therefore, this study applied 
PCA to select optimal features.

PCA [15–17] decreases the dimensionality of the feature space and optimizes the 
feature set. For this purpose, PCA was used to identify the direction vector that has 
the greatest variance from the feature data. Then, the principle component (PC) was 
acquired by projecting the original data along the direction vector. PC has reduced 
feature value dimensionality compared to the original data, because overlapping data 
was removed. Through the above process, PCA reduced the mean square error vari-
ance and provided better information on each plaque component. In this study, the 
optimal feature set was selected from the original feature set by using PCA for tissue 
characterization.

Classification

In the process of the classification, data is assigned to a pre-defined class based on the 
knowledge obtained during training [18]. The proposed method classified plaque com-
ponents into FT, FFT, NC, or DC through the below four steps (Fig. 2).

First, the plaque components were divided into two groups based on intensity. Each 
plaque component shows a different intensity distribution as shown in Fig. 1. NC and 
DC shows higher intensity compared with FT and FFT. A key point of the proposed 
method is that the plaque components with higher intensity values than FT are involved 
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in NC or DC. Therefore, the maximum value of FT was appointed as a threshold, and 
the plaque components were divided into low- or high-intensity components based on 
this threshold. High-intensity components consist of NC and DC, and the remainder 
consist of components with lower intensity value than the designated threshold. Next, 
low-intensity components were divided into the FT/FFT or NC/DC groups using net 1. 
Then, the net 2 classified the FT/FFT group into FT or FFT. Finally, the remaining and 
high-intensity components were differentiated into NC or DC via net 3. Each net was 
trained based on the feature set that was selected by PCA. A random forest operated 
by the construction of multiple decision trees was used as a classifier. To prevent over-
fitting of the classifier and decrease computational time, depth and the number of trees 
were set at 10 and 100, respectively.

Performance evaluation

To evaluate the performance of the proposed method, sensitivity, specificity, accuracy, 
and receiver operating characteristic (ROC) curve were applied. Sensitivity, specific-
ity, and accuracy assess the ability of a classification model based on the error rate that 
includes true positive (TP), true negative (TN), false positive (FP), and false negative 
(FN). Each evaluation index was calculated using Eqs. (13) to (15).

(13)Sensitivity =
TP

TP + FN

(14)Specificity =
TN

FP + TN

(15)Accuracy =
TP + TN

TP + TN + FN + FP

Fig. 2  Process of the intensity-based multi-level classification
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Sensitivity indicates the percentage of data that were correctly classified as positive, 
while specificity indicates the percentage of data that were correctly classified as nega-
tive. Accuracy measures the ability of the proposed method to identify total data [19].

ROC curve is a graphical plot that represents 1-specificity and sensitivity on the x and 
y axes [19]. In this study, area under the curve (AUC) was additionally used as an index 
to evaluate the performance of the proposed method. AUC represents the value between 
zero and one, and a higher AUC value means a higher classification performance.

Results
Selected feature sets for each net by PCA

Different feature sets were optimized for the three nets by using PCA method. For net 1, 
21 features were selected as the optimal feature set; they consist of the FOS, GLCM, and 
LEM (Table 2). Intensity was selected for nets 2 and 3 in addition to those three kinds of 
features. As shown in Tables 3 and 4, the feature set of net 2 includes 15 components, 
while 18 components were selected for net 3. GLRLM and LBP was not chosen for all 
nets. On the other hand, 10 features were common to the three nets, and they consist of 
mean, autocorrelation, variance, sum average, MSS E5L5/L5E5, MSS S5L5/L5S5, MSS 
R5L5/L5R5, MAS E5L5/L5E5, MAS S5L5/L5S5, and MAS R5L5/L5R5. For all three nets, 
most LEM features were selected as the optimal value. In particular, 15 features of 18 
LEM features were chosen for net 1.

Table 2  Selected feature set for net 1

Feature set Feature Feature set Feature

FOS Mean
Variance
Standard deviation

LEM MSS S5E5/E5S5
MSS R5E5/E5R5
MSS S5S5
MSS R5S5/S5R5
MAS E5L5/L5E5
MAS S5L5/L5S5
MAS R5L5/L5R5
MAS E5E5
MAS S5E5/E5S5
MAS R5E5/E5R5
MAS S5S5

GLCM Autocorrelation
Variance
Sum average

LEM MSS E5L5/L5E5
MSS S5L5/L5S5
MSS R5L5/L5R5
MSS E5E5

Table 3  Selected feature set for net 2

Feature set Feature Feature set Feature

FOS Mean LEM MSS R5L5/L5R5
MSS R5R5
MAS E5L5/L5E5
MAS S5L5/L5S5
MAS R5L5/L5R5
MAS R5S5/S5R5
MAS R5R5

GLCM Autocorrelation
Variance
Sum average
Sum variance

LEM MSS E5L5/L5E5
MSS S5L5/L5S5

Intensity Intensity
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Classification results of proposed method for each net

Table 5 shows the results of the tissue classification for each net produced by using pro-
posed method. Classification accuracy was in the order of net 1 > net 3 > net 2. Net 2 
showed relatively low classification results, especially for specificity, which was identified 
as 59.6%. On the other hand, in net 1, sensitivity, specificity, and accuracy were higher 
than 80.0%. The proposed method also presented a high AUC of 0.845 for net 1. Further-
more, net 3 showed a relatively high classification accuracy, 77.2%.

Comparison of the classification results according to different feature selection methods

To evaluate the significance of the feature set that was selected using PCA, the classifica-
tion results were compared with a genetic algorithm (GA). GA selected 25, 23, and 25 
feature components for nets 1, 2, and 3, respectively. PCA showed higher classification 
ability than GA for all nets as shown in Tables  6, 7, and 8. According to applying the 

Table 4  Selected feature set for net 3

Feature set Feature Feature set Feature

FOS Mean LEM MSS R5S5/S5R5
MSS R5R5
MAS E5L5/L5E5
MAS S5L5/L5S5
MAS R5L5/L5R5
MAS S5S5
MAS R5S5/S5R5
MAS R5R5

GLCM Autocorrelation
Variance
Sum average
Sum variance

LEM MSS E5L5/L5E5
MSS S5L5/L5S5
MSS R5L5/L5R5
MSS S5E5/E5S5 Intensity Intensity

Table 5  Classification results of the proposed method

Net Sensitivity (%) Specificity (%) Accuracy (%) AUC​

Net 1 82.0 87.1 85.1 0.845

Net 2 81.2 59.6 71.9 0.704

Net 3 80.6 75.9 77.2 0.783

Table 6  Classification results of net 1 according to different feature selection methods

Selection method Sensitivity (%) Specificity (%) Accuracy (%) AUC​

w/o selection 82.0 86.9 85.0 0.845

GA 81.9 86.9 84.9 0.844

PCA 82.0 87.1 85.1 0.845

Table 7  Classification results of net 2 according to different feature selection methods

Selection method Sensitivity (%) Specificity (%) Accuracy (%) AUC​

w/o selection 80.8 60.1 71.9 0.705

GA 80.8 59.7 71.7 0.703

PCA 81.2 59.6 71.9 0.704
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GA, the accuracy and AUC slightly decreased in net 1 and 2 than was the case without 
feature selection. On the other hand, PCA improved the classification results for all nets. 
Especially, classification accuracy of net 3 increased from 76.7 to 77.2%.

Comparison of the classification results according to different classifiers

Tables 9, 10, and 11 show the classification results of the coronary plaque components 
according to different classifiers. The proposed method showed slightly lower accu-
racy in net 3 compared with a dropout neural network (DNN). However, the proposed 
method achieved much higher classification performance in net 2 than the DNN. In 
particular, the proposed method showed a significantly high sensitivity of 81.2%, while 
a very low sensitivity of 2.1% was observed when using the DNN. It also represented 
higher accuracy, of about 27.8%, than did the DNN for net 2. Furthermore, the proposed 
method showed slightly higher accuracy and AUC for all nets in comparison with a feed 
forward neural network (FFNN).

Table 8  Classification results of net 3 according to different feature selection methods

Selection method Sensitivity (%) Specificity (%) Accuracy (%) AUC​

w/o selection 80.4 75.2 76.7 0.778

GA 80.2 75.8 76.6 0.780

PCA 80.6 75.9 77.2 0.783

Table 9  Classification results of net 1 according to different classifiers

Classification method Sensitivity (%) Specificity (%) Accuracy (%) AUC​

DNN 79.4 86.5 84.0 0.829

FFNN 78.0 87.5 84.2 0.827

Proposed method 82.0 87.1 85.1 0.845

Table 10  Classification results of net 2 according to different classifiers

Classification method Sensitivity (%) Specificity (%) Accuracy (%) AUC​

DNN 2.1 99.9 44.1 0.510

FFNN 81.3 57.9 71.2 0.696

Proposed method 81.2 59.6 71.9 0.704

Table 11  Classification results of net 3 according to different classifiers

Classification method Sensitivity (%) Specificity (%) Accuracy (%) AUC​

DNN 79.2 79.9 77.5 0.780

FFNN 78.5 76.0 76.7 0.772

Proposed method 80.6 75.9 77.2 0.783
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Discussion
In order to differentiate the coronary plaque components in an IVUS image, VH, which 
analyzes an image based on the RF signal, has been widely applied. However, it has limi-
tations in longitudinal resolution, and it requires specific software to acquire the RF 
signal data. In this study, FOS, GLRLM, LEM, intensity, extended GLRLM, and LBP 
features were extracted, and they were optimized using PCA. Then, an intensity-based 
multi-level classification model was used to classify the coronary plaque components 
into FT, FFT, NC, and DC based on the texture information in the IVUS image.

In the present study, three different feature sets were individually selected by apply-
ing PCA to each net. The results showed that a large number of LEM features were 
selected for all nets. In particular, LEM features accounted for more than 70% of 21 
selected features in net 1. LEM provides diverse texture information that includes 
level, edge, spot, ripple, and wave for each window. Therefore, many LEM features 
were considered as the most significant features for classification of coronary plaque 
components. If an MSS feature was selected as part of the optimal feature set, the 
MAS feature of that image mask was also chosen. This is because the MSS and MAS 
have a high correlation to the same image mask. Also, PCA commonly selected 10 
features in all nets, which are the mean, autocorrelation, variance, sum average, MSS 
E5L5/L5E5, MSS S5L5/L5S5, MSS R5L5/L5R5, MAS E5L5/L5E5, MAS S5L5/L5S5, 
and MAS R5L5/L5R5. Thus, 10 features were identified as essential indicators for 
classification of plaque components. However, GLRLM and LBP were not selected for 
all nets. These two types of features were affected by noise within the IVUS image. 
Noise may occur in the process of receiving, coding, and transmission of IVUS image 
[20]. Binary data generated in the process of extracting LBP features is sensitive to 
noise [21]. GLRLM is also extremely susceptible to noise in IVUS images [22]. For 
this reason, GLRLM and LBP did not show high significance in the analysis of IVUS 
images.

The proposed method classified the coronary plaque components based on the 
selected optimal feature sets, and the results showed a high accuracy (85.1%) and 
AUC (0.845) for net 1. This is because of the obvious difference between the FT/
FFT and NC/DC groups, as shown in Fig. 1. On the other hand, the grey scale based 
classification method has some technical limitations in differentiating between FT 
and FFT, because both are medium echo reflective and show similar characteristic 
in IVUS images [23, 24]. Therefore, the classification results presented relatively low 
accuracy for net 2 (71.9%). Nevertheless, it showed a comparatively high sensitivity 
of 81.2%, which indicates that the proposed method has a high ability to classify FFT. 
Therefore, it is expected to improve overall classification accuracy by increasing abil-
ity to accurately identify for the FT.

By comparing classification accuracy according to different feature selection meth-
ods, PCA showed the highest performance in terms of computational load. Using all 
features, which consisted of 54 components, resulted in longest test time for the pro-
posed classification model, 673 s. It was slightly decreased to 624 s by applying GA. 
By comparison, PCA greatly improved test time to 189 s, which shows its high effec-
tiveness in terms of computational time.
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The proposed method showed higher classification performance than did other 
classifiers including FFNN and DNN. In particular, the proposed method showed a 
relatively high accuracy of 71.9% in net 2, while the lowest accuracy, 44.1%, was iden-
tified for DNN. These results occurred because of the inherit characteristics of the 
random forest. The random forest presents high classification accuracy for data that 
includes noise, because it consists of multiple decision trees that have different prop-
erties. For this reason, the proposed method showed high classification ability for FT 
and FFT, which are difficult to differentiate because of their similar grey scale, com-
pared with other classifiers.

This study has two main limitations. First, it did not acquire significant classifica-
tion results compared with VH. It is considered that the results were affected by the 
quality of IVUS images used in the study. The proposed method is greatly influenced 
by image resolution, because it classifies plaque components based on a grey scale 
of image. Therefore, classification accuracy may be improved by using IVUS images 
with higher frequency than 20 MHz. Furthermore, the proposed method showed rel-
atively low classification performance for high-intensity components. This seems to 
be affected by the amount of NC data that is included in the high-intensity compo-
nents. High-intensity components are mostly composed of DC, and NC is included in 
relatively low proportions. The classifier may be not properly trained to identify NC, 
which shows high-intensity values owing to the low amount of NC data. Therefore, 
classification accuracy may be improved by supplementing the data on NC.

Conclusions
This study proposed a novel intensity-based multi-level classification model to clas-
sify coronary plaque components in IVUS images. The proposed method selected 10 
features that included FOS, GLCM, and LEM as key indicators for the characteriza-
tion of plaque components. Quantitative results indicated that the proposed method 
showed significantly high classification accuracy for all tissue types. Net 1, 2, and 3 
classifiers revealed classification accuracies of 85.1%, 71.9%, and 77.2%, respectively, 
and the areas under the curve were 0.845, 0.704, and 0.783. In particular, the pro-
posed method achieved relatively high sensitivity (82.0%) and specificity (87.1%) for 
differentiating between FT/FFT and NC/DC groups. These results confirmed the clin-
ical applicability of the proposed approach for IVUS-based tissue characterization. To 
improve classification accuracy, future studies should include additional experiments 
with a greater amount of NC data. Tissue characterization of 45 MHz IVUS images 
needs to be validated with various textural feature sets. Moreover, another experi-
ment on controlling the level of noises in the various patterns will be performed.
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