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Background
Cardiac arrhythmias are often first detected with electrocardiogram (ECG) monitoring, 
which consists of recording the electrical potential produced by the heart in the skin 
[1]. ECG interpretation is crucial for arrhythmia diagnosis, and in recent years, different 
techniques have been studied to improve the ECG signal quality, including the search 
for new materials for the electrodes [2], the design of cardiac monitoring systems [3, 4] 
combining the analysis of ECG signals and other non-invasive signals such as the seis-
mocardiogram [5], the estimation of fetal ECG [6], the impact of noise and improvement 
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of signal preprocessing techniques [7, 8], or the study of ECG recognition systems for 
arrhythmia classification [9–11]. However, the arrhythmia treatment often requires 
additional bioelectric sources, and invasive methods based on catheters have been used 
in cardiac electrophysiology to find the arrhythmia mechanisms and to suppress them 
with intracardiac catheter ablation. In the last years, Cardiac Navigation Systems (CNS) 
have been proposed to support the conventional intracardiac mapping of the clinical 
procedures. These systems determine the spatial location of catheters inside the heart, 
record the electrical activity from the intracardiac electrograms (EGMs) in the catheter 
electrodes, and create electroanatomical maps of some electrophysiological feature of 
interest, for instance, voltage and activation time, among others. For this purpose, they 
sequentially measure the EGM in different locations, which extends the duration of the 
clinical procedure. In addition, these electroanatomical maps can be combined with 
anatomical information from the segmentation of medical images, such as computer-
ized tomography or magnetic resonance [12]. However, the use of CNS has some limita-
tions: (a) the number of EGMs required to create the map is unknown, and it is usually 
decided by following heuristic criteria; (b) the maps are unsuitable for unsustained 
arrhythmias, due to the sequential building process; and (c) the procedure can be of a 
long duration. Although mapping systems based on an arrays of 32 or 64 electrodes in 
direct contact with the heart tissue have been proposed in order to obtain a set of simul-
taneous EGM, their resolution is limited and depends on the simultaneous contact of 
the electrodes [13]. Non-contact systems have also been proposed to provide an instant 
endocardial or epicardial image from a floating array of electrodes [14], although these 
systems also exhibit limited resolution. In recent years, emerging ECG Imaging (ECGI) 
systems have been intensely developed, which provide us with an electrical image of the 
heart by projecting the bioelectrical measures obtained in the chest, abdomen, and back, 
onto the epicardium, using a torso model obtained from medical imaging of the patient 
[15]. Overall, these ECGI systems are being supported by a growing number of success-
ful studies in the clinical practice [16], but limitations in the spatial resolution still can 
be present in them. Other novel clinical applications are arising from advanced uses of 
ECGI techniques, and among them we can find the support for the early diagnosis of 
arrhythmogenic right ventricular cardiomyopathy with resonance medical imaging and 
the help to guide the cardiac ablation of ventricular tachycardia in a completely non-
invasive way [17, 18]. The inverse problem has been addressed in clinical systems from 
non-contact mapping systems which yielded the solved inverse problem from unipolar 
recordings obtained in a balloon array of electrodes [19–22]. These systems construct 
virtual maps with thousands of points recorded from a single catheter position and in a 
single beat, which is specially adequate for non-sustained arrhythmias. Still, some limi-
tations have to be overcome, including ergonomy, volume, and manageability. Also, the 
virtual reconstruction needs to improve in existing systems, as well as the accuracy pre-
cision dependence on the distance (practically up to 2 cm). Also current limitations in 
resolution even for close regions have precluded their use in fragmented EGM analysis, 
and advances of sequential systems in recent years have moved the interest from non-
contact mapping systems. Nevertheless, their context is still interesting and active as 
they continue to be the natural way to obtain an activation map with a single beat.
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The electrical source estimation from regularized inversions is an ill-posed problem, 
thus different approaches have been proposed to deal with it [23–27]. Most of the pro-
posed algorithms, including the truncated singular value decomposition (TSVD), the 
regularized Least Squares (LS), the curvature of the L-curve from Tikhonov method, 
and the minimum relative entropy, perform the inversion of the transfer matrix of the 
problem, which causes resolution reduction to their solutions [28–30]. The inverse prob-
lem has been deeply studied in many other applications, but in the case of the inverse 
problem in electrophysiology, the transfer matrix can be either structurally simple and 
only depend on the distance, or structurally more complex and include spatial informa-
tion, such as the torso-organ geometries and conductivities [31–33].

In the last years, Support Vector Machines (SVMs) and kernel methods have been 
proposed for a variety of applications, mainly for classification and regression schemes 
[34–37]. Sometimes the Support Vector Regression (SVR) algorithm has been straight-
forwardly used to address signal processing problems on a straightforward way, this is, 
with little or no modification of the SVR algorithms to adapt the underlying data struc-
ture from the rich available set of signal models. Whereas this has been an advantageous 
approach, often the performance is affected for this algorithm mismatching to the prob-
lem. In [38], an approximation was proposed for tackling estimation problems in digital 
signal processing using SVMs, where a methodology to establish non-linear estimation 
of problems was proposed, so-called the Dual Signal Model (DSM) method, by follow-
ing a similar methodology to previous SVM works addressing sparse deconvolution and 
non-uniform interpolation [39, 40],

In this paper, we propose to create a SVR algorithm explicitly accounting for the sin-
gularities of the data model, the physical equations and the constrains of the inverse 
problem in electrophysiology. For this purpose, the so-called Laplacian distance kernel 
is proposed for its use as Mercer’s kernel in the SVR, and the DSM is followed to create 
this algorithm ensuring its suitability as a single-minimum method. In general, all the 
statistical learning methods based on SVR have been shown to exhibit excellent regu-
larization properties, and moreover, they allow us to readily introduce relevant a priori 
information of the problem at hand into the algorithm equations, which is a desirable 
advantage for this novel application.

In the current approach, we have addressed a highly simplified model problem, 
whereas current literature is widely devoted to more complex and realistic geometries. 
Nevertheless, several resolution and accuracy issues remain present in current systems, 
which justifies the search for new approaches starting from the very principles. It can 
be expected that the limitations in the regularization models used so far in the inverse 
problem in electrophysiology will be overcome by the deep knowledge developed in the 
kernel-method field during the last years, as far as the bioelectric models are ration-
ally included in the kernel equations. On the other hand, we propose the adaptation 
of the non-linear DSM for SVR (DSM−SVR) algorithm to the inverse problem in elec-
trophysiology, aiming to obtain solutions with improved resolution and regularization 
properties. For this purpose, we use a unipolar EGM catchment model in a homogene-
ous medium (inside the heart), which allows us to express the relationship between the 
source tissue potentials and the captured potentials registered by several distant cath-
eters in terms of a convolutional signal model. A valid Mercel’s kernel is defined as the 
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distance between the catheters and the cardiac tissue in the quasielectrostatic field equa-
tions. This kernel is used for the first time in the DSM−SVR algorithm, overall yielding a 
new algorithm for the inverse problem in electrophysiology.

The scheme rest of the paper is as follows. In Section II, the basic physical equations of 
a one- and two-dimensional model and the equations of the catchment model are intro-
duced and the most usual algorithms used for the solution of the inverse problem and 
the DSM−SVR algorithm are also described. In Section III, results of the DSM−SVR 
algorithm in synthetic experiments using one- and two-dimensional models are bench-
marked versus several usual algorithms. Special attention is devoted in the experiments 
to the effect of introducing noise in the transfer matrix instead of in the observed EGMs, 
which evidences the robustness of the SVM-DSP proposed algorithm. Finally, Section IV 
summarizes the discussion and the conclusions of the work.

Problem formulation and methods
There exists a gap between the literature of the inverse problem in electrophysiology and 
the clinical obtention and use of the estimated potentials. On the one hand, the inverse 
problem in cardiology and in electrophysiology usually aims to estimate the measured 
bioelectric potential at a given anatomical point (or set of points), which is considered 
as equivalent to measure the potential with a unipolar electrode. Nevertheless, it is well 
known that the measured potential by an electrode is due to the mixed contributions of 
the transmembrane action potentials. Ideally, the determination of the transmembrane 
action potential would give the best clinical information to the electrophysiologist, hence 
providing a pure electrical activity and view of the arrhythmia mechanism. However, this 
problem has been often limited to detailed in-silico models, in which the cellular activa-
tion is generated, and then the obtained virtual potential electrograms are calculated. For 
this reason, we decided to work with a computational model generating the measurements 
in terms of the transmembrane action potentials, as this approach has been widely vali-
dated in previous works [see e.g., [41–43], despite being still far from the clinical practice.

This section describes the equations of the quasielectrostatic model used to formulate 
the forward problem in electrophysiology, and a simple demonstration of its expression 
as a Linear and Space Invariant System (LSIS) relating two multidimensional spatial sig-
nals, namely, the transmembrane potential and the extracellular potential. In order to 
work with this LSIS model, we implement traditional solutions to the inverse problem, 
including Tikhonov regularization [44–46], the modified TSVD [47], and the Total Vari-
ation (TV) method [48, 49]. Finally, we present the equations of the physical model for 
the forward problem by using a new formulation in terms of the non-linear DSM−SVR 
framework. The DSM has been previously proposed in [38, 39] for several convolutional 
problems in digital signal processing, such as sparse deconvolution or sinc interpola-
tion. In this work, the DSM−SVR approach is specifically adapted to account for the 
quasielectrostatic conditions and for the biophysical equations of the inverse problem in 
electrophysiology.

Physical model

We followed the mathematical modeling of the forward problem as established in the 
work from Ellis et al (see [50] for further details from a clinical application viewpoint). 
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In summary, this mathematical model reformulates the volume conductor equations as 
a stereotypical current source, and then, the current source passes trough a filter which 
represents the effect of distance and impedance between the current sources and the 
recording electrode. In other words, the way the current source is transformed by the 
effects of distance and impedance to the voltage recorded at a single electrode is formu-
lated as a convolutional operator in space. More specifically, the physical model used 
in this work (see Fig.  1) comprises the uptake of the extracellular potentials at a very 
close distance of the cardiac tissue. On the one hand, the circulating blood medium is 
assumed to have homogeneous conductivity. On the other hand, we take into account 
the source space given by a set of cells in a surface section of cardiac myocyte cells. 
Finally, the extracellular potential is measured at a fixed distance from these source cells. 
With these conditions, we can express the physical model as a spatial convolution inte-
gral, hence, the physical model can be considered as a LSIS. This formulation allows us 
to present a formulation in terms of the DSM framework. A preliminary approach to the 
proposed physical model was reported in [51].

In the present work, we consider the equations for a two-dimensional tissue as seen 
in Fig. 1. The lower layer corresponds to the cardiac tissue plane, with dimensions l ×m 
(cm2 ), and it consists of a set of cardiac cells or elements that generate an intracellular 
potential vm(r′) , where r′ denotes the position of a differential element in this source tis-
sue plane. The upper layer corresponds to the horizontal plane where the catching cath-
eters are situated during the electrophysiological study. Here, ve(r) corresponds to the 
extracellular potential captured by the catheters of all cardiac tissue cells activated in the 
instant t = t0 at a constant height z = z0 of the tissue, and r represents the general posi-
tion of a differential catchment element. Note that height z = z0 represents and can be 
seen as the radio of the metallic catheter integrating the electrical activity in its surface, 
in order to avoid undetermination in the mathematical equations when the catchment 
catheter is in contact with the tissue. Then, extracellular potential ve(r) is given by

where c = a2σi/4σe , a is the cell or element radio, and σi and σe are the intracellular and 
extracellular conductivities, respectively. Therefore, |r − r′| is the distance from each 
point in the cardiac tissue to each point in the sensors plane [52].

(1)ve(r) = c

∫∫

s′

∇2vm(r′)

|r − r′|
ds′

Fig. 1  Section of two-dimensional cardiac tissue model. The upper plane corresponds to the region where 
the catheters are catching the measurements, whereas the lower plane corresponds to the cardiac tissue 
acting as bioelectric sources
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In our model, we use a compact form with the following expression,

so that r′ = (x′, y′, 0) are the Cartesian coordinates of the cardiac tissue source cells, and 
r = (x, y, z0) are the Cartesian coordinates of the observation points in the sensor plane. 
Then, Eq. (1) can be rewritten as

This equation represents the forward problem for the extracellular potentials as meas-
ured by the catchment catheters (see Fig. 1). With this equation, it can be readily shown 
that the used model satisfies the properties of linearity and spatial invariance, hence it 
actually represents a LSIS.

The impulse response of this LSIS can be theoretically identified in order to give 
an alternative model equation in terms of a spatial convolution. We can find impulse 
response he(r) in Eq. (3) by inputing a Dirac’s delta function in the spatial domain as a 
transmembrane potential source, i.e., by making vm(r′) = δ(r′) . In this case, the meas-
ured extracellular potential is

By using the properties of the delta function, as shown in Appendix, we further obtain a 
compact expression for this impulse response,

where * denotes here the possibly multidimensional spatial convolution. We have to 
keep in mind that we are specifically using here he(r) = ∇2Ŵ(r)

∣∣
r=(x,y,z0)

 , as detailed in 

Appendix. Now, we can propose a forward problem which is stated as a convolutional 
problem, and the equation can be seen as the definition of a convolutional, spatial, and 
two-dimensional signal model [53], just given by

This equation is valid throughout the space occupied by the source at z = 0 . Without 
losing the generality, for simplicity, and by working according to the model in Fig. 1, we 
have:

and we can finally express our fundamental equation as

(2)Ŵ(r − r′) =
c

|r − r′|
=

c√
(x − x′)2 + (y− y′)2 + z20

(3)ve(r) =

∫∫

s′(r′)
Ŵ(r − r′) · ∇2vm(r′)dr′

(4)he(r) =

∫∫

s′(r′)
Ŵ(r − r′) · ∇2δ(r′)dr′

(5)he(r) =

∫∫

s′(r′)
∇2Ŵ(r − r′) · δ(r′)dr′ = ∇2Ŵ(r) ∗ δ(r) = ∇2Ŵ(r)

(6)ve(r) = Ŵ(r) ∗ ∇2vm(r) = he(r) ∗ vm(r)

(7)h̃e(r) = he(r)
∣∣
z=z0

ṽe(r) = ve(r)|z=z0

(8)ṽe(r) = h̃e(r) ∗ vm(r)
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Equation (6) characterizes the physical model as a LSIS in terms of the convolution 
operator, hence, we can use the DSM−SVR and benefit from its properties in terms of 
regularization and generalization capabilities from machine learning. Equation (8) con-
tinues to fulfill the convolutional relationship, and we are just accounting for the symme-
try in our problem in order to address the two-dimensional signal model. Whereas these 
equations are general enough to support a three-dimensional model, we will restricts 
ourselves here to Eq. (8) for the purpose of benchmarking the generalization properties 
of the DSM−SVR in one- and two-dimensional models, as described later.

Conventional algorithms in the inverse problem in electrophysiology

In order to implement and benchmark the above described equations with commonly 
used methods for solving the inverse problem, we need to define a discretized form 
of Eq. (8). For this purpose, a discretized matrix form is first defined, representing the 
physical model with its corresponding notation. After this, we briefly review the state 
of the art of the methods used to solve the inverse problem in electrophysiology that are 
based on this matrix.

To obtain the solution of the forward problem, Eq. (8) can be written into its matrix 
form as follows,

where ve and vm denote the vector form for the transmembrane and for the extracellular 
potentials, respectively; and H is a Toeplitz symmetric square matrix. The size of this H 
matrix depends on the number of sensor elements and source elements on the consid-
ered planes, and it represents the convolutional matrix of the LSIS. Each of its rows is a 
vectorized version of a shifted two-dimensional impulse response, he(r) , where Eq. (5) 
has been previously discretized in a two-dimensional uniform grid. An example of con-
struction of this H matrix is drawn in Fig. 2.

(9)ve = Hvm,

Fig. 2  Construction scheme of transfer matrix, by using a two-dimensional uniform impulse response he(r) . 
Note that vect(he(r−τ)) denotes a vectorization of a two-dimensional impulse response shifted from the 
origin by τ  , where τ 1 and τ 2 are two possibly different shift factors
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Now, the inverse problem consists of estimating the transmembrane potential 
while assuming H and ve known [54–56]. The immediate solution can be expressed 
as v̂m = H

−1
ve , where v̂m is the estimated transmembrane potential with this direct 

matrix inversion. Although transfer matrix H is assumed to be known, usually 
poor quality results are given by the straightforward inversion, due to the inherent 
ill-conditioning of the problem matrix. Hence, regularization techniques must be 
employed in the solution of the inverse problem. One of the most popular solutions 
of the inverse problem is the Tikhonov regularization [44], which is based on the LS 
method, and represents a standard approach in estimation analysis to the approxi-
mate solution of overdetermined systems. When the optimization objective consists 
of adjusting the parameters of a model function to its best fit with a data set, the LS 
method finds its optimum when the sum of squared residuals is minimum. Residuals 
are defined as the difference between the actual values of the dependent variable and 
the model predicted values, and in our case are given by

When H matrix in the LS problem is ill-posed, the closed-form solution cannot be 
applied in a stable way, since small variations in the input data can result in large errors 
in the solution. A remedy often used in practice is to transform the original problem 
into one where the ill-posing is compensated for, by adding a term to Eq. (10), and a 
usual method for stabilizing this inverse solution is to use Tikhonov regularization. In 
this case, the expression is the following,

and its closed-form solution can be readily shown to be

where γ 2 is the regularization penalty parameter, which controls the weight attributed 
to constrain condition ||Rvm||2 , and matrix R represents the regularization operator for 
different orders. For the method of Zero-Order Tikhonov (ZOT) solution [44], operator 
R is the identity matrix ( Rii = 1 ), and thus it is constrained in energy ( l2 norm). Now, 
if R approximates the first ( Rii = −1 and Rii+1 = 1 ) or second ( Rii = −1 , Rii+1 = 2 and 
Rii+2 = −1 ) spatial derivatives, then v̂m is known as the First-Order Tikhonov (FOT) 
[45] or the Second-Order Tikhonov (SOT) [46] solution method, respectively, and it 
now exhibits a smoother optimization surface gradient or curvature.

Another method used to solve this kind of inverse problems is the TSVD, which 
solves the following expression:

(10)v̂m = arg min
vm

(||ve−Hvm||
2)

(11)v̂m = arg min
vm

(||ve−Hvm||
2 + γ ||Rvm||

2)

(12)v̂m = (HT
H+ γ 2

R
T
R)−1

H
T
ve

(13)v̂m = arg min
vm

(||Rvm||), subject to min
vm

(||ve −Hkvm||)
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where Hk is the reconstruction of H matrix using the k largest singular values. Because 
this method is based on a Singular Value Decomposition (SVD) process, the regulariza-
tion term is defined by the number of used singular values (k), which is known as trun-
cation parameter. Note that the order of R matrix also yields different solutions, such as 
Zero-order Tikhonov SVD (ZTSVD), First-order Tikhonov SVD (FTSVD), or Second-
order Tikhonov SVD (STSVD) [47].

Another regularization method is Total Variation (TV), which is similar to Tik-
honov technique, but it uses a non-quadratic norm in the regularization term, in par-
ticular, often the ℓ1 norm. Hence, the TV solution is obtained by solving the following 
problem,

where R can be also the Gradient or Laplacian operators, hence obtaining the First-order 
TV (FTV) [48] and the Second-order TV (STV) [49] solutions, respectively.

All these methods require an accurate determination of the regularization param-
eter, whose value determines the intensity and influence of the applied constraints. 
However, the robustness, quality, and resolution of the inverse solution are not always 
guaranteed because of the matrix inversion. Therefore, an alternative method is next 
proposed to solve the inverse problem and formulated in the simple scenarios used in 
this work.

Equations for the DSM−SVR solution

The SVM are supervised learning models that are widely used to solve machine learn-
ing problems [34]. The ν-SVM [57] is a well-known class of SVM algorithm used both 
for regression and classification. The ν-SVR has been proposed for tuning insensi-
tivity parameter ǫ in terms of a new free parameter ν with bounded range in (0,  1) 
[58], which makes the training process simpler. An additional class of non-linear SVR 
algorithms for solving convolutional data models can be obtained by considering the 
non-linear regression of the time instants of the observed signals, and then appro-
priately choosing a Mercer’s kernel. This class of algorithms is known as DSM−SVR 
framework [38], and in this section we present the equations used for this approach 
and proposed to solve the inverse problem in electrophysiology, according to the con-
volutional and multidimensional signal model previously developed in the preceding 
sections.

Be {[(xi, yi, 0), ve(xi, yi, z0)], i = 1, . . . ,N } , such that (xi, yi, 0) ∈ R
3 is the position vec-

tor in the cardiac tissue plane of the ith source element, and vee(r) = ve(xi, yi, z0) with 
z0 > 0 , are the extracellular potential measurements of the sensor plane. The DSM−
SVR uses a primal signal model that represents a regression of the independent vari-
able in an unknown space, this is

(14)v̂m = arg min
vm

(||ve −Hvm|| + γ ||Rvm||1)

(15)ve(xi, yi, z0) = �w,φ([xi, yi, 0])� + b
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where φ is a non-linear mapping from the input space to a (usually unknown) Reproduc-
ing kernel Hilbert Space (RKHS) [36, 59], and w and b are the linear regressor and bias, 
respectively. Then, the formulation of the primal problem of DSM−SVR is to minimize

subject to

where ξ (∗)i  denotes both ξi and ξ∗i  slack variables, C is the regularization parameter, and 
ν is an approximate ratio of the number of support vectors with respect to the number 
of training examples. Parameter b can be computed by taking into account that Eqs. (17) 
become equalities with ξ (∗)i = 0 for points with 0 < α

(∗)
i < C/N  in the Karush–Khun–

Tucker (KKT) conditions. In order to obtain the estimated extracellular potential, we 
solve the optimization problem as described in [34, 38, 39], and the solution takes the 
form

where κ(r′i, r′j) = �φ(r′i),φ(r′j)� is a Mercer’s kernel function, and α(∗)
i  are the Lagrange 

multipliers [37].
In our formulation, the kernel can be advantageously defined by using h(r) according 

to the impulse response of the physical model in Eq. (5), which is compatible with the 
quasielectrostatic conditions of the cardiac tissue and while mathematically satisfying 
the Mercer’s condition. It is immediate to see that the following definition fulfills both, 
thanks to the symmetry properties of the LSIS impulse response,

On the other hand, Lagrange multipliers α(∗)
i  can be assigned to correspond to the esti-

mated intracellular potential, simply as follows,

Now, the solution to the physical model in terms of the DSM−SVR algorithm can be 
expressed as

As seen, the last equation again corresponds to the convolutional form of a LSIS [60]. 
Therefore, by fulfilling Eqs. (19) and (20), and thanks to the symmetry of matrix he(r) , 

(16)
1

2
� w �2 +C

(
νε +

1

N

N∑

i=1

(ξi + ξ∗i )

)

(17)
�w,φ([xi, yi, 0]� + b− ve(xi, yi, z0) ≤ ǫ + ξi
ve(xi, yi, z0)− �w,φ([xi, yi, 0]� + b ≤ ǫ + ξ∗i

ξ
(∗)
i ≥ 0, ∀i ǫ ≥ 0

(18)v̂e(x, y, z0) =

N∑

i=1

(αi − α∗
i )κ([xi, yi, 0], [xj , yj , 0])+ b

(19)κ([xi, yi, 0], [xj , yj , 0]) = he(||r′i − r′j||1)

(20)(αi − α∗
i ) = v̂m(r′i)

(21)v̂e(r) =

N∑

i=1

v̂m(r′i)he(||ri − r′i||1) = v̂m(r) ∗ he(r)
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this DSM−SVR solution has been made to correspond with the same convolutional 
model in Eq. (8).

Simulations and experiment design

Our tests were performed in one- and two-dimensional tissue models generated with 
Matlab® by discretization of the continuous space model equations in "Physical model" 
section. For the one-dimensional case, a tissue line of elements was considered, with 
source elements aligned with the x-axis, and catchment sensors also aligned and at con-
stant height z0 (see Fig. 3). The lengths of the one-dimension cardiac-tissue line and of 
the catchment-sensor line were the same, hence yielding the same number of source and 
catchment elements after discretization, see Fig. 3. Simulations were performed with a 
cardiac tissue length of L = 3 cm. The number of cells per millimeter was N = 80 cell/
cm, and we had 240 sensor elements at height z0 cm. The intracellular potential was cen-
tered at the tissue origin, with depolarization starting at about − 0.5 cm and repolariza-
tion ending about 0.5 cm (see e.g. Fig. 8), which ensured that the recorded EGM included 
the complete depolarization and repolarization phases (spatial support was between 
− 1.5 cm and 1.5 cm). Note that, according to this, we did not considered source or sink 
EGMs, corresponding to anatomical or functional origin or end of the tissue potential 
propagation. The one-dimensional model of this cardiac-tissue line was the same as the 
one used in [51], and further details of this model can be found therein.

For the two-dimensional case, a plane tissue (see again Fig.  1) was considered with 
catchment sensors at coordinates (x, y) and at constant height z0 . We used a cardiac tis-
sue plane with coordinates (x′, y′) and catchment plane at height z0 of the cardiac tissue. 
Similar to the one-dimensional case, the number of sensor elements was equal to the 
number of source elements, again see Fig. 1. A 3-cm2 patch of cardiac tissue was sym-
metrically situated with respect to the coordinate origin, with 80-elements/cm2 density. 
Accordingly, the number of sensor elements was 57, 600, all of them situated at z0 = 0.02 
cm height, but computational complexity was controlled by decimating by 2 in both spa-
tial dimensions. This extremely high density of sensors aimed to give good quality visu-
alization for the results of our experiments. We again considered the transmembrane 
potential in the center of the cardiac tissue plane to reduce boundary effects.

It can be seen from this experimental setup that the assumptions of constant z0 and 
plane tissue and sensors are used for fundamental analysis purposes, however, a sensor 

Fig. 3  Scheme of the one-dimensional cardiac tissue model of source and catchment elements
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array will be in general curve-shaped and with different heights for each sensor. Whereas 
this has clear implications on the clinical use, this spatial distortion due to non-constant 
height and curvature was not considered here, but rather we focused on the fundamen-
tals of the more basic problem of plane tissue and sensors.

We benchmarked the DSM−SVR algorithm introduced in Section with several of the 
most traditionally used methods among those ones explained in Section. Specifically, 
we chose FTSVD, FOT, and FTV algorithms, and in order to optimize the regulariza-
tion parameter we tested the use of two different strategies, namely, the L-Curve and the 
Leave-One-Out (LOO) methods. The L-Curve is supported by a graphical representa-
tion for a set of valid regularization parameters of the (semi)norm of the normalized 
solution versus the corresponding norm of the residuals in Eq. (11). An essential feature 
of the L-Curve is that the optimal regularization parameter is not far from the regulari-
zation parameter that corresponds to this L-Curve corner [61]. In the LOO method, the 
complete data set except one sample is used to build the model, and the out-of-sample 
observation is used to calculate its estimation error, so that by repeating the procedure 
for all the samples and averaging, the generalization error is obtained for each value 
of the free parameter. A similar strategy was followed for the free-parameter search of 
DSM−SVR, and also the L-Curve was adjusted by using LOO methods according to the 
Mean Absolute Error (MAE), both of them in terms of signal-to-noise ratio (SNR), when 
the noise was introduced in the observations, and in terms of the transfer-matrix-to-
noise ratio (so-called here HNR).

Results
In this section, we present the results obtained with the proposed DSM−SVR approach 
when solving the intracardiac inverse problem. A preliminary study is presented show-
ing the ill-conditioning character of the problem with the used model and different 
estimation algorithms. After this, the first study was addressed in the one-dimensional 
model in order to determine the catchment height yielding a realistic waveform for the 
intracardiac EGM. Then, the following experiments were performed, both for the one- 
and two-dimensional models: (a) a method was scrutinized for determining the free 
parameters of the DSM−SVR algorithm; (b) the impact of different noise intensities was 
analyzed both when present on the EGM and on the transfer matrix; and (c) results were 
benchmarked with several methods selected among those ones that have been previ-
ously used in the inverse problem literature.

Ill‑conditioning analysis

In our problem, the ill-conditioning in the transfer matrix comes from the fact that 
matrix H is built, and in essence it consists of short-delayed versions of the impulse 
response, i.e., if the impulse response in a single-dimensional model is given by h(x), the 
Toeplitz matrix consists of rows which are basically given by h(x−�x) , and for small 
spatial displacements this implies that two consecutive raws are strongly similar. We 
made a numerical experiment with a single-dimensional tissue generating a spatial delta 
function, and then estimating it from the measurements with different methods after 



Page 13 of 25Caulier‑Cisterna et al. BioMed Eng OnLine  (2018) 17:86 

tuning their free parameters as later described. As seen in Fig. 4, different artifacts can 
be seen in the different methods, which mostly consist of a drift or leakage from the 
baseline and some oscillations close to the impulse activation. In frequency, this can be 
seen as a strong distortion in the low-frequency components of the estimated transfer 
function. Note that this transfer function is not just the one given by the forward prob-
lem, but also it includes the algorithm sensitivity. Accordingly, those methods which 
require matrix inversion are more sensitive to this effect, whereas the DSM−SVR with 
Laplacian kernel is built with a forward-problem formulation and the use of kernels in 
the formulation does not require matrix inversion in the estimation process.

Fig. 4  Ill-conditioning of the inverse problem in electrophysiology. A delta function is used as a source, and 
it is estimated in space (down) by different methods and for different SNR. The corresponding frequency 
responses are calculated (up): a SNR=15 dB; b SNR=25dB; c SNR=35 dB. Note that H�(ω) denotes the 
frequency response after tuning the free parameters on each method, and h�(x) denotes the impulse 
response of each method
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Determination of a suitable catchment height

Height tests were run on the sensor plane to determine the optimal height at which 
the signal of the extracellular potential in the one-dimensional tissue had a wave-
form similar to the unipolar EGMs that are usually seen in the clinical practice as 
a function of time in a catching electrode at a fixed position. The range of heights 
for z0 in which the plane of sensors was varied with respect to the plane of the car-
diac tissue was between 0.001 and 0.4 cm, and very different EGM waveforms were 
obtained throughout this range, as seen in Fig. 5a. Note that for extremely close z0 , 
the Laplacian discretization is distorted into near an inverted delta function, whereas 
for extremely large z0 the EGM turns a far-field waveform. For intermediate values of 
z0 , there are different and intermediate distortion effects. We can check that z0 = 0.02 
cm in panel (b) was similar enough to the usual unipolar EGM waveform seen in elec-
trophysiological studies. Accordingly, this was the catchment height used for all the 
subsequent studies, both in the one- and in the two-dimensional models.

Free‑parameter tuning strategy

The DSM−SVR algorithm needs to previously determine a set of free parameters, which 
are ν , γ , C, and b. Given that these parameters are often strongly interdependent, some-
times this can represent a complex search procedure if we wanted to follow a regular 
grid strategy, as far as all-combined-with-all evaluation would give a extremely high 
amount of parameter combinations to be evaluated. Instead, we followed a non-uniform 
grid strategy for tuning the free parameters, as follows: (a) a lower and an upper limit 
were established for the possible rank of each of these four free parameters; (b) accord-
ing to a previous run of searched parameters, each of them was established on either a 
linear or a logarithmic rank scale; (c) for each range, a middle point was established in 
each free parameter; (d) for all the combinations of the three values on each free param-
eter, a machine was trained using all the model observations except one, then the valida-
tion error was obtained for the out-of-sample observation, the process was repeated for 
all the observations, and out-of-sample errors were averaged; (e) the minimum error was 
used to reduce the range interval in the free parameters; (f ) steps from (c) to (e) were 
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repeated according to the new set of points in the grid. This procedure showed to con-
verge in the set of observed cases. Figure 6 depicts some slice examples of the surfaces 
that were obtained and built with this strategy. We can see that, in general, regions with 
good performance correspond either to clear minimum or to flat zones, which supports 
the search for further specific methods to substantially reduce the computational burden 
associated to the free parameter search.

Noise conditions and benchmarking

The robustness of the different algorithms was benchmarked in terms of the MAE 
on the two-dimensional domain. Given that we used a simulation model, we had 
available the actual solution of the transmembrane potential in the surface source. 
We added white-Gaussian noise with different power to the model in two ways. On 
the one hand, noise was added to the observations, i.e., to the observed extracellu-
lar potentials, as far as this is the kind of robustness more widely scrutinized in the 
inverse problem literature. On the other hand, noise was added to the transfer matrix, 
accounting for keeping its symmetry properties intact when doing so. This kind of 
test is less usual in the literature, however, we wanted to check for the sensitivity of 
the methods to the possible presence of errors in the transfer matrix errors in those 
scenarios when the transfer matrix is not so well-known in advance. For each method, 
we obtained the MAE as a function of the SNR and of the HNR. In both cases, we 
evaluated the performance for SNR between 0 and 70 dB.

Figure 7 shows the results obtained for all the used methods with SNR and HNR. 
On the one hand, panels (a, b) correspond to the SNR case with L-Curve and LOO, 
respectively. We can see that the MAE consistently decreases with increasing SNR in 
the catchment sensors. Also, the MAE is high for values of SNR below 5 dB, whereas 
it comes negligible after 30 dB. This behavior is in general consistent for all the meth-
ods, however, the DSM−SVR algorithms has a noticeably lower MAE in low-SNR 
conditions, and a consistently yet slightly lower MAE in high-SNR conditions. We can 
also see that the LOO approach tends to provide noisier MAE curves for intermediate 

-1.53

7000

-1.52

-1.51

6000

M
A

E
 (d

B
 m

V
) -1.5

0.8

C (dimensionless weight factors)

-1.49

5000 0.6

 (dimensionless weight fa
ctors)

-1.48

4000 0.4
0.23000

-1.5

-1

-0.5

0

M
A

E
 (d

B
 m

V
)

0

0.8
b (mV)

0.5

0.6

 (dimensionless weight fa
ctors)

1

-50
0.4

0.2
-100

-1.5

100

-1

-0.5

50 10000

0

M
A

E
 (d

B
 m

V
)

0.5

8000
b (mV)

0

1

6000

C (dimensionless weight fa
ctors)

4000-50
2000

-100

Fig. 6  Examples of free-parameter search for DSM−SVR. Blue points indicate the set of free-parameter values 
that were scrutinized in the search grid. Red circles indicate the obtained optimum combination for these 
values, to be used in the final solution



Page 16 of 25Caulier‑Cisterna et al. BioMed Eng OnLine  (2018) 17:86 

SNR conditions in most of the classic algorithms, though it does not affect the DSM−
SVR algorithm free-parameter search.

On the other hand, panels (c, d) in Fig.  7 show a different behavior of MAE as a 
function of HNR. First, the shape of the MAE variation is dome-like here, whereas 
it was exponential-like for the MAE in terms of SNR. Second, it remains at a more 
moderate level for low HNR values, when compared with the same range in the SNR, 
starting in general between 23 and 25 mV of MAE. And third, this dome-like vari-
ation is in general (and except for the range below 5 dB) above the MAE in terms 
of SNR. This means that these algorithms are clearly more sensitive to noise in the 
transfer matrix than to noise in the observations. Moreover, in the HNR plots we can 
see that there is a noticeable advantage of the DSM−SVR algorithm in comparison 
with the classical algorithms, indicating that this method is more robust when faced 
to perturbations in the transfer function estimation. We can finally also see also that 
slightly less smooth curves are obtained for the HNR in the classical methods with 
LOO strategy for the free parameters.

Figure 8 shows the estimated potentials in the line of source elements for the classical 
and for the DSM−SVR methods. Panels (a, c) show that the free-parameter estimation 
in the trivial case of no-noise present is clearly addressed by all the methods, though 
FTSVD exhibits ringing in the boundary of extremely fast variations, i.e., before and after 
the depolarization phase (but not in smooth variations as the repolarization phase). Pan-
els (b, d) show the estimated transmembrane potentials for an example of intermediately 

Fig. 7  Results on noise robustness of the methods in the one-dimensional model. MAE has been calculated 
for all the tested methods as a function of SNR (a, b) and of HNR (c, d). We also compared the classically used 
L-Curve (a, c) versus the LOO (b, d) as validation criterion to tune the free parameters
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high HNR of 45 dB. Overall, all the methods tend to deviate from flat regions in the 
presence of either sharp or smooth boundaries (depolarization or repolarization phases, 
respectively). Whereas DSM−SVR also exhibits this behavior, nevertheless it remains 
closer to the actual spatial waveform. In these conditions, LOO free-parameter search 
tends to give ringing solutions in the classical algorithms, whereas this is not the case for 
L-Curve search, though FTSVD still exhibits some ringing therein.

Two‑dimensional simulations

Figures 9 and 10 depict some examples of the estimation behavior with the tested meth-
ods. Panel (a) shows the ideal and the estimated transmembrane potentials as a function 
of the two-dimensional spatial coordinates. In order to better understand the quality of 
the simulations, panel (b) depicts the absolute residuals as a function of the same spatial 
coordinates. It can be seen therein that the DSM−SVR provides a uniform distribution 
of the residuals with space, in contrast with FTSVD (either with LOO or with L-Curve) 
and with FOT (with LOO), which exhibit strong boundary effects and locally aberrant 
increment of the residuals. On the other hand, FOT with L-Curve yields a heteroske-
dastic residual distribution, which tends to increase at the inside and to reduce at the 
boundaries. Finally, FTV with L-Curve shows similar results to DSM−SVR, and some-
times even slightly better results when using LOO for its free-parameter tuning. Note 
that FTV is not the most widely used method in the current literature of the inverse 

Fig. 8  Estimated potentials in the one-dimensional source, for all the tested methods, when tuning the free 
parameters in the classical algorithms with L-Curve (a, b) and with LOO (c, d), without noise (a, c) and with 
HNR = 45 dB (b, d)
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problem in electrophysiology, and that its behavior with LOO free-parameter search had 
not been previously addressed.

Table  1 shows the MAE results for all the used methods with HNR and SNR cases 
using L-Curve and LOO in the traditional algorithms, and for grid search in the DSM−
SVR algorithm. As can be seen, the MAE is now more similar in SNR compared with 
HNR, with a trend on MAE to be larger on SNR for similar noise ratios, probably due to 
the much larger number of observations in the two-dimensional discretized model. For 
the LOO tuning, the MAE tends to be smaller than for L-Curve tuning, but computa-
tional cost in the L-Curve free-parameter tuning is much smaller. On the other hand, the 
MAE in HNR is similar between FTV with L-Curve and DSM−SVR, the last one being 
slightly better in the cases with noise. The MAE in SNR exhibits similar values for FTV 
with L-Curve and DSM−SVR, the last one being slightly better with SNR greater than 
40 dB. In the case of the LOO, the types of noise produce different MAE among meth-
ods, with the best performance reached in general by the FTV algorithm. Note that both 
FOT and DSM−SVR are significantly better than the other classical methods in the two-
dimensional scenarios, and that the DSM−SVR algorithm is again slightly better than 
the FTV with L-Curve, but not so much margin can be seen now between DSM−SVR 
and FTV methods.

Fig. 9  Details on the simulation results in the two-dimensional model, for SNR = 40 db. a Transmembrane 
potentials as a function of spatial coordinates, for the ideal and the estimated versions. b Absolute residuals 
for the estimated transmembrane potentials in a 
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Discussion
In recent years, research on the inverse problem in electrophysiology has been in con-
stant development, but it is still open to improvements in its algorithms in terms of 

Fig. 10  Details on the simulation results in the two-dimensional model, for HNR = 40 db. a Transmembrane 
potentials as a function of spatial coordinates, for the ideal and the estimated versions. b Absolute residuals 
for the estimated transmembrane potentials in (a)

Table 1  Results on noise robustness of the methods in the two-dimensional model

MAE has been calculated for all the tested methods as a function of SNR and of HNR, and also when using L-Curve versus 
the LOO with traditional algorithm for the free-parameter search and Grid search for DSM−SVR

HNR MAE (mV) SNR MAE (mV)

L-Curve

(dB) 25 30 40 50 ∞ 25 30 40 50 ∞

FTSVD 1.768 1.862 1.269 0.145 1.051 2.266 1.507 8.044 0.192 1.051

FOT 3.094 2.433 1.791 1.599 1.517 4.230 2.734 1.703 1.530 1.518

FTV 1.766 1.066 0.366 0.117 8.11e−12 4.032 2.233 0.697 0.226 8.11e−12

LOO

FTSVD 7.846 7.97 8.015 8.026 8.011 8.030 8.017 8.013 8.011 8.011

FOT 1.363 0.867 0.335 0.116 4.58e−13 1.188 0.900 0.499 0.210 4.58e−13

FTV 1.388 0.805 0.258 0.083 7.88e−12 2.112 1.197 0.380 0.117 7.88e−12

Grid search

DSM−SVR 1.754 1.053 0.354 0.107 3.28e−4 4.030 2.232 0.696 0.225 3.28e−4
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resolution and regularization. In this work, we addressed the formulation of the inverse 
problem using a well-known technique in the machine learning literature, specifically, 
the SVR following the DSM principles. This methodology had been previously used 
for creating digital signal processing algorithms from time-convolutional signal mod-
els. In our approach, the signal model is tackled by including in the equations (through 
the Mercer’s kernel and the Lagrange multipliers) the quasielectrostatic field equation 
conditions as a priori knowledge of the problem. We tested this approach in detailed 
simulations with synthetic experiments, using one- and two-dimensional models. 
Benchmarking was made with selected algorithms from classical and recent literature.

Our results showed that the inverse problem in electrophysiology is more sensitive to 
noise in the estimation of the transfer matrix than in the noise of the observed extracel-
lular signals. The DSM−SVR in one-dimensional scenarios exhibited remarkable advan-
tage with respect to all the benchmarked algorithms, specially in terms of HNR, whereas 
in two-dimensional scenarios it was significantly better than classical algorithms, but 
similar to FTV algorithms. Further research needs to be devoted to scrutinize the best 
(probably combined) way to tackle with high-dimensional domains. However, robust-
ness with respect to the transfer matrix estimation seems to be a key property, which has 
received little attention in the literature. This advantage, mostly visible in one-dimen-
sional simulations, probably comes from the fact that DSM−SVR does not require any 
kind of inversion, but its formulation rather consists of a direct problem solving and the 
Structural Risk Minimization Principle. In addition, it has been observed in our results 
that the depolarization phase is sometimes better fitted than the repolarization phase 
in the presence of noise. The good behavior of the algorithm in depolarization phase is 
likely due to its non-inversion nature, which avoids the low-pass effect implicitly asso-
ciated to many regularization methods that work with matrix inversions, whereas the 
repolarization error could be attributed to some deviation in the free parameter search. 
Nevertheless, further theoretical results should be established in this setting, for pro-
viding a more solid framework when working in more complex scenarios. On the other 
hand, we have seen that the free-parameter tuning in the DSM−SVR can be further 
optimized, using techniques that require less computational cost.

In this work, we used an extremely simplified two-dimensional geometrical model. 
This simplification represents a conceptual approach to a more complex three-dimen-
sional model, where symmetry properties need to be studied with further detail when 
establishing the method for more realistic anatomy and sensor geometry. In addition, a 
greater number of points in the cardiac tissue is necessary when using a three-dimen-
sional model, and this requires a prior study of the equations for the simplified reformu-
lation of the problem, taking into the account pre-processing information techniques. In 
electromagnetic problems, it is usual to follow an approach where simple problems are 
first scrutinized before going to more complex geometries and fields. In this setting, we 
have previously indicated that the plane tissue and the plane sensor geometry are not yet 
realistic when thinking of patient applications. However, the bandwidth, dynamics and 
redundancy of the spatio-temporal variations seem to point out that not a large amount 
of points could be necessary for reaching higher precision in the inverse problem. Our 
approach based on support vectors could provide with better performance in this set-
ting, but further theoretical work has to be conducted on the effect of curvature, both 
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in the tissue and in the sensors. From a clinical point of view, the number of sensing 
electrodes needs to be reasonable, as far as they will be placed on (or in) the patient on a 
comfortable, stable, and easy to put-and-remove way.

On the other hand, our current formulation consists on a mathematical forward model 
providing with the potential measured in a spatial point by a point-electrode. It is very 
likely that the inclusion of the shape and volume of the electrode (spherical, ring, oth-
ers) can be readily included in the model, which has not yet been addressed in this work. 
Moreover, it is possible to think on using the method for the estimation of the trans-
membrane potentials for larger distances and for non-contact mapping schemes. We 
performed additional simulations (not included here) showing that for small changes in 
distance, the impulse response exhibits little (still noticeable) variation on its width, but 
the methods still work properly. If longer distance are scrutinized, the impulse response 
gets still wider, and the EGM morphology is noticeably affected. In any case, this in-
silico model is not accounting for curvature effects, which could be present. Ideally, a 
method for estimating the impulse response would strongly improve and extend the 
scope of the method, which can be incorporated to the proposed method, but it has not 
been addressed in this work. We focused here on simple propagation, nevertheless, our 
view is that in fibrillatory rhythms the accurate estimation of the underlying transmem-
brane potentials should be strongly informative, as far as their mechanisms still remains 
unknown. A great amount of knowledge on fibrillatory rhythms has been established by 
detailed computer simulations on transmembrane potentials and ionic currents [62–64]. 
However, it is desirable to improve the method in more electrophysiologically simple 
situations before moving to complex mechanisms.

Conclusion
The proposed approach to the DSM−SVR algorithm with Laplacean kernel can be an 
effective alternative in the inverse problem in electrophysiology. Our proposed DSM−
SVR algorithm with Laplacian distance kernel can be an efficient alternative to improve 
the resolution in current and emerging intracardiac imaging systems. The sensitivity of 
traditional methods to noise in the transfer matrix estimation also needs to be generally 
taken into account by algorithms in this field.
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Appendix: Model equations
We include here the development of Eq. 5 that has been used for the demonstration of 
the quasielescastostatic model in see Fig. 1 corresponding to a LSIS. For this purpose, we 
use the properties of the one-dimensional Dirac’s delta function that can be found in [53, 
65] and readily generalized to a two-dimensional domain. Equation 2 can be represented 
by its Cartesian coordinates as r = (x, y, z0) and r′ = (x′, y′, 0) , and then, it can be rewrit-
ten as

where x(′) denote both (x, x′) and of the same form can y(′) denote (y, y′) , and similarly 
ve(r) and vm(r′) in Cartesian coordinates can be rewritten in our case as

Now, if we replace these expressions in Eq. 3, the cardiac model can be expressed in Car-
tesian coordinates, as

With this equation, we can prove that the cardiac model of Fig. 10 represents an LSIS. 
By replacing vm(x′, y′) = δ(x′, y′) , we have that the impulse response can be expressed as

To solve this equation, we apply the properties of Dirac’s delta function [53, 65], which 
allows us to obtain

(22)Ŵ(r − r′) = Ŵ(x(′), y(′), z0)

vm(r′) = vm(x
′, y′, 0) = vm(x

′, y′)

ve(r) = ve(x, y, z0)

ve(x, y, z0) =

∫∫

s(x′,y′)
Ŵ(x(′), y(′), z0)∇

2vm(x
′, y′)dx′dy′

he(x, y, z0) =

∫∫

s(x′,y′)
Ŵ(x(′), y(′), z0)∇

2δ(x′, y′)dx′dy′

=

∫∫

s(x′,y′)
Ŵ(x(′), y(′), z0)

[
∂2δ(x′, y′)

∂x′2
+

∂2δ(x′, y′)

∂y′2

]
dx′dy′

=

∫∫

s(x′,y′)

[
Ŵ(x(′), y(′), z0)

∂2δ(x′, y′)

∂x′2
+ Ŵ(x(′), y(′), z0)

∂2δ(x′, y′)

∂y′2

]
dx′dy′

he(x, y, z0) =

∫∫

s(x′,y′)

[
∂2Ŵ(x(′), y(′), z0)

∂x′2
δ(x′, y′)+

∂2Ŵ(x(′), y(′), z0)

∂y′2
δ(x′, y′)

]
dx′dy′

=

∫∫

s(x′,y′)
δ(x′, y′)

[
∂2Ŵ(x(′), y(′), z0)

∂x′2
+

∂2Ŵ(x(′), y(′), z0)

∂y′2

]
dx′dy′

=

∫∫

s(x′,y′)
δ(x′, y′)∇2Ŵ(x(′), y(′), z0)dx

′dy′

=

∫∫

s(r′)
δ(r′)∇2Ŵ(|r − r′|)dr′ = δ(r) ∗ ∇2Ŵ(r)
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And finally, we have to keep in mind that

This expression allows us to obtain Eq. (5), which represents the impulse response, and 
allows us to represent our problem as a two-dimensional convolutional problem.
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