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Abstract 

Background:  Herein, an algorithm that can be used in wearable health monitoring 
devices to estimate metabolic equivalents (METs) based on physical activity intensity 
data, particularly for certain activities in daily life that make MET estimation difficult.

Results:  Energy expenditure data were obtained from 42 volunteers using indirect 
calorimetry, triaxial accelerations and heart rates. The proposed algorithm used the 
percentage of heart rate reserve (%HRR) and the acceleration signal from the wear-
able device to divide the data into a middle-intensity group and a high-intensity 
group (HIG). The two groups were defined in terms of estimated METs. Evaluation 
results revealed that the classification accuracy for both groups was higher than 91%. 
To further facilitate MET estimation, five multiple-regression models using different 
features were evaluated via leave-one-out cross-validation. Using this approach, all 
models showed significant improvements in mean absolute percentage error (MAPE) 
of METs in the HIG, which included stair ascent, and the maximum reduction in MAPE 
for HIG was 24% compared to the previous model (HJA-750), which demonstrated a 
70.7% improvement ratio. The most suitable model for our purpose that utilized heart 
rate and filtered synthetic acceleration was selected and its estimation error trend was 
confirmed.

Conclusion:  For HIG, the MAPE recalculated by the most suitable model was 10.5%. 
The improvement ratio was 71.6% as compared to the previous model (HJA-750C). 
This result was almost identical to that obtained from leave-one-out cross-validation. 
This proposed algorithm revealed an improvement in estimation accuracy for activi-
ties in daily life; in particular, the results included estimated values associated with stair 
ascent, which has been a difficult activity to evaluate so far.

Keywords:  Energy expenditure estimations, Heart rate, Physical activity, Triaxial 
acceleration, Physical activity classification, Metabolic equivalents
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Background
Increasing physical activity is particularly important to prevent lifestyle diseases. 
Accurate monitoring of physical activity intensity (PAI) during daily lifestyle activities 
has gained popularity. To obtain accurate measurements, the collection of continuous 
and long-term PAI data is crucial. Coleman et al. [1] found that variation in long-term 
step monitoring can quantify differences resulting from changes in health status, and 
that long-term continuous PAI data collection and step counting is an effective method 
for monitoring and evaluating improvements in lifestyle. Such data are also useful to 
improve health guidance to facilitate the prevention of lifestyle diseases. Accordingly, a 
strong ongoing demand exists for devices that can monitor lifestyle activities in terms of 
PAI data.

Several previous studies have examined specific methods for monitoring PAI data, 
which have led to the introduction of various devices to collect related information [2–
6]. Most of these studies, including our previous work [7, 8] that specifically proposed an 
estimation algorithm for PAIs for household activities, have explored monitoring devices 
and algorithms by examining the use of acceleration data [7, 8]. This previous research 
laid the groundwork for monitoring daily activities using PAI data. However, important 
shortcomings related specifically to small wearable monitoring devices must still be 
addressed.

A significant difficulty is associated with the estimation of energy expenditure (EE) for 
certain activities which cannot be estimated from acceleration data alone, making it dif-
ficult to calculate the PAI of such activities accurately. There are two major types of such 
activities. The first group includes activities with small body movements, but a large PAI, 
such as cycling or muscle training. The other type includes activities accompanied by an 
elevation change, such as hiking or stair ascent. The PAIs of these activities tend to be 
underestimated. An example is ‘stair ascent’, which produced an error rate of − 60.6% 
in our previous study [8]. Crouter et al. reported that the error rate of one device (Acti-
Graph Model 7164; ActiGraph LLC, Pensacola, FL) that uses the Freedson MET Equa-
tion is − 38.3% for stair ascent and descent [9]. As previously mentioned, monitoring the 
PAI during daily-life activities with high accuracy is important in the prevention of many 
lifestyle diseases, and the EE estimation accuracy of these activities must be improved, 
especially with respect to wearable monitoring devices.

Another major objective of PAI monitoring is to collect data continuously over long 
periods. Wearable monitoring devices must therefore be suitable for this purpose. 
When monitoring PAI during daily activities, it will eventually be possible to confirm 
the results in real time. Hence, wearable devices must independently obtain signals from 
sensors, process those signals and estimate PAI. Therefore, estimating PAI using a simple 
approach with minimal cost and power consumption is important if the estimation algo-
rithm is to be integrated into wearable devices.

Various methods have been proposed to improve the PAI accuracy for activities that 
are difficult to estimate. In previous studies [10–14], the number of PA classifications 
was increased using multiple sensors and machine learning algorithms such as support 
vector machine (SVM), and as a result, the accuracy of PAI estimation was improved. 
For example, Cvetković et  al. [10] reported that 30 parameters were obtained from 
the accelerometer and used in their algorithm. By doing so, the classification numbers 
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and estimation accuracy could be increased. However, the SVM approach is difficult 
to integrate into wearable devices without support from cloud computing. Therefore, 
it is apparently not suitable for our purpose because wireless communication with 
cloud-based analytical software requires a significant amount of additional power 
consumption.

Another approach is to combine different sensors with an accelerometer [15–23], 
such as a barometer. The algorithms using a barometer to measure changes in eleva-
tion (i.e. altitude) have been reported by Ohtaki and Voleno [18, 19] and others [20, 21]. 
By improving the estimation formula and classified PA using elevation information, the 
algorithm can improve the accuracy of EE estimation for stair ascent. However, a barom-
eter typically consumes considerable power, and this method is effective for improv-
ing the accuracy of estimating EE for activities that involve a change in elevation, such 
as stair ascent. However, it does not work for other types of activities such as a cycling 
because the change in elevation is gradual. Therefore, these conventional methods are 
not practical for accurate PAI monitoring in daily life, especially in wearable monitoring 
devices.

Another method uses heart rate data to improve accuracy, as reported by Crouter and 
Li [22, 23]. A strong correlation exists between PAI and heart rate, and consequently, EE 
estimation accuracy can be increased. Additionally, the power consumption required to 
monitor heart rate is very small. For example, Izumi et al. proposed a system-on-a-chip 
(SoC) sensor which enables heart rate inter-beat interval (RRI) measurements with very 
low power consumption [24]. Other groups have also proposed low-power-consumption 
SoCs for measuring heart rate [25, 26]. These studies have confirmed that the marginal 
increase in power consumption from the addition of a heart rate sensor to a wearable 
device can be minimized. Furthermore, heart rate data provide valuable biological infor-
mation related to a person’s health levels, with measurements providing a wide range 
of useful information beyond PAI estimates, and the addition of a heart rate sensor to a 
wearable device can thus provide a wide range of benefits. Given this range of benefits, 
we developed a simple algorithm that combines heart rate and acceleration data.

Crouter et al. reported an error of − 20.5% [22] in the estimation of the EE related to 
stair ascent by using acceleration and heart rate data. This error is relatively large for 
actual application. Therefore, this paper addresses the development of the PAI monitor-
ing algorithm, which can improve the estimation accuracy for activities that have previ-
ously shown EE estimation difficulty, such as stair ascent. For continuous and long-term 
monitoring, the proposed algorithm must be embedded in wearable devices. Therefore, 
we propose a simple algorithm that combines heart rate and acceleration data with a 
decision tree and multiple regression analysis. The algorithm proposed in this paper is 
expanded from the algorithm using only accelerations described previously in the lit-
erature [7, 8]. The heart rate information is used to resolve difficulties associated with 
applications that are based solely on acceleration data.

Methods
This study represents two major improvements over our previous study [8]. First, the 
number of locomotive activity classification groups has been increased from one to two. 
Second, the number of parameters used in our multiple-regression models for estimating 
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PAI data has also been increased. We also conducted experiments for the development 
and evaluation of the estimation algorithms proposed in the present study.

Signal processing

This paper presents a classification algorithm for increasing the number of classification 
groups used in locomotive activities. The algorithm uses the following three indices: fil-
tered synthetic acceleration (ACC​fil), ratio of unfiltered synthetic acceleration to filtered 
synthetic acceleration (RUF) and the percentage of heart rate reserve (%HRR). This sec-
tion describes the method used for signal processing of acceleration data and heart rates 
to calculate these three indices.

Triaxial acceleration

The measured triaxial acceleration is processed in a manner similar to that described 
in our previous study [8]. First, signals from a triaxial accelerometer were run through 
a high-pass filter with a 0.7 Hz cut-off frequency to remove the gravitational accelera-
tion component, for reasons presented in our earlier report [7]. Fast Fourier transform 
analysis revealed that for locomotive activities, peak power appeared at a frequency of 
1.0  Hz or higher. The peak frequency and walking pace also increased proportionally. 
For household activities, the peak power appeared at 1.0 Hz or less. The mean frequency 
of the peak was 0.29 ± 0.19 Hz. The peak value of household activities is strongly influ-
enced by the gravitational acceleration component because of a change in body posi-
tion. If this influence is removed, the peak value in household activities becomes 1 Hz 
or higher [7]. Therefore, the cut-off frequency was set as 0.7 Hz (mean + 2SD) to remove 
the influence of gravitational acceleration on household activities and ensure that accel-
eration signals during locomotive activities were not affected. Subsequently, the syn-
thetic acceleration along three axes, the anteroposterior axis (X), mediolateral axis (Y) 
and vertical axis (Z), with the vector magnitude equal to 

√
X2 + Y 2 + Z2 , was calculated 

using raw (unfiltered) acceleration signals and the values were then run through a high-
pass filter. Finally, the ratio of unfiltered to filtered signals was calculated to classify the 
activities as household or locomotive activities. ACC​fil is defined as the mean value of 
the synthetic acceleration obtained from the filtered signal during each activity, and is 
calculated by averaging the mean values of the synthetic acceleration every 10 s.

Percentage heart rate reserve (%HRR)

Our methodology uses %HRR, as defined in Eq. (1) below, which was obtained from the 
available literature [27].

The heart rate during activity (HRact) represents the mean value of the average heart 
rate every 10  s during activities, while the heart rate at rest (HRrest) is defined as the 
mean value of the average heart rate over a resting period of 7 min. The maximum heart 
rate (HRmax) is calculated based on the Karvonen formula as

(1)%HRR =
HRact −HRrest

HRmax −HRrest
× 100

(2)HRmax = 220− Age
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Estimation algorithm

Algorithm for physical activity classification

The first major improvement is to increase the number of classification groups. The pre-
vious decision tree classifies the physical activities into three groups, namely sedentary, 
household and locomotive [8]. In this study, the new node to classify into middle-inten-
sity group (MIG) or high-intensity group (HIG) was appended to the previous decision 
tree. Sedentary is defined as an activity which has a near-resting energy expenditure, 
such as sitting. Household activity is defined as a PA excluding locomotion, which never-
theless shows over one MET, such as vacuuming and washing dishes. Although our pio-
neering study assessed the possibility of increasing the number of classifications within 
the locomotive activity group [28], this study expanded that concept by further classify-
ing locomotive activities into MIG and HIG activities. These groups were classified using 
%HRR in the proposed decision tree to utilize the correlation between PAI and %HRR.

We define MIG activities as activities involving six or less METs, such as walking at 
a normal speed. HIG activities are defined as activities involving more than six METs, 
such as jogging and stair ascent. This value (six METs) reflects a cut-off value in the 
guidelines established by the American College of Sports Medicine [29]. Figure 1 shows 
the decision tree used for our PA group classifications.

A previous study divided locomotive activity from other activity groups used by ACC​fil 
and RUF. Locomotive activity is divided into two additional groups by %HRR.

Estimation of METs as EE

The second improvement involves an increase in the number of independent variables 
used in the multiple-regression model for PAI estimation. This paper proposes five mul-
tiple-regression models using software (SPSS Statistics 24, SPSS24; IBM Corp., Armonk, 
NY). The forced entry method was employed to confirm the influence of quantities of 
certain parameters used in the respective regression models to obtain the estimation 
results. Table  1 presents the parameters used in each of the proposed models. In this 
study, four parameters were selected, including acceleration, %HRR, body mass index 
(BMI) and weight. BMI was used not only as the weight value but also as a characteristic 
representing body shape.

The accuracies of the proposed models were compared based on the mean absolute 
percentage error (MAPE) of estimated MET values produced by the leave-one-out 
cross-validation. In this process, one part of the data observation serves as the valida-
tion set and the other serves as the training set. The cross-validation process was then 
repeated for a number of subjects, with each subject used only once to obtain the vali-
dation set. The results from the respective subjects were averaged to produce a single 

Physical
Activity ACCfil

Sedentary
Activity

Household
Activity

Locomotive
Activity %HRR

Middle Intensity
Group

High Intensity
Group

the decision tree in previous study[8] the decision tree appended in this study

RUF

Fig. 1  Proposed decision tree for the new algorithm
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estimate. Based on a comparison of the results, the most suitable multiple-regression 
model was selected for our study.

Experimental methods

To develop and evaluate the proposed classification algorithm and the EE estimation 
model, we measured the METs, triaxial acceleration and RRIs of volunteer test subjects 
as they performed various activities (Fig. 2a).

Subjects

A total of 42 volunteers participated in the experiments for this study, which were con-
ducted at the National Institute of Health and Nutrition (NIHN) in Tokyo, Japan, fol-
lowing the guidelines laid down in the Declaration of Helsinki. All procedures involving 
human subjects were approved by the Ethical Committees of NIHN and by Omron 
Healthcare Co., Ltd. Subjects were excluded from the study if they showed any contrain-
dication to exercise, or if they were physically unable to complete an activity. Approxi-
mately five subjects were chosen from each 10-year age range and gender (Table 2).

The weights and heights of all subjects were measured to produce a BMI for each. The 
age, gender, height, weight and BMI distributions of the test subjects are listed in Table 2. 
Details related to the purposes and procedures involved in this study were explained to 

Table 1  List of features for each proposed model

Model Features

Prop. 01 ACC​fil

Prop. 02 HRR

Prop. 03 ACC​fil, HRR

Prop. 04 ACC​fil, HRR, BMI

Prop. 05 ACC​fil, HRR, weight

Previous ACC​fil

a b c d

Fig. 2  a Subject during measurement. b Location of Health Patch MD and HJA-750C. c Health Patch MD. d 
Activity monitor (HJA-750C)
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subjects before measurements were taken, with prior written informed consent obtained 
from all subjects.

Experimental setup for data measurement

The study required the monitoring of triaxial acceleration, RRI and EE for various physi-
cal activities conducted for a set period. Test subjects performed 23 distinct activities 
(including resting in a seated position), during which their triaxial acceleration and RRI 
values were recorded using the Health Patch MD function (Vital Connect Inc., San Jose, 
Ca). In this study, heart beats per minute were converted from those recorded RRI by 
Health Patch MD and used to calculate %HRR; it was developed for 24-h monitoring. 
A clinical validation of this device has been provided in a previous report [30], and an 
activity monitor (HJA-750C; Omron Healthcare Co., Ltd., Kyoto, Japan) was positioned 
at each subject’s waist. Figure 2b shows the location of these devices.

During each activity, the subjects’ exhaled respiration was collected in a Douglas bag. 
The EE values were estimated from volumes of oxygen and carbon dioxide, reported as 
VO2 and VCO2, respectively, using Weir’s equation [31]. For reference, the MET val-
ues were calculated by dividing the EE during the activities by the measured resting 
metabolic rate. This study specifically addressed eight activities, including stair ascent/
descent, walking (three speeds), walking with load (two patterns) and jogging, all of 
which were identified as locomotive activities. These experiments were conducted in a 
controlled laboratory setting. The HRrest utilized average heart rate data, after excluding 
the first 3 min, for 10 min of sitting. For six of the activities (excluding stair ascent and 
descent), the subjects were instructed to walk at a speed determined using a pace leader. 
Stair ascent and descent were evaluated with the subjects selecting their own speed. 
Table 3 shows the speed and time for each of the eight activities.

Results
Measurement results

Table 4 shows averages and standard deviations (SDs) of METs and %HRR for each 
activity; the respective numbers of test subjects for the eight activities are also 
listed. Measurements for two of the subjects could not be conducted for any activity. 

Table 2  Physical characteristics of subjects (N = 42)

Age groups N Age (years) Height (cm) Weight (kg) BMI (kg/m2)
Avg. (SD) Avg. (SD) Avg. (SD) Avg. (SD)

Male

 20–30 6 26.2 (3.1) 169.0 (7.2) 66.3 (10.6) 23.1 (2.0)

 30–40 4 36.3 (2.8) 171.1 (3.1) 65.6 (15.2) 22.3 (4.4)

 40–50 6 43.2 (3.9) 173.1 (6.2) 73.1 (12.1) 24.4 (3.6)

 50–60 5 52.2 (1.8) 171.5 (2.3) 68.4 (13.1) 23.2 (3.9)

Female

 20–30 5 23.0 (2.3) 157.3 (4.5) 49.1 (5.1) 19.8 (1.5)

 30–40 6 32.5 (3.4) 163.1 (11.0) 59.0 (14.9) 22.0 (4.2)

 40–50 5 43.0 (4.2) 155.9 (5.7) 52.8 (17.1) 21.6 (6.4)

 50–60 5 52.8 (1.3) 158.1 (2.2) 59.4 (8.0) 23.8 (3.2)



Page 8 of 18Nakanishi et al. BioMed Eng OnLine  (2018) 17:100 

Measurement failures occurred during a number of activities for several subjects; 
these results were excluded from the study. In stair ascent and jogging activities, MET 
values of more than six were defined as HIG activities. Because the other six activities 
always have MET values less than six, they were defined as MIG activities.

The ACC​fil and %HRR measurement results for the eight locomotive activities are 
presented in Fig.  3. Table  5 presents the statistical results of the METs, ACC​fil and 
%HRR analyses. The three indexes were analysed by using linear mixed effect model 
with SPSS statistics 24. The all indexes have significant differences between MIG and 
HIG (pairwise comparisons, p < 0.05). Figure 3a shows the relation between MET and 
ACC​fil results for each activity. In MIG, the mean − 3SD of ACC​fil was 25.3 [mG] and 
the mean + 3SD was 562.8 [mG]. The stair ascent results followed the same distribu-
tion trends as those reported in our previous study [8]. The distribution of the latter is 
depicted in Fig. 3a.

The ACC​fil of MIG correlates with the METs (r = 0.680), as the ACC​fil of HIG does 
(r = 0.688). Figure  3b presents the relation between METs and %HRR. The mean 
+ 3SD of the %HRR for HIG was 102.15%, whereas the mean − 3SD of %HRR for HIG 
was 13.11%. The %HRR result of HIG activity had a relatively large SD (= 14.34), as 
shown in Table 5. However, the HIG average %HRR was more than twice as large as 
the average %HRR for MIG. Additionally, there were two distributions separated at 

Table 3  Eight locomotive activities evaluated in this paper

Activity Speed Time (min)

Stair descent Self-selected 2.5

Stair ascent Self-selected 2

Slow walking 55 m/min 5

Normal walking 70 m/min 5

Brisk walking 100 m/min 5

Normal walking with load (3 kg) 70 m/min 5

Slow walking with load (5 kg) 55 m/min 5

Jogging 130 m/min 4

Table 4  %HRR and measured METs for each activity

Activity N %HRR [%] METs

Avg. SD Avg. SD

MIG

 Stair descent 36 15.45 7.11 2.73 0.39

 Slow walking (55 m/min) 33 18.81 9.10 3.35 0.54

 Normal walking (70 m/min) 29 23.37 9.14 3.75 0.50

 Brisk walking (100 m/min) 30 34.16 11.87 5.12 0.88

 Slow walking with Load (5 kg) 33 27.01 9.50 4.03 0.46

 Normal walking with Load (3 kg) 29 26.92 9.99 4.24 0.65

HIG

 Stair ascent 30 51.22 8.52 7.42 0.87

 Jogging (130 m/min) 23 67.34 15.37 9.50 1.64
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around 40%, and correlation existed between %HRR and METs of the MIG (r = 0.756) 
and HIG (r = 0.573).

Classification and MET Estimation Result

We used a decision tree to further classify the locomotive activity into two groups 
according to %HRR. For PA classification, this study first identified the %HRR values for 
which the classification accuracy of MIG and HIG was the highest. Figure 4 shows the 
relation between %HRR and the classification accuracy of MIG and HIG. As a result, the 
%HRR with the highest observed classification accuracy was 40.15%. This was close to 
the boundary value between Light and Moderate (%HRR = 40%) for classifying activities 
by %HRR established in the ACSM guidelines. For this reason and for simplification, the 
threshold for HIG and MIG was set at 40% instead of 40.15%.

Table 6 shows the classification accuracy for each activity. For activities in MIG, 91.6% 
were correctly classified. For activities in HIG, 94.3% were correctly classified, while 5.7% 
were misclassified into MIG.

As described in “Estimation of METs as EE” section, validation results were produced 
by the leave-one-out cross-validation method. This approach involves utilizing one part 
of the observed data as the validation set and the remaining observations as the training 

a b

Fig. 3  Measurement results from the eight activities. a Relation between ACC​fil and METs. rHACC​ is the 
correlation coefficient of the relation between ACC​fil and METs in HIG, and rMACC​ is the correlation coefficient 
of MIG. b Relation between HRR and METs. The correlation coefficient of the relation between %HRR and 
METs is rHHR for HIG and rMHR for MIG

Table 5  Statistical results of measurement indices

The p-value obtained from the pairwise comparisons between MIG and HIG of each index by using linear mixed effect 
model

Index p value MIG (n = 190) HIG (n = 53)

Avg. SD Avg. SD

ACC​fil [mG] < 0.001 294.1 89.6 545.8 367.9

%HRR [%] < 0.001 23.96 11.20 58.2 14.3

METs < 0.001 3.83 0.95 8.3 1.6
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Fig. 4  Relation between classification accuracy of MIG and HIG and %HRR

Table 6  Results of group classification using the proposed decision tree

Percentage of classified result

Classified as MIG [%] Classified 
as HIG [%]

MIG 91.6 8.4

 Stair descent 100.0 0.0

 Slow walking (55 m/min) 100.0 0.0

 Normal walking (70 m/min) 96.6 3.4

 Brisk walking (100 m/min) 76.7 23.3

 Slow walking with load (5 kg) 87.9 12.1

 Normal walking with load (3 kg) 86.2 13.8

HIG 5.7 94.3

 Stair ascent 6.7 93.3

 Jogging (130 m/min) 4.3 95.7

Table 7  MAPE of respective estimated results [%]

Proposed multiple-regression models HJA-750C

Activity Prop. 01 Prop. 02 Prop. 03 Prop. 04 Prop. 05 N

Stair descent 31.6 22.9 21.6 22.0 22.3 36 28.6

Slow walking (55 m/min) 12.1 11.1 8.8 9.0 8.8 33 13.2

Normal walking (70 m/min) 13.6 11.5 12.1 12.6 12.4 29 11.9

Brisk walking (100 m/min) 18.7 17.9 15.9 17.4 16.8 30 11.8

Slow walking with load (5 kg) 18.6 15.8 16.2 17.0 16.4 33 15.8

Normal walking with load (3 kg) 17.5 17.0 16.7 17.7 16.9 29 10.5

Stair ascent 11.7 13.5 10.0 10.5 10.5 27 58.7

Jogging (130 m/min) 13.5 14.7 12.8 12.4 11.8 23 11.4

MIG 19.0 16.2 15.3 16.1 15.7 189 15.8

HIG 12.4 13.8 11.1 11.1 10.8 50 36.9
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set. The parameters used for each model are shown in Table 1. Table 7 shows the average 
MAPE values for the respective processes. First, we focused on the examination of HIG. 
The results showed no clear differences for Props. 03, 04 and 05. By contrast, the MAPE 
produced by Props. 01 and 02, which used only acceleration or %HRR, were 1.3–3.0% 
larger, respectively, than those of the other three models associated with HIG. As a result 
of comparison with the previous algorithm (HJA-750), Prop. 05 was the most improved, 
and its value was the result of reducing the MAPE by 26.1%. This result, therefore, indi-
cated a significant improvement. Next, attention was paid to stair ascent, which is dif-
ficult to estimate. All models showed great improvement and Prop. 03 provided the 
lowest MAPE at 10.0%, for stair ascent. In addition, examination of MIG indicated that 
Prop. 03 with a MAPE of 15.3% performed better than the other models. In addition, 
the errors of the proposed models were almost the same as those found for the previous 
model (HJA-750C).

The MAPE for each PA was calculated for the five proposed models. Prop. 01 used only 
ACC​fil, Prop. 02 used only %HRR, Prop. 03 used both ACC​fil and %HRR, Prop. 04 added 
BMI to Prop. 03 and Prop. 05 added weight to Prop. 03. The HJA-750C results were also 
presented for comparison. HJA-750C estimated METs using the earlier reported algo-
rithm, which used acceleration and treated the MIG and HIG as one group with regard 
to locomotive activity, where N is the number of subjects.

Based on the results of the leave-one-out cross-validation, Prop 3 should be selected 
as the most suitable model for the purpose of this paper. Because the number of features 
used by Prop.3 is the smallest and the calculation amount can be made small, although 
there was no clear difference between the MAPE values for Props. 04 and 05. This paper 
selected Prop. 03 results to confirm the error trends, recalculating the multiple-regres-
sion models for MIG and HIG using all measured data as the training data. The resulting 
regression equations for MIG and HIG are shown, respectively, in Eqs. (3) and (4) below.

Figure 5 shows the relation between the estimation error and the METs, which was 
estimated using Prop. 03 and the previous model (HJA-750). The solid lines depict the 
mean values of MIG and HIG, while the dashed lines represent 95% prediction inter-
vals (PI) of error. Table 8 presents the statistical results of the estimation error. The MIG 
result using the proposed model had a few fixed biases because the 95% confidence 
interval (CI) of the average ranged from 0.07 to 0.31. However, there was no propor-
tional error (r = 0.005). The HIG results obtained using the proposed model showed no 
fixed bias because the 95% CI of the average ranged from − 0.48 to 0.21. However, there 
was a proportional error (r = − 0.543). Some stair ascent results showed errors that were 
less than − 3.0 METs, although all errors corresponding to the results of the previous 
model were less than − 3.0 METs.

The results obtained using our previous model and the proposed model is com-
pared in Table 9. The MAPE of MIG and HIG in Table 9 were calculated from all data 
defined in their groups. The results showed that the MAPE and MPE using the pro-
posed model was improved compared to the previous algorithm for the MIG and HIG 

(3)MIG:METsest = 0.0043 · ACCfil + 0.047 · %HRR+ 1.4238

(4)HIG:METsest = 0.0024 · ACCfil + 0.029 · %HRR+ 5.3113
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a b

c d

Fig. 5  METs and error rates obtained using the proposed model and the algorithm reported earlier: a MIG 
relation with the proposed model, b MIG result from the previous model, c HIG relation with the proposed 
model and d HIG result from the previous model

Table 8  Statistical results of estimation based on all data

MIG HIG

Proposed Previous Proposed Previous

Average 0.19 0.01 − 0.14 − 2.35

Upper confidence interval of the average (95%) 0.31 0.11 0.21 − 1.64

Lower confidence interval of the average (95%) 0.07 − 0.09 − 0.48 − 3.06

Upper prediction interval (95%) 1.84 1.40 2.41 2.73

Lower prediction interval (95%) − 1.46 − 1.38 − 2.68 − 7.44

Table 9  MAPE and MPE for the eight activities

The p-values were obtained by Wilcoxon signed-rank test for each activity between proposed and previous in MPE. There 
was a significant difference in three activities in MPE (p < 0.05)

Activity MAPE [%] MPE [%]

Prop. Prev. Prop. Prev. p-value

Stair descent 21.22 28.56 20.02 26.63 0.004

Slow walking 8.19 13.2 − 0.04 5.06 0.810

Normal walking 11.48 11.88 2.65 3.94 0.381

Brisk walking 15.59 11.79 4.27 − 2.15 0.614

Slow walking with load (5 kg) 15.82 15.84 1.44 − 15 < 0.001

Normal walking with load(3 kg) 16.23 7.47 4.31 − 1.87 0.873

Stair ascent 9.61 58.70 – 2.24 − 58.70 < 0.001

Jogging 11.66 11.41 2.1 2.47 0.927

MIG 14.88 15.31 5.77 3.32 0.611

HIG 10.50 36.95 − 0.36 − 30.56 < 0.001
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activities; especially, the MAPE for HIG improved by 26.45% (= 36.95–10.50). It was 
confirmed whether there was a significant difference in MPE as the error distribution 
between proposed and previous results with Wilcoxon signed-rank test by using SPSS 
statistics 24. In three activities including stair ascent, there were significant differ-
ences (p < 0.05) in the MPE values associated with results in this study and our previ-
ous results.

Additionally, we confirmed the error distribution based on the classification results 
presented in Fig.  6. The PI of the correct classification data for the MIG ranged from 
− 1.036 to 1.033 METs, although the PI of the HIG ranged from − 2.32 to 2.28 METs. 
Large errors were found for both groups when the results were incorrectly classified. 
The MIG errors had a mean value of 2.29 METs, whereas the HIG errors had a mean of 
approximately − 3 METs.

In this paper, MAPE (i.e. the estimation accuracy) was compared with other algo-
rithms using a random forest and REPTree. These are machine learning methods which 
use decision trees. The results are shown in Table 10. Although the data used for estima-
tion and the number of activities were different, their results showed no clear differences 
between the proposed and others. The result of Luštrek [11] is better than proposed 
result. However, as described in Table 9, the MAPE of jogging using the proposed model 
is 11.66% and can be confirmed to be lower than the result of Luštrek [11].

In addition, the estimation accuracy during stair ascent was compared with other algo-
rithms, as an example of activities difficult to estimate. Table 11 lists the results com-
pared with those obtained using other algorithms, which indicates that the proposed 
model has an advantage over other estimation methods, excluding the method of Wang. 

Fig. 6  Relation between the error and the result of classification. The straight line shows the average value 
with correct classifications, while dashed lines represent 95% prediction interval. UPI and LPI are the upper 
and lower prediction intervals, respectively

Table 10  Mean absolute percentage error compared with other algorithms

a  This value was calculated as the MAPE to the mean value of METs at two different speeds

Author Algorithm Refs. Number of features Activity MAPE [%]

Proposed Classification tree
Multi-regression model

2 6 different walks, 
jogging, stair

13.9

Mitja Luštrek REPTree [11] 8 (accelerometer) Running 12.6a

Hristija Gjoreski Random forest
Multiple Contexts Ensemble

[12] 128 (accelerometer) Walk, running 15.7
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Note that the proposed method was realized with fewer features, and the difference in 
accuracy was only 0.3%.

Discussion
This paper proposes an algorithm to estimate METs for daily-life activities, includ-
ing those for which MET estimation is difficult, such as stair ascent. Table 9 shows the 
MAPE and MPE of the respective activities. The proposed algorithm achieved higher 
accuracy in both MIG and HIG compared to the previous algorithm available in the 
commercial product HJA-750. MAPE decreased by 0.43% in MIG and 26.45% in HIG, in 
comparison with the previous model. Specifically, the estimation accuracy of stair ascent 
activity was clearly increased. In terms of the stair ascent activity, MAPE was 9.61%. 
However, the MAPE of METs with the previous model (HJA-750C) was 58.70%. The 
MAPE of the proposed model was estimated to be 49.09% smaller than that of the previ-
ous model, which is an improvement of approximately 84%. These results demonstrate 
the superiority of the proposed model for accurate MET estimation for HIG, including 
that for the stair ascent activity.

We confirmed the error derived from comparing the proposed model and our previ-
ous model (HJA-750C) for MET estimation. The relation between METs and error rates 
was confirmed when all data were used as training data. Figure 5c, d show the relation 
between the error rate and METs for HIG. These figures clarify that the use of the pro-
posed model results in a significant improvement over the previous model with respect 
to estimation accuracy. This improvement is supported by the data in Table  8, where 
95% PI of the proposed model ranged from − 2.68 to 2.41, whereas the PI obtained using 
the previous model ranged from − 7.44 to 2.73. These results indicated a clear improve-
ment over the previously used algorithm.

The results obtained in this study were evaluated through comparisons with previ-
ous algorithms [9, 11, 12, 19, 22, 32]. Table 10 shows the results of our comparison 
with other algorithms using machine learning. There were no clear differences using 
the proposed model. Although it is a comparison with different datasets, it was pos-
sible to obtain an estimation accuracy similar to that of machine learning methods, 
only we accomplished this with a very simple algorithm. These results strongly sug-
gest that the proposed algorithm represents a significant improvement over other 
versions and methods. Table 11 presents the MPE results for stair ascent and descent. 

Table 11  MPE in stair ascent with other algorithms

a  ‘Count’ is the index calculated from acceleration using ActiGraph

Algorithm Refs. Features Activity MPE [%]

Proposed model Accelerometer, %HRR Stair ascent/descent 9.90

ActiGraph new 
2-regression model

[9] Count Stair ascent/descent − 11.76

Actiheart combined 
activity and HR 
algorithm

[22] Counta HR Stair ascent/descent − 20.51

Proposed model Accelerometer,  %HRR Stair ascent − 2.24

Matteo Voleno [19] Accelerometer, barometer Stair ascent 6.6

Jinging Wang [32] 21 features (form accelerometer 
and barometer)

Stair ascent − 1.96
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An improvement in accuracy of about 10% was observed compared to the result of 
the Actiheart combined activity and the HR algorithm, and the MPE of the proposed 
model was lower by about 2% for the ActiGraph 2-regression model. Therefore, the 
proposed model demonstrates better estimation accuracy than other algorithms that 
use acceleration and heart rate data.

Similar results were found for the MPE in stair ascent compared to other algorithms 
that use an accelerometer and a barometer. The result reported by Voleno et al. [19] was 
6.6%. The MPE of the proposed model was lower. The algorithm reported by Wang et al. 
[32] was slightly better than our proposed model, by about 0.3%. According to Table 4, 
the METs during stair ascent were about seven and the difference between the proposed 
model and Wang’s [32] amounted to about 0.08. Thus, there was a very little difference 
between the proposed algorithm and Wang’s algorithm [32]. In addition, Wang’s algo-
rithm [32] used 13 parameters, while our proposed algorithm used only two parameters 
and a simple decision tree. Therefore, the processing overhead required by our proposed 
algorithm was less than that put forward by Wang [32]. In addition to these advantages, 
our proposed algorithm can be implemented with relatively low power consumption.

Considering the causes of error, this study confirmed the relation between error 
rate and classification results. As depicted in Fig. 6, a large error rate in MIG (over 
two METs) was traceable to misclassification issues. Assuming that these can be elim-
inated, the revised 95% prediction interval would be − 1.04 to 1.03, which is better 
than that obtained with HJA-750C (− 1.38 to 1.40). Therefore, it is clear that the most 
effective means of improving error rates using the proposed model is to suppress mis-
classification. To achieve this, it is necessary to revise the equation of %HRR calcula-
tion and to add individual adjustments.

The result of the classification accuracy is described in Table 6. The average classifica-
tion accuracy was higher than 91% for both MIG and HIG. Thus, one can reasonably 
conclude that our proposed decision tree is appropriate. However, the classification 
result of brisk walking was relatively low (76.7%) compared to those of other activities. 
The results showed that the %HRR trends for misclassified subjects differed from other 
results that were classified correctly. To ascertain the cause of these %HRR trend dif-
ferences, physical information related to misclassification of subjects who were walking 
briskly was examined more closely. It was found that five out of the seven misclassified 
subjects were female, even though the male/female ratio for all test subjects was 50%. 
These results suggest that sex has a strong effect on %HRR.

To address this issue, it is necessary to consider sex %HRR calculation, as reported by 
Whyte et al. who used equations for calculating the maximum heart rate that considered 
sex and age [33]. For example, in the case of sedentary females, Eq. 5 below was used.

The adoption of this equation makes it possible to improve the maximum heart rate 
accuracy estimation utilized in %HRR calculation.

In addition, subjects with a BMI of over 25 were 30% of all subjects, while those 
with a BMI over 25 (for brisk walking) were misclassified 57% of the time. This result 
suggests that BMI also affects %HRR accuracy and that adjusting %HRR to reflect 
individual BMI values would also improve the classification accuracy.

(5)HRmax

(

Sedentary Female
)

= 221− 1.09 · Age
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Another key to improving %HRR is adjusting it to reflect an individual’s resting heart 
rate. More specifically, because our algorithm can classify resting intervals, %HRR can 
be recalculated and adjusted using the heart rate obtained while the individual is resting, 
making it possible to improve the overall classification accuracy. In our experiments, 
%HRR was obtained from the heart rate obtained in a resting state (i.e. sitting position), 
which can be frequently observed. Therefore, we believe that setting and recalibrating 
the resting heart rate from the daily measurement of heart rate can further improve the 
calculation of %HRR.

In this study, as a first attempt to develop an EE estimation algorithm for daily life 
activities, the proposed algorithm was developed and evaluated using a dataset which 
is the measurement results of limited activities conducted by 42 subjects in a controlled 
laboratory setting. Although the data are limited by the number of subjects, these results 
confirmed that the proposed model is useful to estimate the METs of high-intensity 
activities in daily life, including those for which it is difficult to accurately estimate EE 
using a wearable device. This paper focuses on stair ascent as an activity which is dif-
ficult to estimate, and the proposed algorithm can be expected to improve accuracy in 
other difficult-to-estimate activities, such as cycling and muscle training. The proposed 
algorithm realized concurrent recording of %HRR, acceleration and PAI more accurately 
than previously used methods. Hence, the proposed algorithm appears to be very prom-
ising for future health guidance.

Conclusions
We proposed an algorithm which can estimate METs as physical activity intensity data, 
especially during high-intensity activities in daily life, including stair ascent. The results 
of our study are supported by two major improvements. First, we used %HRR to classify 
locomotive activities into two more groups using decision trees. Furthermore, we pro-
posed five multiple-regression models and selected the most suitable one for our pur-
poses based on leave-one-out cross-validation. As a result, the proposed model showed 
a MAPE of 10.5%, which was 26.45% smaller than that of the previous model, or an 
improvement of approximately 72%—an 84% reduction in the mean absolute percent-
age error for stair ascent compared to an earlier model (HJA-750C). Also, the MPE was 
improved by about 10% compared to the other algorithm that also combined heart rate 
and acceleration. These results indicate that the proposed algorithm can estimate METs 
with improved accuracy during daily-life activities including those that are difficult to 
estimate, such as stair ascent.
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