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Background
Atrial repolarization waves (Ta waves) are equally important as ventricular repolarization 
waves (T waves) and can exhibit significant potential as an effective biomarker for clinic 
diagnosis [1, 2]. However, depolarization is stronger than repolarization, and ventricular 
activities are even considerably stronger than atrial activities. To separate relatively weak 
activities in atria, existing studies have invested significant efforts in this aspect to help in 
myocardial diagnosis for either sinus rhythms and arrhythmia [3–8]. In the literature, no 
study has yet retrieved atrial repolarization activities because these activities can only be 
normally observed in patients under certain special ectopic pacing [2].

In this study, we develop a method to reveal hidden Ta waves in the majority of 
patients. Unlike in the direct processing of electrocardiogram (ECG) signals, an inde-
pendent cycle of atria electrical activities is obtained by extracting the atrial part of 
transmembrane potentials (TMPs) of whole-heart activities and mapping partial TMPs 
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back onto the ECG of a body surface. Despite the simple back-forward process, obtain-
ing Ta waves with acceptable quality is challenging in computational design because the 
accuracy of inverse transformation highly relies on the fidelity of organ geometries and 
conductivities [9, 10]. Constructing a 3D mesh model for each patient can be expensive, 
and thus, our solution for the inverse problem assumes that all the physical measures of 
an individual are unreliable, and these parameters should be re-estimated during com-
putation. The algorithm only requires long observation periods to perform self-adaptive 
and reliable statistical inferences for unsure parameters.

The morphologies of P waves and hidden Ta waves are typically considered important 
among healthcare professionals. In [1] and [11], Ta waves were suggested to be an early 
sign of inferior injury, such as acute atrial infarction or arrhythmia. One example is atrial 
fibrillation if the waves can be observed during conduction system malfunction, such as 
long QT interval or atrioventricular block.
P waves alone are important in justifying heart diseases in both sinus rhythm and 

fibrillation [12]. However, P waves are relatively weak, and thus, current understanding 
on atria activities are generally insufficient. Few studies have investigated activities from 
the atria part of myocytes. In [13], the problem was initially addressed via computer 
simulation. Without involving inverse problems, [13] facilitated a forward model, which 
mapped current dipoles onto atrial mid-myocardium to surface ECGs under a set of pre-
determined parameters to understand the contributions of right and left atria activities 
to the observed P waves during sinus rhythm and atrial fibrillation.

In clinical situations, Ta waves are not only hidden, but P waves are also tangled with 
the adjacent QRS complex. In [7] and [8], statistical and signal processing methods were, 
respectively used to single out P waves from the rest of the QRS part. Surface signals are 
complex combinations of current stimuli from millions of cardiomyocytes; thus, the sig-
nal separation task must be performed at the level of myocardium cells, and solving an 
ill-posed inverse problem is inevitable. Pioneer source models, such as those in [14–16], 
have been integrated into and advanced for contemporary computational electrocardiol-
ogy models that establish models for various processes ranging from cellular bioelec-
trical activities to body surface potential distribution [17–19]. The forward problems 
involve mapping from inter- to intra-cellular currents onto body surface potential distri-
butions [20, 21]. Given the nature of complexity in the biological field, the large degree 
of freedom poses a challenge in evaluating inverse problems.

When dealing with the inverse problem, most regulation methods can only condition 
numerical difficulty from the mathematical point of view; however, the problem of mul-
tiple solutions must be addressed by restoring possible missing constraints. In [22], this 
difficulty was solved by reducing the inverse problem in limited mapping from epicar-
dial to body surfaces. In [23], the inverse problem was addressed by proposing a spe-
cial equipment that could collect thousands of potentials on the body surface instead 
of the standard 12-lead ECG. Activation time sequencing or imaging can be evaluated 
for primitive diagnosis without retrieving detailed cellular activities [24–28]. However, 
electric current constraints from the ionic behavior of individual cells, such as in [17], 
impose additional computational challenge given the millions of myocytes. Moreover, 
additional constraints introduce other unknown parameters, and the degree of freedom 
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remains high. Therefore, advanced statistical methods should be applied to obtain reli-
able solutions.

Existing studies continuously contribute to addressing the problem of physiological 
models, and specific body surface electrical data from patients are always being cor-
rupted by noise and the incorrect construction of organ geometries. In [29], spatial 
covariance in a volume conductor was facilitated for maximum a posteriori (MAP) 
equation. In [30], temporal and spatial covariances were estimated under certain math-
ematical assumptions based on structures that were inherent in the space–time cor-
relation matrix. In [31], the facilitation of multiple information sources to improve the 
efficiency of Bayesian MAP formulation was suggested. In [32], TMPs were constrained 
using a diffusion–reaction model from cellular activation dynamics, which limited the 
inverse problem in both spatial and temporal dimensions. This work suggested relying 
on a statistical method to address both model and data errors in terms of prior knowl-
edge on cell current dynamics and evidence for surface potential data. In [33], the pro-
gress of statistical identification from the perspective of systems biology was reviewed.

Methods
As mentioned earlier, the extraction of P waves should be conducted at the electric cur-
rent level in myocardial sources. The model for the cardiac computational system com-
prises two parts according to the component guideline in [34]. The first part involves 
mapping between body surface potentials and intra-cellular TMPs. Evaluating TMPs is 
considered a difficult inverse problem given a potential map of a body surface [35, 36]. 
The second part aims to constrain the inverse problem, in which the constraint describes 
changes in TMPs in terms of electrical propagation between myocardia. Most electro-
physiological models are diffusion–reaction systems [17, 36–38].

Inverse problem

We first consider the forward problem from equivalent current–dipole sources to body 
surface potentials. The sources of bioelectric currents across cell membranes excite the 
movement of cardiomyocytes and induce potential fields, which can be detected via sur-
face electrodes. The total current density is presented as J (r) = J s(r)+ σE(r) , where J s 
is the net source current density ( A/m2 ); σ is conductivity in homogenous dielectric 
media; and E is the electric field, which exhibits the relation E = −∇Φ for potential 
function Φ(r) . Vector fields are denoted as bold face symbols, such as current density 
J (r) , which is a vector field at location r . The total current ∇ · J = 0 diverges without 
external current under quasi-static conditions. Thus, ∇ · (σ∇Φ) = ∇ · J s , and the rela-
tion between measured potentials and heart sources is transformed into a Poisson equa-
tion. For cardiac volume VH , the potentials are primitively expressed as 
Φ(r) = 1

4πσ

∫∫∫

VH
J s(r

′) · ∇
(

1
|r−r′|

)

d3r′.

To model equivalent current density, the entire myocardium is divided into grid 
meshes. Following the suggestion in [39], boundary element methods are applied. The 
potential Φ at the body surface is maintained as Φ , and TMP is denoted as u . By tessellat-
ing and vectorizing all cardiac and thorax surfaces, a discrete matrix Eq. (1) is obtained 
as suggested in [32] and [40].
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where L is the discretized transfer matrix that converts TMP u to surface potential φ8 . 
When the vectorized body surface potentials are only sampled at eight electrode posi-
tions for the standard 12-lead ECG signals, the potentials are denoted as Φ8 for clarity.

The transfer matrix L is synthesized with the geometries and conductivities of the organs 
inside the thorax. The geometric coordinates are segmented and discretized via magnetic 
resonance imaging (MRI) or computed tomography for a specific patient. Given numeri-
cal sensitivity and unavoidable movement, the forward model may suffer from geometric 
errors and should be incorporated as a part of modeling [9, 41]. In [42], geometric errors 
were suggested to be overcome by using Bayesian MAP estimation or Kalman filtering with 
Gaussian geometric errors. In the present study, we do not rely on the accuracy of geometry 
and conductivity. We estimate the parameters along with the process of estimating TMPs 
[43, 44]. Bayesian estimation in error covariance enables performance analysis to statisti-
cally characterize solutions.

Reaction–diffusion systems

Electrical propagation between myocardia is typically modeled differently in terms of com-
plexity level—from the simplest Eikonal model at the tissue level, through bidomain/mono-
domain models and phenomenological models, to the most complicated ionic models at 
the cellular level. Phenomenological models focus at the macroscopic level and ranges from 
2-variable equations [14, 37] to the complicated 15-variable Luo–Rudy model [45]. Reso-
lution is not a concern in extracting P waves. Electrical propagation is captured using the 
reaction–diffusion system [37] with the same setting as that in [46, 47]. Considering the 
balance between precision and computation, a simple system is sufficient to constrain the 
ill-posed inverse problem. Therefore, we adopt the system from [37] as follows:

where u and v are the column vectors of TMPs and recovery current, respectively; and 
the operator <,> represents a component-wise multiplication. D is the diffusion tensor; 
and k , a , and e are the parameters. By converting the equation into finite element meshes 
[47], the reaction–diffusion system can then be used as an effective constraint in solving 
the inverse problem. Let x = [u, v] . The system can then be written as ẋ = Fd(x) , where 
Fd(x) = [(∇(D∇u)+ ku,u− a, 1− u− < u, v >) and − e(v + k < u,u− a− 1 >].

Hierarchical estimation

Our problem contains a large number of uncertainties, and thus, advanced Bayesian statis-
tics can be a viable approach [44]. The basic idea is to estimate the posterior probability of 
the unknown cardiac source P(xk |φ1:k) based on an a priori distribution of the sources P(x) 
and a group of affecting parameters. When (1) and (2) are combined, we obtain the data 
model as follows (3):

(1)φ(t) = Lu(t),

(2)
{

∂u
∂t

= (∇(D∇u)+ ku,u− a, 1− u− < u, v >)
∂v
∂t

= −e(v + k < u,u− a − 1 >
,

(3)
{

ẋk+1 = Fd(xk)+ wk ,
φk = Hxk + zk ,
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where H = [L+�L ; 0] is the output matrix with uncertainty �L , and w and z are two 
i.i.d. error processes with zero means and covariances ξw and ξ z . Given that the model 
does not rely on the accuracy of the heart and torso geometries, the error terms in the 
elements of the transfer matrix L are embedded into the matrix with random variables 
�L . Let θ = (k , a, e) to incorporate the parameters in the reaction–diffusion function 
Fd(·) . Therefore, the parameters for the process comprise �L and θ = (k , a, e).

The recursive estimation for the posterior probability density P(xk |φ1:k) can be con-
ceptually achieved in two steps. The forecast term P(xk |φ1:k−1) can be obtained through 
Chapman–Kolmogorov integration ∫P(xk |xk−1)P(xk−1|φ1:k−1)dxk−1 , given that the 
posterior P(xk−1|φ1:k−1) is known from time k − 1 , and P(xk |xk−1) is determined from 
the system equation. The current time posterior P(xk |φ1:k) is updated using the Bayes 
rule P(φk |xk )P(xk |φ1:k−1)

P(φk |φ1:k−1)
 , where P(φk |φ1:k−1) = ∫P(φk |xk)P(xk |φ1:k−1)dxk.

To deal with a large number of parameters, the guideline in [46] and [47] indicates that 
the complicated joint distribution in data model (3) can be formulated as a hierarchi-
cal model and factorized into a series of conditional distributions. The guideline sug-
gests that the random variables to be estimated can be factored into three stages, such 
that p(process, parameters|data) ∝ p(data|process, parameters) p(process|parameters) 
p(parameters) . Therefore, the joint posterior distribution can be written in a hierarchical 
form as follows:

Following the suggestion in [47], a Monte Carlo Markov chain (MCMC) slice sampler 
[48] is applied in the Bayesian computation model because of the high dimension in our 
complex problem. A full Bayesian analysis of this problem is achieved by sampling the 
joint posterior distribution (13) using an MCMC technique called slice sampling [49]. 
Another potential solution for reducing the constraining effects of prior knowledge is 
the simultaneous estimation of the TMP dynamics and electrophysiological proper-
ties of the myocardium. This method has the advantage that the constraining models 
can be modified according to the collected data of patients with filtering of unknown 
parameters.

Experiment setup

To conduct the following experiments, 3D geometric models of a complete heart and 
torso are necessary. Cardiac geometric data were adopted from the ECGSim data set, 
which described a healthy normal young male using complete atria and ventricles (Fig. 1, 
with 1634 nodes for atria and 1500 nodes for ventricles) [50]. Given that a 3D imaging 
will not be constructed on the epicardial surface, the requirement for grid size is low. 
Resolution is further reduced to prevent the introduction of excessive numerical difficul-
ties from the source of the standard 12-lead ECG.

The geometry of a torso was adopted from the PhysioNet data archive, which also 
originated from the body surface mapping data of Dalhousie University [51–53]. 
Although accuracy is not a concern, mapping between surface nodes to the electrode 
positions of standard leads should be specified. Given the well-prepared recording and 

(4)P(x,�L, θ , ξw , ξ z|φ) ∝ P(φ|x,�L, ξ z)P(x|θ , ξw)P(�L)P(ξ z)p(θ)P(ξw).
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documentation in the data set, the detailed mapping from the surface nodes to the 15 
standard leads was elaborated.

The ECG data were also adopted from PhysioNet: ptbdb and incartdb [51]. The signals 
were preprocessed to eliminate electromagnetic interference, baseline wandering (e.g., 
electromyographic noise), and various artifacts (e.g., electrode motion) [54].

The implementation programs for the experiments were developed in MATLAB and 
R. The transfer matrix was produced using the open source SCIRun/BioPSE from the 
Scientific Computing and Imaging Institute of the University of Utah [18, 55].

This study develops a model that retrieves hidden atrial repolarization waves by solv-
ing an inverse problem from surface ECG to cardiac TMPs (Fig. 2), where an ill-posed 
problem is constrained by temporal and spatial electrophysio-relations. The modeling 
approach can only be maintained at a coarse level because the source data are limited 
by the number of channels in the standard lead ECG. By contrast, cardiac electrical sig-
nals can be estimated by being modeled as a stochastic process with unknown excitation 
parameters and continuous acquisition of signals. In the solving process, several issues 
are encountered and need to discuss further.

The experiment presents good results. As shown in Fig. 3, the top panel presents the 
inverse solution for TMPs in the atrial part of the myocardium. The figure reflects the 
correct excitation sequence starting from the atrium to the end of the apex. When we 
multiply the entire TMPs to the transfer matrix, the forward problem restores the orig-
inal ECG, as shown in the third panel. The figure exhibits good approximation of the 
original ECG (second panel), except for several ripples near the end of the cycle. This 
result is considered good because the resolution is under 14 nodes on the body surface 
and 20 nodes in the myocardium. The bottom panel shows the extracted atrial electric 
activities. Each line in the graph corresponds to one of the 14 nodes that constitute the 
standard 12-lead ECG.

Discussions
The error caused by spatial digitization may overwhelm other sources of error terms 
because of the resolution limitation in mesh grids. The errors caused by modeling, geo-
metric, and measuring uncertainties are integrated into a reaction–diffusion system, 
which is a stochastic state-space system with a powerful capability to estimate true 

Fig. 1  Geometries of heart and torso



Page 69 of 73Tang et al. BioMed Eng OnLine 2018, 17(Suppl 2):146

values among noise background. The two-variable reaction–diffusion system (2) is lin-
earized for convenient computation experiments. All the parameters are embedded into 
each individual matrix element, which will be estimated in the subsequent MCMC step. 
Although sophisticated and accurate models for cardiac electrophysiological dynamics 
can be used, the estimation results may not improve in our case.

One of the error sources originates from the inhomogeneity and anisotropy of con-
ductivity among different torso tissues. To obtain an acceptable imaging of the heart 
surface, the anisotropy of the intracellular conductivity tensor along the fiber struc-
ture of myocardia must be considered. In this study, we adopt a real-time estimation 
approach and leave all the parameters to be estimated during the online training step.

As mentioned earlier, given the lack of spatial resolution, we do not expect the com-
plete accuracy of the inverse and forward simulations. Although an ordinary Moore–
Penrose pseudo-inverse can obtain a perfectly low root-mean-square error after 
performing backward and forward projections, the cardiac potential maps obtained 
from this pseudo-inverse are meaningless. Therefore, the computation objective is to 
reconstruct a TMP distribution that closely mimics a real TMP distribution [17]. We 
determine that the sequence and heterogeneity of TMPs throughout the myocardium 
significantly influence the final waveform of surface ECG.

Fig. 2  TMP and surface ECG
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The selection of prior distributions and initial conditions can influence the final 
results of the inverse solution when the Bayesian approach is used. During our 
MCMC estimation step, we perform our experiments by assuming that the noise and 
error terms are Gaussian distributed. Accordingly, we also select Gaussian as their 
conjugate prior for assigning prior distribution. The Gaussian assumption is rea-
sonable for the coarse computation level. If further investigation is conducted, then 
non-Gaussian or empirical distribution can be used to estimate unknown parameters 
under the hierarchical Bayesian estimation framework.

By contrast, initial conditions are considerably sensitive to the algorithm. If param-
eters or matrices are available in published studies, then we will use their well-known 
values as initial amounts. Patient-specific variation should be accommodated by the ran-
dom sampling process. A good initial condition can make convergence fast and accurate. 
In certain situations, convergence may not reach each selected initial value. For exam-
ple, numerical difficulty may occur for a certain prior distribution. Several procedures 
can improve numerical stability, including increasing the condition numbers of covari-
ance matrices. However, their details are considered state-of-art and require further 
elaboration.

For computational convenience, the reaction–diffusion system (2) is linearized into a 
matrix equation because matrix operations are more efficient than the nth order Runge–
Kutta methods with nonlinear cross-terms. However, the order of the system will 

Fig. 3  Results of 12-lead ECG with MCMC. Top: atrial part of TMP; 2nd: original ECG; 3rd: simulated ECG; 
bottom: atrial part of simulated ECG
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increase significantly from nonlinear to linear. We artificially augment a large number 
of co-state variables in system (2); that is, we add ten times more dummy variables fol-
lowing variable v . The number of dummy variables significantly influences the quality of 
TMP reconstruction.

Conclusions
In this study, we consider only signals in the standard 12-lead ECG measurement. Unlike 
most studies, our approach relies on neither accurate geometries nor high-resolution 
body surface potential maps. We only use a rough model as an initial guess and then 
simultaneously estimate the inverse solutions and model parameters. In this setup, we 
eliminate the requirement to construct a geometric model of the heart using off-line 
MRI pictures. Our method simultaneously estimates inverse potential solutions and 
geometric details.

We separate the atrial part of ECG waves from the rest of the signals based on a stand-
ard clinical ECG recording. Traditional approaches [7, 8] work only on signal morphol-
ogy and attempt to cancel out the large QRS-T complex from several standard templates. 
We proceed directly through TMPs in the myocardial cells and extract the electricity 
generated by atria only. The obtained surface ECG contains only P waves and is more 
robust than those obtained via waveform approach are.

Future development can focus on improving prior distribution specifications and ini-
tial conditions. We will additionally construct empirical distribution for all error terms 
to be a basis of the prior distribution. The algorithm will be continuously improved and 
parallelized for better computational efficiency.
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