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Background
A person’s way of walking, or gait, is a congenital human function, but the significance 
of the way a person walks is often overlooked [1, 2]. Research has shown that the quality 
of gait can deteriorate with multi-tasking, illness, and age [1, 2]. In fact, the health status 
of individuals can be recognized by the way they walk [3, 4]. Since gait is heavily depend-
ent on the brain, nerves, and muscles, cognitive tasks performed in concert with walking 
can change the gait pattern [5]. Thus, for older adults, maintaining balance and stability 
while walking often requires additional attention [2, 6].

In addition to motor actions, we often think or solve problems [7]. This behavior is an 
example of dual tasking, which is defined to be the “concurrent performance of two tasks 
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that can be performed independently, measured separately and have distinct goals” [5, 
7–9]. Dual-task walking, particularly when a cognitive task is added during walking, can 
lead to reduced performance in gait quality and can result in cognitive-motor interfer-
ence (CMI) [5]. CMI results in a subtle cognitive impact upon the gait of healthy and 
younger adults. Clinically, we can assess the effect of the addition of a secondary cogni-
tive task to the motor activity via reactions to different stimuli (e.g., colors and sounds), 
manoeuvering through obstacles, using a cell-phone, or counting backward [7].

Cognitive difficulties have been associated with gait changes. For example, disorders 
of gait have been related to the cognitive problems among those with mood disorders 
(e.g., depression), dementia-related illnesses (e.g., Parkinson’s and Alzheimer’s diseases), 
and other motor-cognitive disorders. While age-related cognitive dysfunction such as a 
decreased ability to appropriately allocate attention may be mild, this additional cogni-
tive load has been related to gait problems. In some of these older adults, the cognitive 
load has been shown to increase fall risk [7, 9, 10]. For older adults in the United States, 
falls have devastating consequences and are costly, accounting for a significant number 
of emergency department visits [11].

However, collection and consolidation of the multiple gait characteristics of human 
gait can be time-consuming and costly to analyze; these are often captured via wearable 
sensors such as uni-axial gyroscopes and accelerometers, or other equipment such as 
pressures sensors, video capture, and other equipment [2, 6, 12]. Many of these instru-
ments generate an immense amount of data per observed person [13, 14]. For instance, 
captured through accelerometer sensors placed on the chest, back or limbs, gait acceler-
ometry data results in thousands of x–y–z kinematic coordinates through time [15–17]. 
However, gait analysis via wearable sensors is a popular and inexpensive method, with 
regard to cost and availability of portable sensors [18]. Wearable sensors are a suitable 
alternative to larger laboratory equipment, because they still provide many benefits to 
clinical prognosis, diagnosis, and treatment [18].

Data processing methods such as acceleration signal processing and machine learning 
can help alleviate the stress of manipulating such large datasets. For example, machine 
learning has been used with different speeds of walking, foot switches, or other forms 
of walking combined with clinical outcomes (i.e., Parkinson’s disease) [13, 19, 20]. 
However, there has been limited research in machine learning for cognitive load clas-
sification using gait observations [7–9]. As a first step, it can be particularly useful to 
do preliminary studies on healthy and young adults in order to establish a basic level of 
biomechanical movement [21–23]. For example, Mannini et al. state that understanding 
human physical activity can have future implications in movement technology (includ-
ing robotics) that could impact the elderly [21]. Thus, differentiating gait qualities due to 
cognitive load in healthy and young adults can help us prepare a baseline measurement 
that can be used to assess gait patterns in a more substantial elderly and ill population.

Through the use of machine learning, researchers can harness this data to predict 
an individual’s gait patterns, cognitive overload, and fall risk [2, 20, 24, 25]. Commonly 
used algorithms include supervised learning approaches such as logistic regression (LR) 
[24, 26], support vector machine (SVM) [27, 28], random forest (RF) [29], and k-near-
est neighbors (KNN) [30]. However, KNN is negatively affected by increased dimen-
sionality, which is disadvantageous for processing the many features extracted from 
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gait acceleration signal data. An alternative algorithm that bypasses this disadvantage 
is learning vector quantization (LVQ), a neural network machine learning algorithm, 
which operates similarly to KNN due to it being a precursor to the nearest neighbor 
method [31]. There are many studies which have compared SVM with LR, RF, and KNN 
algorithms; however, there are not many studies that have differentiated between cogni-
tive states using machine learning, particularly with the LR, SVM, RF, and LVQ methods.

The purpose of this study is to demonstrate a range of common machine learning 
methods that can accurately detect changes in gait with cognitive load in healthy adults. 
We plan to use a mobile gait data acquisition of stride characteristics of healthy human 
participants during walking with and without an added cognitive task, and machine 
learning algorithms, with cross-validation, to describe and classify cognitive status of 
walking.

Methods
Study design and procedures

This study is a prospective cohort study with a repeated-measurements design, where 
subjects were their own controls. Participation in the study consisted of two sessions in 
which each session had five stages: affixing the sensors (10–20 min), first walking trial 
(10 min), a rest period (10–20 min), second walking trial (10 min), and sensor detach-
ment (10 min). The two sessions of this study for each participant occur with at least 48 
h between each session. Each session lasted for about 75–90 min.

The walking trials were performed on a treadmill which rested on top of a flat non-
compliant surface. The treadmill captured pressure data [in units of Newton force (N)]. 
The treadmill was set at a steady pace of 2.2 mph, which is 0.98 m/s which is less than 
the usual adult walking speed of 1.2–1.3 m/s. This treadmill speed was chosen so that 
all participants would be at a comfortable, and slower than usual walking speed to be 
closer to a speed common among community-dwelling older adults and persons with 
walking difficulties. The first walking trial consisted of walking, while the second walking 
trial consisted of walking while counting backwards from 10,000 in increments of 7, an 
arithmetic task that is mentally involved [32, 33]. We will refer to the first walking trial 
as normal walking, while referring to the second walking trial as walking under cognitive 
load.

Participants were affixed with six wGT3X-BT triaxial accelerometer sensors (produced 
by ActiGraph LLC, Ford Walton Beach, Florida, USA) located on their chest, bilateral 
ankles, wrists, and lower back (Fig. 1). These sensors captured linear accelerations (in 
units of m

s2
 ) at a frequency of 80 Hz from the x, y, and z directions which correspond to 

the mediolateral (ML), vertical (V), and anteroposterior (AP) directions. Overall, each 
sensor relayed 48,000 data points for each walking trial. The sensors were all clinically 
accepted monitoring devices and presented minimal risk to the subjects.

All recorded data did not include any personal identifying information. This study’s 
data collection and analysis was approved by the University of Pittsburgh Institutional 
Review Board for ethical conduct and participant safety. All data processing and analysis 
was done in R (versions 3.3.1–3.4.0) [34]. Machine learning methods were implemented 
using R’s caret package [35].
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Subjects

Volunteers were recruited from the Pittsburgh area in Pennsylvania, USA. Participa-
tion in the study was entirely voluntary and could be discontinued at any time. Accel-
eration and treadmill pressure data were collected from ten healthy volunteers (18–35 
years old) at the University of Pittsburgh. Other than age and a subjective percep-
tion of healthiness, no other screening criteria were included in the volunteer recruit-
ment. Demographic characteristics, such as gender, height (m), and weight (kg) were 
taken at the time of the study. Body mass index (BMI) was also calculated (Table 1). 

Fig. 1  Sensor locations on participants

Table 1  Demographic characteristics of study participants

Characteristic Mean (SD) or N (%)

Age 21.40 (4.38)

Gender = male 5 (50 %)

Height (m) 1.72 (0.09)

Weight (kg) 66.36 (8.41)

BMI 22.87 (1.65)
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Age, gender, and BMI have been known to affect biological outcomes; thus, they are 
included as covariates in our statistical models.

Data processing

For each subject, a total of 24 raw acceleration datasets were obtained; however, only 
the 12 raw datasets from session 1 were used due to the participants having a signifi-
cant difference in cognitive task accuracy, the ratio of number of correct responses (of 
counting backwards from 10,000 in increments of 7) out of all responses, from session 
1 to 2 (paired t-statistic = − 2.94, p-value = 0.017), likely due to a training effect. First, 
a binary (0/1) variable called “cognitive load” was created to represent each trial, where 
“cognitive load” would be set to 1 (trial 2) and 0 otherwise (trial 1). Second, for each trial, 
the 6 raw datasets were compiled into one compiled raw dataset. Third, three data trans-
formations were done on these datasets to obtain a stride dataset and two observation 
window datasets. Fourth, for each transformation, the datasets for trial 1 and trial 2 were 
combined. This resulted in a total of 30 datasets (3 processed datasets per subject in ses-
sion 1) (Fig. 2).

Stride extraction

Acceleration signal based stride extraction is a clinically useful tool to evaluate cognitive 
changes while walking concerning the gait cycle [36]. Successive heel strikes and toe-offs 
on the same side have been used to define stride, stance, and swing intervals [37]. Heel 
strike and toe-off events were extracted from the lower back sensor using the algorithm 
outlined in Sejdić et al. [38]. Local minima points in the V direction correspond to toe-
offs, and local minima points in the AP direction are related to heel strikes [38]. The 
order of which foot initially made the first step was found by taking the average of the 
first 10 ms of acceleration in the ML direction [38]. If there was positive mean value, the 
right foot came first; otherwise, the left foot came first [38].

A condensed description of this algorithm consists of the following steps: (1) pre-pro-
cessing gait accelerometry signals via median filters, (2) determine which foot came first 
by calculating the average of the mediolateral acceleration signals in the first 10 ms, (3) 
capture heel strike events via the local minima points in the AP signals, and (4) capture 
toe-off events via the local minima points in the V signals.

Foot pressure based treadmill reports were used to validate sensor-derived heel strike 
and toe-off events. When the subject pushes their foot off the ground, the pressure 
reduces to 0 N; conversely, when the subject heel strikes, the pressure increases. Using 
a technique from Truong et al. [39], an on/off filter was created to detect heel strike and 
toe-off events for each foot. This on/off filter produced time points for when the foot 
was on or off the ground. These time points were matched up to the stride events for val-
idation of Sejdić et al.’s method. An example of stride extraction and validation is shown 
in Fig. 3.

Window extraction

A more straightforward alternative to stride extraction is the creation of sliding observa-
tion windows, by partitioning sensor signals into smaller time segments [40]. Partition-
ing into sliding observation windows is a conventional technique in activity monitoring 
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and machine learning analysis of accelerometer data [21, 40]. For each subject and each 
sensor, two datasets were formed: (1) acceleration signals were split up in 5-s intervals 
with 50% overlap, and (2) acceleration signals were split up in 30-s intervals with 50% 
overlap. An example of how window extraction is done is shown in Fig. 4.

Errant data removal

Data points were removed to eliminate any start-up, pausing, and ending effects to allow 
the subject to become familiar with getting on and off the treadmill. For the stride data-
sets, the first fifty strides and the last five strides were removed. Outliers based on aver-
age stride time were removed using the interquartile range (IQR) rule [41]. Comparing 

Fig. 2  Dataset processing flowchart for each subject



Page 7 of 18Dasgupta et al. BioMed Eng OnLine  (2018) 17:122 

Fig. 3  Stride extraction sample. Subject 1’s toe-offs and heel-strikes, which were determined from foot 
pressure recordings during treadmill walking and acceleration signal recorded using the lower back sensor. 
The top graph shows the pressure readings from the treadmill, the middle graph are the V acceleration 
readings, and the bottom graph are the AP acceleration readings. Red and blue colored lines and labels 
depict the right and left foot respectively

Fig. 4  Acceleration signal extraction during walking. Subject 3’s Vertical acceleration signals from the back 
sensor. 5 s observation windows with 50% overlap are shown



Page 8 of 18Dasgupta et al. BioMed Eng OnLine  (2018) 17:122 

the remaining strides is a statistical challenge because strides are characterized by vec-
tors of unequal lengths, and there are hundreds of strides to compare.

Thus, an ANOVA test [null hypothesis: no statistical difference in means of stride 
features (see below in “Feature extraction” section) between strides] was done before 
and after errant data removal and resulted in a p-value of 2.2e−16 and 1, respectively. 
These results indicate that errant data removal was done correctly because the processed 
strides were not distinguishable from the other. For the observation window datasets, 
the first and last minute of the data were removed.

Stride time differences

Additionally, within each participant’s stride extracted data (n = 1351 to 1870 strides), 
an ANOVA test was done between the stride time distributions between the trials. The 
null hypothesis of this ANOVA test was “no statistical difference in the means of stride 
times between strides”. Typically, a large sample size will lead to statistical significance; 
in this case, the stride times are expected to be significantly different.

Features

Feature extraction

In order to capture descriptors from each stride and window, it is common in gait studies 
[24, 42] to calculate descriptive statistics from strides and windows. For each direction 
(V, AP, and ML), twelve features were extracted from each stride and each observation 
window in each of the six sensors. These twelve features were the mean, standard devia-
tion, pair-wise correlation, and pair-wise covariances of each of the three directions [43]. 
From the stride data specifically, times and lengths of the stance phase, swing phase, and 
overall stride were also extracted. As a result, a 78-feature vector described each stride 
whereas a 72-feature vector described each observation window.

Feature selection

High dimensionality may lead to over-fitting in machine learning analysis, and it is 
advantageous to reduce the number of features. First, each of the four models was run 
with all the features. Second, in order to select which features to include in machine 
learning models, the following methods were performed: (1) for all four models, a cor-
relation matrix between each feature was constructed; highly correlated feature pairs 
(r > 0.75) were found and within each pair, the feature with the highest mean absolute 
correlation was removed; (2) the LR model ran step-wise variable selection, via a likeli-
hood ratio test, which selects the model with the lowest Akaike information criterion 
(AIC) value [44]; (3) in the LVQ model, features were ranked by the absolute value of 
the t-statistic for each feature parameter; and (4) in the RF and SVM models, recur-
sive feature elimination was done [45]. Some feature selection methods were utilized so 
that decreased time for feature reduction and a consensus of essential features could be 
reached for each model.

Machine learning models and evaluation

The presence of a cognitive load, represented by a binary (0/1) variable, was classified 
based on gait feature vectors. For binary outcomes, the following four machine learning 
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algorithms were used: LR, LVQ, SVM, and RF. Well-known evaluation metrics were used 
such as accuracy, sensitivity, specificity, and area under the curve (AUC). In this report, 
we present the accuracy (Eq. 1) values, with their 95% confidence intervals; sensitivity, 
specificity, and AUC values are reported in Appendix (Figs. 8,  9,  10,  11,  12).

where TP is the number of true positives, i.e., the model identifies a cognitively loaded 
stride/window that was labelled as cognitively loaded; TN is the number of true nega-
tives, i.e., the model identifies a non-cognitively loaded stride/window that was labeled 
as not cognitively loaded; FP is false “cognitive” load identifications; and FN is false “no 
cognitive load” identifications.

For each of the machine learning algorithms, we employ three different modelling 
strategies: within subjects, between subjects, and leave one out. Feature selection was 
performed after the datasets were processed for each model.

Within and between subjects

For the within-subjects model, each subject’s dataset was combined within each of the 
three data types: strides (n = 1351 to 1870 strides), 5-s observation windows (n = 1280 
windows), and 30-s windows (n =  320 windows). For the between subjects model, all 
subjects’ datasets were combined within each of three data types: stride (n =  16,291 
strides), 5-s observation windows (n = 12,800 windows), and 30-s windows (n = 3200 
windows).

Datasets were split into training and test datasets; datasets were randomly split, using 
a seed of 7 and the sample function in R, into 80%, which was used for training each 
machine learning model, and 20%, which was used to evaluate the model’s performance. 
The tenfold cross-validation method was used on each of the training sets, where the 
training dataset was split into ten subsets. Each subset was held out while the model was 
trained on all other subsets. This cross-validation process was repeated three times. The 
final model was chosen by the best accuracy of these runs. Then this model is run on the 
test dataset to validate the model.

Leave one subject out validation

A leave one subject out model was done to truly capture how well other subjects’ fea-
tures and data can predict an individual’s cognitive load. This was done by combining 
all subjects’ datasets for only the stride data type. Each model was trained on nine out of 
the ten subjects (n = 14,421 to 14,940 strides), and the model was tested on the remain-
ing subject (n = 1351 to 1870 strides). Training and testing were done ten times, and 
average evaluation metrics were calculated.

Results
An equal number of adult males and females participated. The participants reported 
good health, which was consistent with the mean BMI derived in the good condition 
range (Table 1). All participants completed both study sessions.

(1)Accuracy =
TP + TN

TP + TN + FP + FN
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Stride characteristics

Within each of the ten subjects, the stride time distributions were not significantly 
different between trials using ANOVA tests with a Tukey’s posthoc test (Table  2). 
Earlier, we indicated that we expected the stride times to be significantly different 
due to a large sample size of strides per subject. However, the test indicated differ-
ences in stride times cannot be differentiated, which suggests that machine learning 
algorithms will have to be very sensitive when differentiating between cognitive load 
vs. no cognitive load.

Machine learning results

For each model, all machine learning results reported were derived from the results of 
the test dataset.

Within each subject, Fig. 5 depicts the accuracy values from all the models. From the 
strides datasets, over all subjects, the mean (95 % t-distributed CI) of the accuracy of 
LR is 0.998 (0.995, 1.00), LVQ is 0.999 (0.999, 1.00), RF is 0.998 (0.999, 1.00), and SVM 
is 0.998 (0.996, 0.999). From the 30 s. window datasets, over all subjects, the mean (95% 
t-distributed CI) of the accuracy of LR is 1.0 (1.0, 1.0), LVQ is 0.97 (0.93, 1.0), RF is 1.0 
(1.0, 1.0), and SVM is 1.0 (1.0, 1.0). From the 5 s. window datasets, over all subjects, the 
mean (95% t-distributed CI) of the accuracy of LR is 0.997 (0.993, 1.00), LVQ is 0.97 
(0.93, 1.0), RF is 0.999 (0.998, 1.00), and SVM is 0.996 (0.994, 0.998).

Common influential features that appear for most participants in these models are the 
means and standard deviations of the x, y, and z directions for the back sensor and ankle 
sensors.

Between all the subjects, Fig. 6 depicts the accuracy values from all the models. Com-
mon influential features that appear for most participants in these models were similar 
to the within-subjects models, with the inclusion of the covariances and correlations of 
the x, y, and z-direction of the chest sensor.

By training on nine out of ten subjects and testing on the remaining one, Fig. 7 depicts 
the accuracy values from all the models for each tested subject. Over all subjects, the 
mean (95% t-distributed CI) of the accuracy of LR is 0.59 (0.33, 0.85), LVQ is 0.47 (0.32, 

Table 2  Number of  strides and  stride time comparison between  trials 1 and  2, for  each 
subject

Subject Stride no. Stride time (s) [mean (SD)]

No cognitive load Cognitive load

1 1511 1.32 (0.23) 1.29 (0.16)

2 1688 1.17 (0.12) 1.20 (0.04)

3 1592 1.28 (0.18) 1.29 (0.07)

4 1705 1.22 (0.17) 1.22 (0.07)

5 1810 1.13 (0.10) 1.12 (0.06)

6 1721 1.18 (0.12) 1.20 (0.09)

7 1870 1.10 (0.11) 1.11 (0.08)

8 1565 1.22 (0.07) 1.25 (0.03)

9 1478 1.24 (0.16) 1.24 (0.04)

10 1351 1.24 (0.07) 1.31 (0.09)
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0.62), RF is 0.60 (0.40, 0.79), and SVM is 0.49 (0.26, 0.72). Feature reduction varied 
greatly for these models, likely due to the inconsistency of accuracy results from one 
subject to the other.

Fig. 5  Within subjects results. Accuracy values (95% confidence intervals in blue) using the “within subjects” 
model using all three dataset types

Fig. 6  Between subjects results. Accuracy values (95% confidence intervals in blue) using the “between 
subjects” model using all three dataset types
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We chose to present only accuracies, which is measured by dividing the number of 
correct predictions by the number of predictions [46]. However, accuracy was not the 
only evaluation metric; we calculated other evaluation metrics, such as sensitivity, speci-
ficity, and AUC values (Figs. 8,  9,  10,  11,  12).

Discussion
This study’s purpose was to implement signal processing on raw accelerometry gait data 
and evaluate the performance of common machine learning methods, LR, RF, LVQ, and 
SVM, to classify the presence of cognitive load in ten healthy adults.

Our machine learning models consisted of within-subject, between-subject, and leave 
one subject out classification. Within-subject classification is clinically vital for preci-
sion (individual-specific) medicine because it can help health-care practitioners and 
researchers more accurately predict which treatment strategy will work for a particular 
person, without regard for differences in individuals [47, 48]. Leave one subject out clas-
sification is also relevant for precision medicine, and our attempt with ten individuals is 
an example of how other people’s gait patterns can be used to train a machine learning 
model to test on an individual. For example, model training on similar patients can be 
done to help decide a treatment strategy for a patient. Conversely, between-subject clas-
sification only assesses an overall baseline of gait patterns over a population.

Not all four machine learning algorithms performed with consistently high accuracy, 
among all three modelling approaches. In the within subjects model, The results show 
that the LR, RF, and SVM algorithms recognized cognitive load accurately (with accu-
racy > 0.93) for both strides and windows. In particular, RF and SVM were consistently 
strong performers amongst all data transformations, whereas LVQ performance varied. 
As seen in Fig. 5, subjects 3, 5, and 6 had varied LVQ accuracy values for window data-
sets. Upon further inspection, feature selection with LVQ for the window datasets was 

Fig. 7  Leave one subject out results. Accuracy values (95% confidence intervals in blue) using the “leave one 
subject out” model
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not able to reduce the number of features. Feature selection was able to reduce the num-
ber of features in LR, RF, and SVM, but not in LVQ which could mean that there are too 
many features in the model, which in turn could be picking up random noise instead of 
the actual trend leading to erratic results. In the between subjects model, LR and SVM 
algorithms performed well, and LVQ and RF were weak performers. LVQ being a weak 
performer for both models is a surprising result because LVQ has proven to be a reliable 
gait predictor in the past [49].

When we assessed the leave one subject out approach, many of the accuracy values 
were lower than random chance. It was clear that due to gait differences between the 
individuals, cognitive load prediction varied considerably. Even though the data points 
for this approach were from the stride dataset and the sample size of these datasets 
were large when put together for the training set, the result of the machine learning 
algorithms suffered from having a limited overall sample size of ten individuals. Each 
individual, albeit being similar in basic demographic characteristics, presumably have 
different gait patterns. A low accuracy on the leave on out approach in this study may 
require the following in order to get better results: (1) a high sample size of participants, 
(2) more detailed demographic and medical characteristics of each participant, (3) dif-
ferent signal processing techniques, and/or (4) varied feature selection approaches by 
either choosing different features or changing the feature reduction technique. Since this 
approach has precision medicine implications and can be a bridge between the results 
of the between subjects approach and the within subjects approach, it is relevant to our 
discussion. We hope that with a higher sample size, the leave one subject out approach 
will produce higher accuracy results; however these results do not discount the high 
accuracy results of the within subjects approach.

Moreover, in machine learning, overfitting can become an issue, when there is low 
training error and high generalization error. In particular, overfitting can occur when 
there is a higher model complexity (too many parameters) or a small sample size. To 
overcome overfitting in our models, we performed feature selection. Feature selection 
resulted in 2–20 features per model used. Common features included ML signals in back 
acceleration, stride time and length, V signals in chest acceleration, all signals in both 
wrist acceleration, and all signals in both ankle acceleration. This suggests that collect-
ing data from one sensor, such as the back, chest, wrists, or ankles, will be sufficient to 
determine differences in cognitive load. We also evaluated overfitting by including sen-
sitivity, specificity, and AUC values in our Appendix. Specificity and sensitivity values 
were consistently above 0.90 for all algorithms and for the within and between subjects 
models.

Overall, these findings are particularly compelling because the treadmill is a “dedi-
cated pacer” and the subjects’ were very similar to each other in both demographic and 
gait characteristics, meaning that the machine learning algorithms, particularly in the 
within subjects model, were sensitive enough to pick up the cognitive load.

Statistical signal processing is a time-consuming task, but stride extraction was per-
formed successfully and validated by the treadmill pressure reports for each subject 
(Fig.  3). Even though stride extraction was done for each subject, window extraction 
was also done to compare how predictive machine learning algorithms can be with-
out respect to gait cycle events. In the within subjects model, accuracy values between 
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windows and strides were easily comparable, with the exception of the LVQ results. Due 
to the time and memory consuming task of signal processing, window extraction is pref-
erable [50].

The data collection and analysis process had multiple limitations. First, the use of 
the treadmill is not reflective of overground walking, which could lead to poor gener-
alizability in using this technique and these models for further gait analysis. However, 
after treadmill familiarization, young and unimpaired individuals, particularly healthy 
18–28 year olds, have been shown to have negligible differences or no differences at all 
between overground and treadmill gait parameters and leg kinematics [51–53]. Second, 
the low subject sample size (n = 10) may have led to poor accuracy values for the leave 
one subject out method. However, the stride/window data used for the leave one subject 
out method had sample sizes that were sufficiently large (please see “Leave one subject 
out validation” section). Even though there may be low generalizability of the gait data 
acquired by these subjects, future work in this area has the potential to be remedied by 
a higher subject sample size and a more extensive set of acceleration signals. Third, the 
cognitive task accuracy was not included in the machine learning models. Cognitive task 
accuracy or other measures of how much cognitive load a person had during the walking 
tasks could have biased the accelerometer data. For example, an individual could have 
had more cognitive loading than another individual. However, this issue is partially alle-
viated due to the fact that the machine learning algorithms classified between the pres-
ence of cognitive load versus no cognitive load. We can see that this bias could have 
possibly contributed to the poor leave one subject out results.

These findings contribute to the era of personalized medicine, which aims to improve 
the potency of therapies at an individual level. To provide personalized medicine in gait 
research, we must identify appropriate gait features that reliably predict differences in 
cognitive load. Sensors are relatively inexpensive, and they can be used by healthcare 
professionals and patients alike to track gait patterns. However, the analysis of raw sen-
sor data can be challenging without an appropriate tool; window separation of these 
acceleration signals and machine learning analysis fills this gap. The implications of this 
analysis can lead to the creation of a medical device that can be used in not only the 
clinic but also in athletics.

Marrying sensors with machine learning algorithms has the potential to be an early 
indicator of disease or fall risk, especially in older adults. Ageing has been known to 
contribute to gait difficulties; even more so, gait impairment may be due to an intrinsic 
disease [54]. In fact, those with gait disorders are more likely to have dementia symp-
toms than those without gait disorders. We can endeavour to identify these pre-clinical 
changes in gait that are associated with a cognitive load for diagnosis or aid in other 
therapies, such as combative cocktail therapies for neuromotor illnesses [55, 56].

Also, there is a quiescent need to identify cognitive status via different types of gait 
disorders. While this study discriminated between two types of cognitive statuses, 
this analysis has the potential to describe the overall spectrum of cognitive disorders. 
Granted, this analysis will heavily depend on the population being studied, but separat-
ing the several neurological causes for gait disorders, such as stroke, ataxia, and Parkin-
son’s disease [54], can help add to the stock of knowledge of gait and cognitive faculties.
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Thus far, we have determined cognitive status with previously collected gait data. 
Future work consists of predicting forthcoming continuous clinical outcomes from gait 
data, predicting the acceleration signals of the next stride using forecasting algorithms 
such as hidden Markov models and autoregressive integrated moving average, along 
with other gait parameters, such as cadence.

Conclusion
In our study, we found that just by combining machine learning technology with 
advanced signal processing methods on sensor data, we were able to detect cognitive 
states accurately. Our features were derived from gait accelerometry signals from healthy 
adult subjects. Moreover, we determined that using window extraction methods and 
selecting gait features from data from only one sensor is satisfactory. These results have 
an array of clinical implications, namely in personalized medicine and early detection 
of neuromotor diseases. This successful pilot study provides a clear path for expansion, 
due to its explicit findings and its potential application towards a much larger population 
consisting of adults across a broad range of ages. Lastly, this is particularly provocative 
due to the fusion of machine learning on gait accelerometry data that could lead to the 
prediction of disease or gait instability in older adults.
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Fig. 8  Sensitivity, specificity, and AUC values for the within subjects (stride dataset) model. Sensitivity values 
using the “within subjects” model using the stride dataset

Fig. 9  Sensitivity, specificity, and AUC for the between subjects model. Sensitivity values using the “between 
subjects” model

Fig. 10  Sensitivity, specificity, and AUC for the within subjects (5 s windows) model. Sensitivity values using 
the “within subjects” model using 5 s windows

Fig. 11  Sensitivity, specificity, and AUC values for the within subjects (30 s windows) model. Sensitivity 
values using the “within subjects” model using 30 s windows
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