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Abstract 

Background:  Electroencephalogram-based brain–computer interfaces (BCIs) repre-
sent novel human machine interactive technology that allows people to communi-
cate and interact with the external world without relying on their peripheral muscles 
and nervous system. Among BCI systems, brain-actuated wheelchairs are promising 
systems for the rehabilitation of severely motor disabled individuals who are unable to 
control a wheelchair by conventional interfaces. Previous related studies realized the 
easy use of brain-actuated wheelchairs that enable people to navigate the wheelchair 
through simple commands; however, these systems rely on offline calibration of the 
environment. Other systems do not rely on any prior knowledge; however, the control 
of the system is time consuming. In this paper, we have proposed an improved mobile 
platform structure equipped with an omnidirectional wheelchair, a lightweight robotic 
arm, a target recognition module and an auto-control module. Based on the you only 
look once (YOLO) algorithm, our system can, in real time, recognize and locate the 
targets in the environment, and the users confirm one target through a P300-based 
BCI. An expert system plans a proper solution for a specific target; for example, the 
planned solution for a door is opening the door and then passing through it, and the 
auto-control system then jointly controls the wheelchair and robotic arm to complete 
the operation. During the task execution, the target is also tracked by using an image 
tracking technique. Thus, we have formed an easy-to-use system that can provide 
accurate services to satisfy user requirements, and this system can accommodate dif-
ferent environments.

Results:  To validate and evaluate our system, an experiment simulating the daily 
application was performed. The tasks included the user driving the system closer to a 
walking man and having a conversation with him; going to another room through a 
door; and picking up a bottle of water on the desk and drinking water. Three patients 
(cerebral infarction; spinal injury; and stroke) and four healthy subjects participated in 
the test and all completed the tasks.

Conclusion:  This article presents a brain-actuated smart wheelchair system. The 
system is intelligent in that it provides efficient and considerate services for users. To 
test the system, three patients and four healthy subjects were recruited to participate 
in a test. The results demonstrate that the system works smartly and efficiently; with 
this system, users only need to issue small commands to get considerate services. This 
system is of significance for accelerating the application of BCIs in the practical environ-
ment, especially for patients who will use a BCI for rehabilitation applications.
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Background
An electroencephalogram (EEG)-based brain–computer interface (BCI) is a novel 
human–machine interactive technology that allows people to communicate and interact 
with the external world without relying on their peripheral muscles and nervous system 
[1]. Among BCI systems, brain-actuated wheelchairs are promising systems for the reha-
bilitation of severely motor disabled individuals who are unable to control the wheel-
chair by conventional interfaces. In recent years, extensive progress has been made on 
brain-actuated wheelchairs.

Early brain-actuated wheelchair systems were straightforward and were implemented 
by applying a BCI to a wheelchair. The BCI system acts as an alternative controller, such 
as a joystick, that directly controls the wheelchair. For example, in [2], the user controls 
the directions of the wheelchair through mental tasks. Due to more extensive research, 
many more wheelchair functions, such as start/stop and the acceleration/deceleration 
can now be achieved by different kinds of BCIs, e.g., P300 BCIs [3, 4], steady-state visual 
evoked potential (SSVEP) BCIs [5, 6], motor imagery (MI)-based BCIs [7, 8], and even 
hybrid BCIs [9–12].

With the growing number of studies on this topic, researchers have introduced the 
shared control [13] framework into BCI-actuated systems to improve the security and 
performance of the BCI systems. In such a system, the device is equipped with automa-
tion control technology to build a semiautonomous system that works in cooperation 
with humans. Researchers equipped the wheelchair with sensors such as radar, lasers 
and vision camera to capture the environmental context, to enhance control to avoid 
obstacles or to correct an improper command issued by the BCI [14–19]. For exam-
ple, Millar et  al. presented their system, which is based on comprehensively analysing 
data from the human brain and the environmental data captured by a laser range finder 
(LRF), to build a context filter to filter incorrect BCI commands and ensure security dur-
ing navigation. They also developed another system to smooth the moving trajectory 
based on the sensor’s data and human intent. From the perspective of human–machine 
interactions, the automation control module in these systems works via a low level 
shared control framework to correct or optimize the driving commands; however, the 
user still directly controls the wheelchair.

The basic function of a wheelchair is to transport a person from place A to place B, 
and the details of wheelchair control are not necessary for users to know. An intuitive, 
easy-to-use system for users, especially patients, is highly important. Some research-
ers have proposed systems that function in such a way. In the work of Iturrate et al. 
[3], which was based on virtual reality technology, the scenario of the environment is 
reconstructed and displayed on a screen, and a predefined N × M polar grid is used 
to define a set of destinations (destinations outside the accessible area are automati-
cally eliminated). Users select a destination through a P300-based BCI, and as long as 
the destination is confirmed, the system automatically navigates to the destination. 
In contrast to Iturrate’s system’s [3] real time reconstructing scenario, there are sev-
eral systems that predetermine the destinations of the target, with the users steer-
ing the wheelchair by choosing one goal through the BCI. For example, Rebsamen 
et  al. [20] proposed a system that works in familiar environments with target loca-
tions such as bed, the television, a desk, all being predetermined. The user chooses 
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one target by a P300-based BCI, the path to the goal is generated by the computer, 
and the wheelchair can auto navigate to the goal. Zhang et al. [21] proposed a similar 
system, in which they mounted two webcams on the wall to predetermine the loca-
tions of the targets, and the wheelchair was equipped with a laser so that the sys-
tem could dynamically plan a safe trajectory to an assigned destination. Users also 
steer the wheelchair by indicating the intended goal through the BCI. Another system 
proposed by Lopes et al. [22] also predetermines the waypoints and goals offline and 
uses a P300-based BCI to provide five steering commands: go forward, turn left 45°, 
turn left 90°, turn right 45° and turn right 90°. The system determined the most likely 
destination according to the current BCI command and the distribution of the tar-
gets. The advantages and disadvantages of these systems are obvious: they represent 
smart mobile solutions. The systems with a straightforward solution to predetermin-
ing the goals in the environment can reliably work in familiar environments, however, 
any changes in the environment require the system to recalibrate the goals, and these 
systems are unable to deal with dynamic goals such as people. Iturrate’s system [3] 
avoids this problem, because their system does not rely on any prior experience; all 
the necessary information is captured online. However, the destinations are defined 
by a grid, which means the marked destination does not represent the real target; 
getting to one destination requires multiple destination selections and validations to 
gradually get closer to the real target, therefore this system is not very intuitive and is 
time consuming.

Our team is also engaged in building intuitive and efficient mobility solutions for 
users. We have employed target recognition technology and auto navigation technol-
ogy to build a target driven and dynamic system. Specifically, the target recognition 
module recognizes and locates the target in the environment online, the user con-
firms one target by selecting this target directly through a BCI system, and the auto 
navigation module steers the wheelchair to the assigned destination. Thus, this sys-
tem can deal with a dynamic environment, and the process of approaching a target is 
straightforward. Additionally, our work goes further in that we consider that a spe-
cific purpose commonly accompanies navigation tasks; for example, moving closer 
to a desk is often for the purpose of picking something up. Thus, we have equipped 
the wheelchair with a lightweight robotic arm as an additional actuator. Based on the 
target recognition result, we plan a proper solution by comprehensively considering 
the properties of the target, the context of the current condition and other factors 
for a target. For example, we would plan a solution for a bottle of water as the user 
approaches it by picking up it and feeding the user. Accordingly, the mobility of the 
system is enhanced (for example, opening the door before entering a room), and the 
application of the system is broadened (i.e., go to somewhere to do something). To 
validate and evaluate our system, an experiment simulating daily application was per-
formed. The tasks included the user driving the system closer to a walking man to 
have a conversation with him; going to another room through a door; and picking up 
a bottle of water on the desk and drinking water. Three patients (cerebral infarction; 
spinal injury; and stroke) and four healthy subjects participated in the test and all 
completed the tasks.
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Methods
Smart wheelchair system

Figure  1 illustrates the architecture of the system. The smart wheelchair system was 
designed using artificial intelligence technology to enable the system to adapt to dynamic 
environments and to intelligently complete operations. With a BCI system, users oper-
ate the wheelchair in a simple and intuitive manner. In this section, the four parts of 
the smart wheelchair system are introduced. These parts are: the hardware and software 
structure; target detection and localization; the target solution; and the wheelchair and 
robotic arm control.

Hardware and software structure

Hardware structure  In this system, a flexible wheelchair was constructed by introduc-
ing an omnidirectional chassis. This chassis is based on the mecanum wheel [23], which 
allows for the wheelchair to travel in any direction and to rotate with zero radius; thus, the 
wheelchair can better accommodate navigation in complicated environments, for exam-
ple, small spaces or a domestic house with a lot of furniture. Considering that the users of 
the system may be severely disabled people, we also introduced a lightweight five degrees 
of freedom (DOF) robotic arm (Mico, Kinova, Canada) equipped with a two claw end 
effector into the system and mounted it on the left armrest. Thus, the robotic arm can 
provide assistance for navigation tasks (for example by opening the door before entering 
a room.) to effectively broaden the activity range of the wheelchair without requiring 
help from others and can aid in completion of navigation-subsequent tasks (for example 
picking up a bottle of water) since, as we have stated, navigation tasks commonly have a 
certain purpose. In addition, several other components are equipped as follows:

• • Kinect camera A Kinect camera is mounted on the back support of the wheelchair at 
a height of approximately 1.5 m with a 0.37° depression angle to capture the RGB and 
depth streams at the front of the wheelchair over a sector area covering an approxi-
mately 57° visual angle. The camera provides the system with 640 × 480 RGB images 
at 20 frames per second (FPS), and by merging the depth stream, the 3D point cloud 

a b
Fig. 1  The structure of our system. a System modules of our system. b Photograph of our system
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of the scene is obtained. In our test runs, the location error of the 3D point cloud 
was approximately 1 cm within a 2 m area. This level of accuracy enables our system 
to operate on objects no less than 2 cm in size, such as bottles and ordinary electric 
buttons. During the experiment, the 3D points of the wheelchair body and the points 
below the height of 10 cm from the floor were eliminated to accelerate the calcula-
tions.

• • Low cost lidars On the front right corner and back left corner of the wheelchair, two 
single line low cost lidars are mounted at a height of 35 cm above the floor. Each lidar 
is able to measure objects in the environment with a 1° angle resolution in a 0.1–8 m 
range at 5 Hz. The calibration programme is performed to calculate the transforming 
matrix between the two coordinate systems. Thus, with this transforming matrix, the 
data from these two lidars are fused, and after eliminating the data in the range of the 
wheelchair itself, the surrounding environment’s measurement is obtained.

• • Other devices In addition to the Kinect camera and the lidars, a USB camera is 
mounted on the back support of the wheelchair to capture the backward scene of 
the environment. A 12 in computer monitor is mounted on the right armrest of the 
wheelchair to display the stimulation interface of the BCI. A laptop with an inde-
pendent graphics processing unit (GPU) to support the deep learning programming 
framework is equipped as the host computer.

Software structure  As described above, this smart wheelchair is composed of sensors, 
devices and corresponding computational modules. These modules communicate and 
cooperate with each other to complete tasks. To ensure the system works efficiently and 
can be easily managed, a good software structure is important. A robot operating system 
(ROS [24]) was employed to construct our system, since an ROS is a widely used pro-
gramming tool for robot applications. This tool realizes hardware abstractions for com-
mon devices and sensors as well as many mature algorithms for robot control. One ROS 
application is split into independent nodes that are running in independent processes, 
and the nodes communicate with each other via a standard method through standard 
messages. Therefore, such applications are developer friendly and can be efficiently man-
aged.

The node graph of our system is illustrated in Fig. 2. There are thirteen main nodes: “/
lidar01”, “/lidar02”, “/lidar_fusion”, “/mecanum”, “/nav”, “/mico”, “/Kinect”, “/tar-det-loc”, 
“/tar-sol”, “/gui”, “/bci”, “/ctr-center” and “/tar-trk”. The system runs at 10 Hz, and all the 
nodes communicate with each other through the ROS topic. The /lidar_fusion node 

Fig. 2  Node graph of our system’s software structure
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subscribes the message of /lidar01 and /lidar02 to normalize their coordination system, 
fuses the measured data, eliminates data in the range of the wheelchair itself, and finally 
publishes the fused message. The /Kinect node captures the RGB and depth data of the 
environment. The /tar-det-loc node recognizes and locates the target based on the image 
and 3D point cloud from the Kinect. The /tar-sol node prepares solutions for the targets 
and publishes this information to the /gui. The graphical user interface (GUI) displays 
the image from the /Kinect and detected targets from the /tar-det-loc. The /bci node 
deals with the online EEG data and estimates the target selected by the user. The /tar-sol 
node subscribes the result of the BCI system and publishes the target position and cor-
responding solutions to the /ctr-center node. The/ctr-center node decomposes the tasks 
as control sequences such as mecanum move**->robot arm act**->mecanum move**. 
The control sequences are sent to the mecanum or robotic arm. At each control frame, 
the mecanum or robotic arm will report whether the current command is completed, 
and as long as one command sequence is completed, the next control sequence is to be 
executed. In particular, the image tracking node /tar-trk will update the target informa-
tion for the system during task execution.

Target detection and location

To allow the system to intelligently serve the user in dynamic environments, we 
employed a target detection algorithm to recognize targets in the environment in real 
time. The RGB stream from the Kinect is used as the source image. The deep learning 
based target detection method, which has been rapidly developed in recent years, was 
used in this research, since this method has excellent performance in image processing 
compared with traditional computer vision methods. Specifically, in using the system 
in real time applications, the YOLOv2 [25], which exhibits high speed target detec-
tion, is employed in this system. Using our laptop, this method is able to achieve 15 FPS 
with the 640 × 480 RGB image, which is sufficiently fast for our system’s application. To 
accommodate our application, an image training database was built based on a sample of 
images (“chair”, “bed”, “sofa”, “person”, “cup” and “bottle”) from the Common Objects in 
Context dataset (COCO) [26] and images acquired by ourselves (“opened door”, “closed 
door”, “desk” and “electric switch”). With the pre-trained neural network published on 
YOLOv2’s official site, the programme was trained on this reorganized database, and 
consequently our system is able to recognize ten classes of objects that are commonly 
found in a domestic environment.

After target detection, the bounding box of the target is confirmed. To eliminate non-
useful points, a smaller bounding box that is 60% of the original in size is used to extract 
the 3D points. The centre of these 3D points is calculated as the estimation of the tar-
get position. The orientation of the target is also estimated, because the orientation 
of the target significantly affects human interaction with that target. For example, the 
comfortable orientation for two people to communicate is face to face. To estimate the 
orientation of the detected object, we first assumed that the object was vertically posi-
tioned with respect to the floor, i.e., we considered only the orientation in the horizontal 
plane or the xoy plane in the coordination system of our system. We project the points 
of the object to the xoy plane and then find the principal orientation vector v by princi-
pal component analysis (PCA). Additionally, the vector f pointing from the wheelchair 
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to the target centre is calculated. The angle between the v and f vectors and the angle 
between vn (i.e., the orthogonal vector of v) and f are tested, and the v or vn vector with 
the smaller angle to f is confirmed as the orientation of the target. Thus, the target’s posi-
tion and orientation are confirmed.

However, during navigation, the relative position between the target and the system 
will change. Although this change can be estimated by recording the wheelchair’s move-
ment, location error will be introduced, and this error is unacceptable for robotic arm 
operation (e.g., to pick up a bottle, the location error should be limited to 2 centime-
tres). Another consideration is that this system is designed to accommodate dynamic 
objects; therefore, the target object’s movement should also be taken into consideration. 
Therefore, during system operation, once the target is confirmed by the user, the target 
is tracked with image tracking technology [the kernelized correlation filter (KCF) [27] 
method is used], and the location and orientation are updated with each newly updated 
target bounding box. Thus, the system maintains precise positioning of the target.

Target solution

In this system, the following ten classes of targets can be recognized: “chair”, “opened 
door”, “closed door”, “bed”, “sofa”, “desk”, “person”, “bottle”, “electric switch”, and “cup”. 
Through the BCI system, the user can select one class of target. However, as discussed, 
the navigation tasks are commonly accompanied by special aims. Therefore, our system 
does not seek to just “transport one from place A to place B”; rather, it seeks to fur-
ther predict the user’s intent to provide proper service for him and satisfy the user’s real 
demand. In our hypothesis, the attributes of the target, the context, and the habits and 
historical behaviour of the user can all be used as factors to infer the user’s intention and 
then provide him with the best service. As a preliminary attempt, we provide solutions 
for each target based on the attributes of the target. The ten targets are classified into 
four groups, and the corresponding solutions were defined as follows:

• • For “person”, “chair” and “sofa”, we assume that the aim of the user selecting these 
targets is to have a conversation with a person or a person seated on a chair or sofa. 
Therefore, the solution is defined as stopping at a distance of 80 cm from the target (a 
comfortable distance for communication) and facing the target.

• • For “bed”, “closed door” and “desk”, the solution is defined as reaching the target at a 
distance of 20 cm and facing the target, because there may be a subsequent opera-
tions that can be performed on this target.

• • For “opened door”, the solution is defined as reaching the target and then passing 
through it.

• • For “electric switch”, “bottle” and “cup”, the solution is defined as reaching the tar-
get and then pressing it or picking it up. Specifically, the optimal workspace of the 
robotic arm is pre-calibrated, and therefore, the operation is defined as first driv-
ing the wheelchair until the target enters the workspace of the robotic arm and then 
manipulating the robotic arm to the target. For a switch, the operation is to press it, 
and for a cup or bottle, the operation is to pick it up and translocate it to the user’s 
mouth.
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Wheelchair and robotic arm control

The autonomous navigation system and the motion planning system were designed for 
wheelchair control and robotic arm control, respectively. The ROS package “move base” 
was used to build the navigation system. This package provides complete solutions for 
various types of robot navigation. For a given destination, it plans a global path in the 
initial state, and during navigation, the local planner plans the optimal path according 
to the real-time map to decide the proper velocity and orientation of the wheelchair 
at each control step. With this package, only a few parameters need to be set, such as 
the maximum/minimum velocities in the x/y directions (the maximum and minimum 
velocities are set to 0.4 and 0.1 m/s, respectively), the type of robot (which corresponds 
to the “holonomic robot” parameter; in this study, this parameter is set to True, because 
the wheelchair is employed as an omnidirection chassis). As previously introduced, dur-
ing navigation, the target is tracked and consequently, the target position and orienta-
tion are updated. The updated position is also transferred to the navigation system to 
update the planning path to improve the accuracy and allow the system to accommodate 
dynamic targets. The robotic arm control module is realized using the ROS package pro-
vided by the manufacturer. This package has an integrated motion planning algorithm 
that allows the user to control the robotic arm by simply specifying the position and 
pose of the end-effector in the robotic arm coordinate system (XYZ coordinate system). 
To ensure the robotic arm accurately executes operations, we have defined a workspace 
for the robotic arm (− 200 mm to 0 mm range in the x-axis, 0 mm to 350 mm range in 
y-axis, and − 150 mm to 300 mm range in z-axis, it is a simple definition that is not rep-
resent the official data). The z-value of the target is first checked to roughly confirm the 
executable of the operation, adjustment in the xy-direction is then made by moving the 
wheelchair to make the target enter the workspace and then finally the corresponding 
operation is executed (in cases where the target is not accessible after the wheelchair 
adjustment, this operation will be rejected by the system).

Brain–computer interface system

In this study, the users control the mobile platform through the BCI system in three 
steps: confirming one control mode (autocontrol mode or command control mode), 
selecting one target or command, and validating the command. As discussed, we have 
built a smart mobile platform that can recognize the target in the environment and 
can autonomously complete tasks. This means the user can drive the system by merely 
selecting one detected target, since the machine will automatically plan a proper solu-
tion and complete the task. That is, the autocontrol mode. However, we believe that this 
kind of mode cannot continuously function, due to situations of the following two main 
types:

• • There is no target within the visual range of the camera, or the system failed to detect 
and interpret all the targets in the environment.

• • There is no target of the user’s desired class in the current scene.

Therefore, to ensure the system is functioning under any conditions, we added the 
command control mode, which allows the user to control the system directly (there are 
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six commands to control the wheelchair go forward/backwards, translate left/right and 
rotate left/right) when the autocontrol mode is not available or cannot satisfy the user’s 
need. To enable the user to confirm their selection, we have also provided a validation 
method.

Working flow

A state machine diagram is presented in Fig.  3 to illustrate the mechanism by which 
users can manipulate this system with the autocontrol and command control modes. 
The system begins at mode selection, and the two modes are alternately preactivated. 
For each preactivated mode, the user is allocated 3 s to issue a validation command to 
select the mode. To improve the efficiency of the system, as presented in the diagram, 
the system will be maintained in the preactivated command control mode if there is 
no target detected, since target detection is the foundation of the autocontrol mode. 
As soon as a control mode is confirmed, the targets or predefined commands are dis-
played through an oddball stimulation interface to allow the user to issue a selection 
through the P300 BCI. Once the desired command is correctly predicted by the P300 
BCI, the user can issue a validation command to confirm his selection, and the system 
will execute the associated actions. For the autocontrol mode, the actions are ceased 
after the task is completed, while for the command control mode, the command execu-
tion is ceased by another validation command. After the command/task is completed, 
the system is reset to the selection state mode. Specifically, the system will continuously 

V-command /
system interrupt

Command
selection

Target
selection

Command
execution

Task
execution

V-commandV-command

V-command

No V-
command

V-command

No V-command
& Env safe
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Env safe

Task completed /
system interrupt
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Com Ctr: command control mode
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Ntar-detec: there is no target detected
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Env safe: the environment is safe for system executinig actions.
System interrupt: the system ceased the action in un-security condition

Fig. 3  State machine diagram of our system
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monitor the system’s commands and status. Any command that causes the mobile sys-
tem to collide with the environment, or causes a system crash (for example the naviga-
tion system enters a deadloop that cannot find a path to the destination), will stop the 
system and reset the system to its initial state.

Graphical user interface

A GUI was designed to allow the user to interact with the system. As presented in Fig. 4a, 
the GUI consists of a feedback space and a workspace. The feedback space displays the 
information from the environment and the necessary information from the smart sys-
tem. The right side of the feedback space displays the image stream of the rear camera, 
which is mounted on the backrest of the wheelchair and points backward. This camera 
is used to provide the user with backward information during the use of the command 
control mode. Although the wheelchair is equipped with a navigation system, if the user 
issues a command to move the wheelchair backward, the rear image is displayed to pro-
vide him with visual feedback. The left side of the feedback space displays the image 
stream of the Kinect camera and the results of the target detection. The detected target 
is indicated by a blue rectangular box, and the class and the coding number are indi-
cated at the top of this rectangular box. Once the system enters autocontrol mode, the 
updating image stream will be paused to enable the user to select one target through 
the BCI system. As long as a target is confirmed by the user, the target is tracked and 
outlined with a yellow rectangle. The bottom area of the GUI is the workspace for the 
user to interact with the system. This area of the GUI is a two-level workspace. The first 
level (see Fig. 4b) shows two alternating lit rectangular boxes that represent “AutoCtr” 
mode and “CommandCtr” mode. The user confirms the control mode by outputting the 
validation command when the corresponding rectangular box is lit. After the control 
mode is confirmed, the second level workspace presents an oddball stimulation inter-
face in which six rectangular boxes are intensified at random. In autocontrol mode (see 
Fig. 4c), the six rectangular boxes are indicated with number 05, and they are mapped 
to the targets displayed in the feedback space. During the command driven mode (see 
Fig. 4c), the six rectangular boxes are presented with arrow graphics that point to left, 
right, turn left, turn right, forward and backward, which represent the corresponding 
operations of the wheelchair. Once the second level workspace is activated, the P300 BCI 

Workspace

Feedback space

1.0m

1.5m
2.0m

0.5m

Kinect Image stream
& result of target detection Rear camera image

bWorkspace 1th-level: mode selecting

c Workspace 2th-level-a: command-control mode

Command-CtrAuto-Ctr

0 1 2 3 4 5

a graphic user interface d Workspace 2th-level-b: auto-control mode

Fig. 4  Graphical user interface of our system
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system immediately begins to function, and the target/command predicted by the P300 
classifier is indicated by a red rectangular box on the corresponding stimulus. The user 
confirms the command by issuing a validation command. Once the target/command is 
successfully selected, the workspace will stop updating, and thus the user knows that the 
command is accepted by the system. After the task/command is completed, the work-
space resets to the first level for mode selection.

Data acquisition

In this step, EEG signals are recorded using an Actichamp amplifier (Brain product Inc., 
Germany) through 8 electrodes attached to an EEG cap. The F3, F4, FC1, FC2, C3, Cz, 
C4, CP1, CP2, P3, Pz and P4 electrodes are included, and the P8 and FPz electrodes are 
used as the reference and ground, respectively, as illustrated in Fig.  5. The signals are 
digitized at 500 Hz, while the impedance is maintained below 5 kΩ.

P300 BCI

In this study, the P300 BCI is employed to estimate the target attended to by the user. As 
discussed, six visual stimuli are included in the second level workspace of the GUI. Dur-
ing target/command selection, the six stimuli are randomly intensified for 120 ms with 
80 ms intervals. The continuous EEG signals are simultaneously acquired and bandpass 
filtered between 2 and 25 Hz. After each stimulus onset, the proceeding 800 ms long sig-
nal is extracted as an epoch. The stepwise linear discriminant analysis (SWLDA) method 
is employed to analyse the P300 target signals and nontarget signals. This analysis pro-
cess is a stepwise regression method that is used to filter the variables that correspond 
to significant differences between two datasets and provides a weight for each filtered 
variable. After obtaining the weight vector, each epoch is multiplied by the weight vector 
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Fig. 5  The names and distribution of electrodes. Eight electrodes (bue colour) are employed in our 
experiment
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to yield a score. This score represents the possibility of a P300 potential being elicited by 
the associated stimulus. In the command control mode, the target with the highest score 
in one trial is selected as the output of the classifier. In the autocontrol mode, since there 
may be less than six detected targets (there are six stimuli in the GUI), only the scores 
associated with these targets are included in the classification; therefore, the accuracy is 
improved.

Validation command

As introduced in the working mechanism section, a validation command is used to con-
firm the user’s selections. Therefore, the command should be reliable so that the system 
can correctly function in practical environments. Based on this consideration, electro-
myography (EMG) is employed as the signal source to implement this validation com-
mand due to the higher signal:noise ratio of this source. The validation command is 
produced by the user voluntarily clenching his jaw. In [28], the researchers designed a 
method to classify 5 clenching tasks based on EMG signals extracted from EEG record-
ings. They evaluated the power spectral density while the users clenched their jaws. The 
result indicated that signals with a power density between 57 and 77 Hz increased fol-
lowing the clenching action. Thus, according to this research, our method also considers 
this frequency spectral range. Because only two states need to be recognized, the sig-
nal from one channel, i.e., the FCz channel, is acquired. The ongoing signal is extracted 
within a 200 ms time window and is then bandpass filtered between 55 and 77 Hz. The 
variance of the signal segment is calculated as the power measurement. A threshold is 
set to 1500 to identify whether the user is clenching his jaw. The value of this measure-
ment in normal situations is maintained below 100, whereas the value quickly increases 
to exceed thousands after the user clenches his jaw. To avoid signal fluctuations, a four 
length first in first out (FIFO) queue is used to accept the latest classifier output, and if 
the value in the queue is [1,1,0,0], the validation command is confirmed. Therefore, the 
validation command will be activated after the clenching action is ceased in 0.4 s.

Experiment
Participants and preparation

Seven subjects participated in the experiment. Three of these subjects (s1–s3) were 
patients who were recruited from the Department of Rehabilitation Medicine of the 
First Affiliated Hospital of Xi’An JiaoTong University in China, and the other four (s4–
s7) were healthy people who were recruited from the community and our research unit. 
s1 is aged 35 years and had a cerebral infarction; he has normal physical function but 
has poor memory and understanding ability and becomes easily distracted. s2 is aged 
32  years and has a spinal injury from a traffic accident that occurred 5  years ago. He 
has complete upper limb function but no ability to control his lower limbs. s3 is aged 
55 years and suffered from a stroke; he therefore has difficulty walking. The other four 
healthy participants were aged 25–30  years. Among these seven volunteers, the two 
participants who were recruited from our laboratory had experience using a BCI, and 
the others had never used a BCI system. This experiment applied for ethics approval to 
the ethics committee of the First Affiliated Hospital of Xi’an Jiaotong University, and the 
ethics committee considered that this experiment does not involve an ethics issue. All 
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participants provided written informed consent after the purpose of the study and the 
task required were explained in detail.

Prior to the online evaluations, the subjects first attended a short BCI training ses-
sion to calibrate the BCI system. This training consisted of five sets of P300 experiments 
with each set including 12 trials. The training required approximately 12  min. After 
the training, the online evaluation experiment was initiated. This experiment required 
approximately 35 min for one test. To fully test the system, the participants were asked 
to repeat the test 10 times. Adequate rest was allowed between the two tests. Generally, 
we ensured that the actual accumulated online time did not exceed 1.5  h. If the user 
could not complete all the tests in one experiment, the remaining tests were completed 
on another date.

Experimental task

The experimental environment simulated a daily domestic environment. The test 
environments for s1–s3 and s4–s7 were slightly different and are illustrated in Fig. 6. 
Scenario A (see Fig. 6a) was performed in a sickroom of a hospital; the test environ-
ment included a sickroom and a long gallery. In the sickroom, there was a desk with 
several bottles of water on top. From the sickroom to the gallery, there was an opened 
door. The experimental task included drinking water and going out of the sickroom to 
have a conversation with another person. To normalize the experiment, the steps of 
the experiment were predesigned, and these steps are listed in Table 1. The wheelchair 
was initialized pointing towards the desk, and the user was instructed to drive the 
wheelchair to the desk, pick up the bottle (the target bottle was randomly assigned by 
the experiment assistant after the subject completed the previous task) and drink the 
water. The user was then required to reverse the wheelchair, turn right towards the 
door, and pass through the door. After exiting the room, the user was asked to turn 
right and approach the other person. This other person initially stands still. If the sub-
ject initiated the approach of the person with the wheelchair, the person was asked to 
walk to the end of the gallery. Finally, the subject reached the person to have a 1-min 
conversation with him.

Test scenario B (see Fig. 6b) for the healthy subjects was similar to scenario A, but 
the environment was slightly more complicated to simulate a real-life environment. 
The rooms were equipped with a few pieces of furniture that included several chairs, 
a desk, a cabinet and other paper boxes. The steps in the test are listed in Table 2.

Performance evaluation

To evaluate the system performance, we reference the methods of related studies [3, 
21]. The metrics used in this study are as follows:

1.	 Deductions. Except for false actions induced by the BCI system, each false action 
accrued one deduction. The deductions are divided into the following two categories:
Environment perception error (EP): failure to recognize all the targets in the 
scene; failure to localize and track the target.
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a

b
Fig. 6  The Experimental environment. a Scenario A, in a rehabilitation hospital. b Scenario B in our laboratory

Table 1  The online tasks in scenario A

Steps Mode Task

1 Auto-control Go to the desk

2 Auto-control Pick up the water

3 – Drink water

4 Command-control Reverse

5 Command-control Turn

6 Auto-control Pass through the door

7 Command-control Turn

8 Auto-control Go to the person (dynamic)

9 – Have a conversation with the person
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Navigation error (NV): path planning failure (the system was unable to plan a path, 
although an available path existed); collision with anything during navigation.
Note: False or inaccurate operation of the robotic arm was considered an inaccu-
rate environment perception.

2.	 Trials for selecting a command through the P300 BCI (TrP3): the number of trials 
required by the user to correctly select the assigned target.

3.	 Time spent to select one command through the P300 BCI (TiP3): the time spent to 
complete one trial multiplied by the number of trials.

4.	 Validation time (VT): the time spent from when the desired target command is 
selected to when the command is validated.

5.	 False validation (FV): the number of false validations except for the predefined nec-
essary validations.

6.	 Success rate (SR): the rate of successfully completed tests.

Results
The metrics of the experiment results were calculated. The seven subjects completed all 
tests and completed all tasks in each test (the success rate was 100%). During the test, 
the users’ familiarity with the system quickly improved, and the users quickly became 
experts at the use of the system and presented good results.

Table 2  The online task in scenario B

Steps Mode Task

1 Auto-control Go to the person (dynamic)

2 – Have a conversation with the person

3 Auto-control Go to the chair

4 Command-control Turn

5 Auto-control Pass through the door

6 Command-control Turn

7 Auto-control Go to the desk

8 Command-control Pick up the bottle

9 – Drink water

Table 3  Results of deductions and success rate

Subjects Deductions SR (%)

EP NV

S1 0 0 100

S2 1 0 100

S3 0 0 100

S4 2 0 100

S5 1 0 100

S6 2 0 100

S7 2 0 100

Average 1.14 0 100
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To evaluate the effectiveness of the smart system, the deductions were recorded. As 
presented in Table  3, all deductions were due to environment perception errors. The 
subjects averaged 1.14 deductions in the test. As the total test number is ten, the sys-
tem produced approximately 0.1 environment perception errors in each test. According 
to the experimental log, the main cause of the deductions was incomplete target detec-
tion of the bottles when the wheelchair was far away from the desk. When the mobile 
system arrived at the desk, the deductions were no longer triggered. We deduced that 
this source of error may have been caused by the low resolution of the Kinect images 
and the fact that the object corresponded to too few pixels in the image (recognizing 
small objects is a common problem for object detection algorithms). Another error that 
occurred twice was due to the “guest” moving fast while the mobile system moved slowly, 
consequently, the “guest” moved outside the field of view of the camera, which caused 
target tracking failure. Other than environment perception deductions, there were no 
deductions for the whole system, which means that the navigation system worked effec-
tively with a high reliability. The navigation system benefits from the mature algorithms 
of the navigation package in the ROS. However, some tasks are difficult for the naviga-
tion system; for example, the width of the door is 80 cm, while the width of the mobile 
system is 70 cm. To pass through the door, the system needs an accurately constructed 
map and fine movement control for the mobile system. The system also benefits from 
the omnidirectional chassis system, because the chassis allows the path planning system 
to work in a simple manner. Additionally, the robotic arm system also works accurately 
and reliably, and thus, the smart system performs well.

Tables  4 and 5 list the results of the BCI-related evaluations in scenarios A and B, 
respectively. To select a target (command), the three patients required an average of 
2.04 trials to output the correct command with an average of 7.37 s, as each trial took 
3.6 s. Compared with the patients, the four healthy subjects required an average of 1.68 
trials to make one correct selection. According to the data from each subject, the sub-
jects commonly required less than two trials to accurately confirm the target through 

Table 4  The results of the BCI system evaluation of the three patient subjects

Subjects TrP3 TiP3 VT FV

S1 2.05 ± 0.83 7.38 ± 2.98 4.02 ± 2.34 0

S2 1.73 ± 0.71 6.23 ± 2.56 3.15 ± 1.53 0

S3 2.36 ± 0.93 8.50 ± 3.35 4.36 ± 2.11 0

Average 2.04 ± 0.84 7.37 ± 3.02 3.33 ± 2.01 0

Table 5  The results of the BCI system evaluation of the three patient subjects

Subjects TrP3 TiP3 (s) VT FV

S4 1.57 ± 0.67 5.65 ± 2.41 2.61 ± 1.09 0

S5 1.95 ± 0.94 7.02 ± 3.38 2.71 ± 2.51 0

S6 1.58 ± 0.75 5.69 ± 2.70 2.10 ± 1.27 0

S7 1.63 ± 0.67 5.87 ± 2.41 1.93 ± 2.02 0

Average 1.68 ± 0.79 6.04 ± 2.84 2.33 ± 2.13 0
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the P300 BCI. Because the total number of stimuli was only six, the subjects could eas-
ily maintain their concentration during the short stimulation periods. Subjects one and 
three required more than two trials to issue a correct command, which was possibly due 
to their relatively weak ability to concentrate because we observed that they (one has 
a brain disorder and the other is elderly) had petty actions and distractions during the 
experiment. Nonetheless, the difference between the patients and healthy subjects was 
not significant, and they presented similar performances.

For the validation command, the patients and healthy subjects required approximately 
3 and 2.33 s to specify the command with standard errors of 2.01 and 2.13, respectively. 
None of the participants committed any errors in the validation command. Indeed, as 
introduced in the Methods section, the validation command should be quite reliable, 
because it is realized through EMG signals. In the test, the drinking and talking tasks 
were specifically included to test the feasibility of the use of jaw clenching in practical 
applications. The results revealed that normal actions such as drinking and talking did 
not induce false detections for the validation command. Regarding the response time of 
the validation command, we could theoretically detect a validation command within 1 s. 
However, the results were significantly longer than 1 s. In addition to the time spent, it 
required more time for the users to confirm the command after seeing the predicted tar-
get and then making a decision to execute the clenching action. In other words, the reac-
tion time spent comprised an important part of the total time spent. The results from s1 
and s3 fit this theory, since these patients required the longest times to issue the valida-
tion command due to their relatively weak reaction abilities. Another phenomenon is 
that the standard deviation of the subjects’ validation times was large (close to the mean 
value), which we believe may have been induced by random reactions of the subjects 
during the experiment.

Discussion
In this paper, we propose a brain-actuated smart rehabilitation wheelchair that inte-
grates automation and artificial intelligence technology to provide users with an easy-
to-use and efficient solution for applications in daily life. As outlined in the Introduction 
section, several related systems have already been proposed. Table  6, compares our 
work with work by others. In this table, we have compared our system with those of 
others based on four factors, including mobility, functionality, dynamics and straight-
forward use. We used the star symbol ‘*’ to indicate that a system performs well for the 

Table 6  A comparison of our work with related work

Works Mobility Capability Dynamics Ease-of-use BCI 
performance

Rebsamen et al. [20] – – – * *

Zhang et al. [21] – – – * *

Lopes et al. [22] – – – * *

Iturrate et al. [3] – – * – *

Our work * * * * *
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corresponding index. The short line symbol ‘–’ indicates relatively weak performance for 
the corresponding indicator.

Mobility

On one hand, mobility means the ability of the wheelchair to flexibly move in a com-
plicated environment. The previous studies are based on the traditional wheel struc-
ture; however, for this type of wheelchair, the position adjustment of moving direction 
is only available along the wheel direction. To improve the flexibility of the system, the 
omnidirectional chassis was introduced as the base of the wheelchair. It ensures efficient 
operation in minor position adjustments, especially position adjustments not along the 
wheel direction. For example, in our system, passing through a door and picking up a 
bottle commonly require accurate position adjustment, and since the omnidirectional 
chassis is equipped, the position adjustment is straightforward. For traditional wheel 
structure-based wheelchairs, minor position adjustments not in the wheel direction are 
time consuming and may exhaust the user. On the other hand, mobility also means the 
reachable range of the wheelchair. We have stated that the pure wheelchair system can 
only move in a free or an enclosed space, however, the potential users of the BCI system 
are severely disabled people. This means that navigating to a broader space requires the 
help of others. In our system, a lightweight robotic arm is introduced into the system, 
and due to its capability to open doors or operate elevator buttons, the reachable range 
of the system is extended.

Capability

With the introduction of the robotic arm, our system became a human-like structure 
with analogue legs and hands. Thus, with proper joint control of these two components, 
the capability of the system is much enriched. In fact, as we have stated that a specific 
purpose is commonly associated with the navigation task, our system provides users a 
complete mobile solution, as our system is capable of dealing with navigation-subse-
quent tasks.

Dynamics

Compared to systems relying on pre-determined goals [20–22] in the environment, our 
system is based on object detection technology that interprets the environment with-
out relying on special environments. Therefore, our system is capable of accommodating 
different environments. The tests in this study were performed in two different places, 
and in each test environment, the objects in the environment were randomly placed 
without special consideration. The results revealed that this system works normally and 
effectively. In addition, our system is also able to operate with dynamic objects, because 
image tracking technology is employed. During the test, attending to the walking “guest” 
is to test the ability of the system to cope with dynamic objects. The test results indicated 
that the system is able to track a low speed moving object, although tracking perfor-
mance is limited by the camera’s resolution and the wheelchair’s velocity (objects mov-
ing too fast easily exceed the view-sight of the camera, which causes tracking failure). In 
fact, the system is not a truly dynamic one; during the target selection, the index num-
ber of the targets should not vary, because the target selection relies on the mapping 
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relationship between the stimuli’s index and the target’s index. Keeping the index num-
ber of targets constant may rely on multiple object image tracking technology, however 
this is another major concept in the computer vision domain. Additionally, even though 
Iturrate et al.’s system [3] can work in different environments, it still cannot deal with 
dynamic objects since the ‘goal’ (defined by a set of grids) of their system is virtual desti-
nation without actual meaning.

Ease‑of‑use

In Iturrate et al’s. [3] system, they view all the detected objects (using a planar laser scan-
ner) as obstacles to be eliminated in the map; however, we think this approach is not in 
high accordance with real conditions. The goals of their system are defined by a polar 
grid. To achieve one target usually requires multiple steps. In contrast to their work, we 
and Rebsamen [20], Zhang [21], and Lopes [22] employed the target-driven idea that to 
navigate the wheelchair to the destination, the user only needs to choose a desired goal 
or select a direction closest to the goal. Thus, the usage of the system is intuitive and 
user friendly. Beyond navigating somebody from place A to place B, our system tries 
to understand the real intent of the user by considering the attributes of the target, the 
user’s behaviour and state, and the context. In other words, our system can intelligently 
provide a proper solution that can satisfy the user’s requirement. In addition, our sys-
tem is further able to predict the most likely selected target by the user and therefore 
further improve the efficiency of the system. We designed rules to assign a priority to 
each object; for example, a person has a higher priority than a chair, and closer objects 
are assigned higher priorities. The objects are sorted by priority, and the objects sorted 
lower than sixth are ignored (for this reason, we defined only six items in the P300 BCI). 
The object with highest priority is selected by default. Thus, if the default object fits the 
user’s intent, the user can directly issue a validation command without engaging in the 
selection process. However, to fully test the system, this rule was not applied during the 
test. In summary, with our system, the user needs only to perform a few commands to 
achieve his goal, and the system is friendly and efficient.

BCI performance

As in the other cited works, we also employed the P300-based BCI to confirm the sub-
ject’s selection. There are no significant differences in BCI performance between our sys-
tems. Actually, previous studies [29] have already demonstrated that most people can 
achieve high accuracy after a short training duration. In addition, in our experiment, the 
two brain injured patients also did not present significant differences in BCI use com-
pared to healthy subjects. In addition to the P300 BCI, EMG was used in the system to 
validate the commands. The signal-to-noise ratio of EMG signals is much higher than 
that of EEG signals, and therefore, using EMG signals in the system to validate the com-
mand is a good choice. In our system, the jaw clenching action is employed to export 
the validation command, and the results indicated that this signal is reliable and fast. 
Because this signal is activated by a jaw clenching action, swallowing and talking were 
tested, and the results indicated that these actions did not induce false detections. Dur-
ing more in-depth testing, only eating caused false detections. Therefore, the system is 
limited in that it cannot be used while eating. Fortunately, the use of a mobility system 
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while eating is not advocated. Indeed, this problem can be solved by adding a “switch” to 
turn off/on the system with a special clenching pattern.

In addition to the five indicators, there is another possible advantage of our system, as 
we employed ROS to construct the programme. The ROS provides a standard method-
ology and message format for communication between modules. Each node is an inde-
pendent process that does not rely on a special programming environment. Therefore, it 
is easy and convenient to upgrade and extend the system, which is an important prop-
erty for the system’s extension and application.

This system also has certain limitations

1.	 We stated that our system is a dynamic system that can accommodate different 
environments, because we have employed a deep-learning-based target recognition 
(YOLO) algorithm for real time recognition of objects in the environment. To make 
sure the algorithm can truly accommodate different situations, the algorithm mode 
should be well trained, however this would rely on a large-scale database. Obviously, 
such a database is rather expensive and time consuming to build. Fortunately, there 
are some open source image databases, such as COCO and ImageNet [30]. These 
databases provide images of many types of objects in various environments. The 
model can be trained using these databases and can even be simultaneously trained 
across multiple databases. The YOLO9000 is a good example; the model was simul-
taneously trained on the COCO and ImageNet databases and therefore achieved rec-
ognition of 9000 objects.

2.	 Another limitation is that the autocontrol mode is limited by the visual sight of the 
camera, since the target detection is based on the image of the Kinect; therefore, we 
have to provide an added command control mode to drive the system when the auto 
control mode is not available. Of course, this is also a common problem of the system 
by Iturrate et al. [3] as we are only concerned with the current information regard-
ing limited visual sight. Fortunately, to solve this problem, there are several methods. 
The first method is to equip four Kinects in four directions to provide information on 
the surrounding environment. The second method would be to employ the idea of 
simultaneous localization and mapping (SLAM) technology to reconstruct a global 
map based on each measurement frame. Thus, the system can provide the user a 
global map that contains not only the scenario of current visual sight but also other 
targets out of the visual sight.

Conclusion
This article presents a brain-actuated smart wheelchair system. The system is intelli-
gent and provides efficient and considerate services for users. To test the system, three 
patients and four healthy subjects were recruited to participate in a test. The results 
prove that the system works smartly and efficiently; with this system, users only need 
to issue small commands to get considerate services. This system is of significance for 
accelerating the application of BCIs in the practical environment, especially for patients 
who will use it for rehabilitation applications.
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