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Abstract 

Background:  Liver segmentation in computed tomography is required in many 
clinical applications. The segmentation methods used can be classified according to a 
number of criteria. One important criterion for method selection is the shape represen-
tation of the segmented organ. The aim of the work is automatic liver segmentation 
using general purpose shape modeling methods.

Methods:  As part of the research, methods based on shape information at various lev-
els of advancement were used. The single atlas based segmentation method was used 
as the simplest shape-based method. This method is derived from a single atlas using 
the deformable free-form deformation of the control point curves. Subsequently, the 
classic and modified Active Shape Model (ASM) was used, using medium body shape 
models. As the most advanced and main method generalized statistical shape models, 
Gaussian Process Morphable Models was used, which are based on multi-dimensional 
Gaussian distributions of the shape deformation field.

Results:  Mutual information and sum os square distance were used as similarity 
measures. The poorest results were obtained for the single atlas method. For the ASM 
method in 10 analyzed cases for seven test images, the Dice coefficient was above 
55% , of which for three of them the coefficient was over 70% , which placed the 
method in second place. The best results were obtained for the method of generalized 
statistical distribution of the deformation field. The DICE coefficient for this method was 
88.5%

Conclusions:  This value of 88.5 % Dice coefficient can be explained by the use of 
general-purpose shape modeling methods with a large variance of the shape of the 
modeled object—the liver and limitations on the size of our training data set, which 
was limited to 10 cases. The obtained results in presented fully automatic method are 
comparable with dedicated methods for liver segmentation. In addition, the deforam-
tion features of the model can be modeled mathematically by using various kernel 
functions, which allows to segment the liver on a comparable level using a smaller 
learning set.

Keywords:  Liver segmentation, Single atlas based segmentation, Active Shape Model, 
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Background
Liver segmentation has been the subject of research by various authors for many years 
and is required in many clinical applications [1–3]. The most popular imaging mode is 
computed tomography (CT) or the contrast-enhanced CT, which are used for computer 
aided diagnosis (CAD) [4, 5] and planning and support of computer assisted interven-
tions (CAI) of primary and secondary tumors in liver [6–9]. Precise liver segmentation is 
also crucial for selective internal radiation therapy (SIRT) [10].

The segmentation methods used can be classified according to a number of criteria. One 
important criterion for the division is the method of using information about the shape 
of the organ by a given method [11]. Simple segmentation methods that do not use shape 
information can be applied to different objects with a uniform intensity distribution and 
clearly separate the object of the interest from neighboring bodies. Such methods can be 
applied by selecting the values of several general parameters of the method, which can be 
selected on the basis of representative examples. In turn, more complex methods contain 
many parameters that use knowledge in the field of the shape of a segmented object.

The aim of the work is automatic liver segmentation using general purpose shape 
modeling methods. A new element in the work is the application of the generalized sta-
tistical model of the shape deformation method presented in [12].

Methods
As part of the research, methods based on shape information at various levels of 
advancement were used. The single atlas based segmentation method was used as the 
simplest shape-based method. This method is derived from a single atlas using the 
deformable free-form deformation of the control point curves [13, 14]. Subsequently, the 
classic and modified Active Shape Model (ASM) was applied, using the medium body 
shape models and organ model [15]. The most advanced method used was generalized 
statistical shape models, which are based on multi-dimensional Gaussian distributions 
of the shape deformation field [12].

Simple atlas method

An atlas-based segmentation method propagates the segmentation of an atlas image 
using the image registration technique (Fig.  1).

In this paper the B-spline transformation will be used. A rectan-
gular grid G = Kx × Ky × Kz is superimposed on the image (size 
Nx × Ny × Nz ,Kx << Nx,Ky << Ny,Kz << Nz ) which is deformed under the influence 
of the control points. The dense deformation is given as a summation of tensor products 
of univariate splines. The displacement field u(x) is given as:

where i = ⌊x/Nx⌋ − 1 , j = ⌊y/Ny⌋ − 1 , k = ⌊z/Nz⌋ − 1 , µx = x/Nx − ⌊x/Nx⌋ , 
µy = y/Ny − ⌊y/Ny⌋ , µz = z/Nz − ⌊z/Nz⌋ , Bl—represents lth basis function of the 
B-splne and d denotes the displacement.

(1)T (x) =

3
∑

l=0

3
∑

m=0

3
∑

n=0

Bl(µx)Bm(µy)Bn(µz)di+l,j+m,k+n
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Registration reffers to as a selection the set of the parameters:

where C(ψ; IF , IM)—is the cost function related to the similarity metrics. The other 
important details can be found in a previous paper [5].

Classic and modified Active Shape Model

In the 1990s, Tim Cootes and Chris Taylor introduced a new segmentation technique 
called the Active Shape Model (abbreviated as ASM). This method makes it possible 
to create a medium model of the shape of the object based on the training set, and 
then iteratively deform and move its boundaries so that it fits the new case as well as 
possible. The ASM algorithm can be divided into three main stages, which consists 
of: determining the training set, estimating the average (statistical) shape model, and 
optimizing the obtained shape model. The classic ASM method uses the point distri-
bution model (PDM), by means of which the pattern of the segmented object is cre-
ated [16]. The steps necessary to create a shape model are shown in Fig.  2

The ASM method uses the statistical analysis of coordinate positions to learn a 
set of landmarks. In order to be able to compare the corresponding points belong-
ing to different shape models from the training set, user must first align the axis set. 
A modified Procrustes analysis is used to transform the training set data by scaling, 
rotation, and translation [17]. The next step in the ASM is to estimate the statistics of 
aligned images from the training set. First, the average shape is calculated, which can 
be expressed by the formula:

(2)µ̂ = argminC(ψ; IF , IM)

(3)X =
1

N

N
∑

i=1

Xi

Fig. 1  Concept behind the single atlas-based segmentation [5]
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where X—average shape, Xi—i-th shape, N—the number of alligned shape in the train-
ing set.

Ways of variability, or directions in which points of shape are going together while 
moving, are found using Principal Component Analysis (PCA) for deviations from the 
average value. For each shape from the training set, the deviations from the average dXi 
are estimated:

The calculated dxi values are then used to determine the 2n ∗ 2n covariance matrix S, 
where n is the number of landmarks

The direction of the variation of the points can be described by the eigenvectors pi 
of the covariance matrix S. The eigenvectors of the covariance matrix correspond-
ing to the largest eigenvalues represent the most significant variability possibilities 
of the values on the basis of which the matrix S was created. In addition, the ratio of 

(4)dXi = Xi − X

(5)S =
1

N

N
∑

i=1

dXidX
T
i

Fig. 2  Stages of determining the shape model in the ASM method
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the total variance to each eigenvalue is equal to the eigenvector for that value. Thanks 
to these properties, most of the shape changes can be translated by a small number 
of modes. Each shape s from the training set can be approximated using the average 
shape and the weighted sum of deviations obtained from the first t modes of variation:

where P—matrix of first t eigenvectors (p1p2...pt) , b—vector of weights for each eigen-
vector (b1b2...bt)T

The use of the created average shape to the location on the images of the searched 
object requires that the model contains information not only about the shape, but also 
about the intensity levels and texture of the objects. For this purpose, the models of 
the appearance of the intensity level (Gray-Level Appearance Model) are determined 
[18]. When creating appearance models, statistical values of gray levels are analyzed 
in the areas around each landmark determined in previous stages of the ASM algo-
rithm. By assuming the ASM method, the orientation points correspond to specific 
locations on objects in all learning images, which is why the designated gray level pat-
terns in different images around landmarks should be similar. The adjustment of the 
previously estimated average shape to the new case can be broadly divided into two 
steps repeated in an iterative manner:

• • Creating a series of hypotheses giving approximate locations of model points,
• • Refining each hypothesis and choosing the best one.

The Active Shape Model method has undergone many different modifications and 
improvements. The main problem of the ASM method is generating learning data 
that meets the following conditions:

• • In every set of points there must be n corresponding landmarks,
• • Each landmark must lie in the image on the edge of the object the model is created,
• • Each set of n points must form a spatial grid consisting of polygons (creating a 

vertices-faces representation).

In this paper the ASM with the optimal features is used. This is an alternative to 
the classic ASM abandoning the creation of the Gray-Level Appearance Model using 
standardized derivative profiles and without estimating the cost function based on the 
Mahalanobis distance in favor of the algorithm which allows you to move the landmarks 
towards a better location during optimization along a perpendicular direction to the 
object edge [15]. The authors assumed that the best location is one for which everything 
on one side of the profile is outside the object, and everything on the other side is in the 
middle of the object. In order to determine whether a given location is in or outside the 
object, the probability is determined for the area around each landmark, on the basis of 
which the classification is made. The decision on the best new location of the point is 
made by the non-linear classifier of the k-nearest neighbors classifier (kNN-classifier).

The authors of the article [19] proposed using the iterative closest point method 
(ICP) to generate a training set. Behiels et al. [20] proposed to improve the way the 

(6)s = X + Pb
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shape of the model is adjusted to the new case in ASM. In classic ASM, the position 
and shape parameters are corrected at each iteration by minimizing the sum of the 
squares of differences between model points and points estimated in a given iteration. 
This criterion of matching with the smallest squares is sensitive to outliers, which 
results in poorer results. When the outlying points attract further points towards it, 
the location of the landmarks can longer be improved in the next iteration. For this 
reason, it has been proposed to correct the suggested dX displacements before updat-
ing the position and shape parameters.

In order to prepare the data, all the images were subjected to the initial phase of data 
processing resulting in the generation of volumes on which the liver is visible in 60 cross-
sections. The initial processing phase can be divided into two stages. In the process of 
creating models of liver shape, prepared, segmented images were used. Based on these 
images, the edge of the liver was marked. Then 20–100 points lying on the designated 
border were selected. For the first four and last liver cross-sections, the number of land-
marks changed by 20 points, while for others the number was constant and amounted 
to 100. Three image resolution coefficients were used in the calculations: 0.25, 0.5 and 1. 
For each of them, five iterations with unchanged parameters were made. During results 
generation, the length of the profiles was 8 pixels, the number of determined landmark 
positions was 6 and the limits of the own values to 3.

Generalized statistical shape model

The statistical generalized model—Gaussian Process Morphable Model (GPMM) based 
on the decomposition of the main components is a linear model that can be presented in 
a parametric manner [12]. The shape of the object can be represented as a folding of the 
deformation of an object with a reference shape:

where s—the shape of the object (the vector of the coordinates of points lying on the 
surface of the model), X—shape vector, u—� → R3 deformation field (vector field of the 
shape difference), ŴR — reference shape.

The deformation field is modeled as a multi-dimensional Gaussian process:

where GP—Gaussian process, µ—� → R3 average deformation, k—�×� → R3×3 
covariance function or kernel function.

The idea of a statistical model of a shape is based on the decomposition of the prin-
cipal components and consists in the representation of a multi-dimensional Gaussian 
process in the form of a low-dimensional sum of r of the leading base functions:

where φi—i-th basic function, �i—variance of shape corresponding to the i-th base func-
tion φi

(7)s = X + u(X)|X ∈ ŴR

(8)u = GP(µ, k)

(9)u = µ+

r
∑

i=1

αi
√

�iφi
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If the modeled shape of the object is characterized by high smoothness, then only 
a few basic functions are needed to create a good approximation of the shape - hence 
the name of the low-dimensional representation of the shape. The challenge with this 
approach is to effectively calculate the value in the sense of computational complex-
ity, therefore, with a larger number of model points, Nyström approximations are 
used [21]. One of the major advantages of a generalized statistical model, based on a 
multidimensional Gaussian process, in relation to the classical statistical model is the 
freedom to select the function of the nucleus. For a small training set, shape statistics 
can be represented by modeling properties of the kernel functions known from the 
image registration process such as radial functions or spline functions. The method 
presented above was adapted for the needs of segmentation of the liver organ - using 
the following main stages:

• • Rigid registration of input images
• • Finding correspondence in example sample vectors
• • Building a statistical shape model based on sample shapes
• • Segmenting of a new case

whose main elements have been characterized below. The more detailed steps are 
presented in Fig.  3.

Rigid registration of input images

The data collection of abdominal CT reference images together with the expert out-
lines of the liver organ is subjected to a rigid registration of the similarity based on 
the minimization of MI, which brings the entire set to one common coordinate sys-
tem. This is a necessary step because the generalized statistical model simulates shape 
deformations.

Fig. 3  The steps for liver segmentation using generalized statistical shape model
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Finding correspondence in example shape vectors

Ensuring the adequacy of points in shape vectors is a prerequisite for using input data in 
the further stages of building a Gaussian process. Finding the appropriateness of points 
in a set of shapes from a training set proceeds in the following main steps:

1.	 Selecting of one of the shapes as a reference shape.
2.	 Building a Gaussian process on a reference model using the kernel function for a 

smooth deformation model.
3.	 Distributing the Gaussian process to r Karhunen-Loe ve coefficients.
4.	 Registering of the model to individual shapes from the training set using the model 

development as a function of regularization in the registration task consisting of 
minimizing the distance measure.

Building a statistical shape model based on sample shapes

The use of the selected kernel functions for the Gaussian process modeling shape defor-
mation does not ensure that knowledge about the subject shapes of the modeled object 
is taken into account. The perfect model of shape should only be deformed to shapes 
that can occur in reality, which is the main assumption behind the construction of statis-
tical shape models. In the presented approach, the model is taught this property based 
on a set of sample shapes Ŵ1, ...,ŴN . After providing correspondence between the refer-
ence shape ŴR and all the sample shapes, we obtain a set of deformation fields:

where ui(X)—the deformation field that maps the point of the reference surface X ŴR to 
its corresponding point ui(X) on the i − th surface.

The Gaussian process GP(µSM , kSM) , which models this characteristic deformation, is 
obtained by the average estimation of its parameters:

and

Segmentation of a new case

After constructing a generalized model of probabilistic distribution of shape deforma-
tion based on shapes from the training set, such a model can be used to segment the 
object in a new input image. In this case, the properties of a continuous multidimen-
sional Gaussian process. The algorithm adjusting the model minimizes the Mahalanobis 
distance between the given and the average profile along the normal direction to the 
model. The main difference between ASM and GPMM is the generation of candidates 
for the new location of the points matching the image of the model. In the classic ASM 

(10){u1, ...,uN },ui : � → Rd

(11)µSM(X) =
1

N

N
∑

i=1

ui(X)

(12)kSM(X ,Y ) =
1

N − 1

N
∑

i=1

(ui(X)− µSM(X))(ui(Y )− µSM(Y ))T
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approach, candidates are found along the normal vector to a model with a given length 
parameter. In the case under consideration, candidates are generated as samples from 
the Gaussian distribution of liver shape deformation built on the training set. There-
fore, the new position of the model point does not have to be on the normal vector, but 
results from the probability distribution of the shape deformation field. In order to pre-
serve the possibility of comparing the results in the considered scenarios, the same num-
ber of model points was used as in the case of the classical ASM algorithm.

Input data set

For the liver segmentation, 20 CT images of the abdominal cavity with a resolution of 
512 by 512 pixels available in the SILVER07 database were used [22]. The number of 
cross-sections on the images ranged from 64 to 394, while their thickness ranged from 
0.7 to 3 cm. Each volume also contained a binary image with a segmented liver organ 
made with the help of radiologists (experts).

Quantifying segmentation quality

Ground truth, which are usually manually segmented by a human expert, is necessary to 
quantify segmentation accuracy.

As similarity index the following measures are used:

• • Dice similarity coefficient (DICE) defined as: 

where IF−Seg , IM−Seg present two segmentations and | · | denominates the number of 
voxels inside the segmentation,

• • Mean surface distance (MSD) is defined as: 

where nX , nY  represent the number of voxels on the two segmentation surfaces 
respectively, and d are the closest distances from each voxel on the surface to the 
other surface. The value of this measure helps to identify distance between registered 
surfaces.

• • Hausdorff distance is defined as: 

where NX ,NY  represent the voxels on the two segmentation surfaces respectively, 
and di and dj are the closest distances from each voxel on the surface to the other 
surface.

(13)DICE(IF−Seg , IM−Seg (T )) = 2
|IF−Seg ∩ IM−Seg (T )|

|IF−Seg | + |IM−Seg (T )|
∗ 100%

(14)MSD(IF−Seg , IM−Seg (T )) =
1

nX + nY

nX
∑

i=1

di

ny
∑

j=1

dj

(15)H(IF−Seg , IM−Seg (T )) = max

{

sup
x∈NX

inf
y∈NY

d(x, y), sup
y∈NY

inf
x∈NX

d(x, y)

}
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Results
The segmentation quality measures defined above (DICE, MSD, Hausdorff) were used 
to present the results. Table 1 presents a quantitative summary of the obtained results. 
Statistical analysis of the results of the DICE coverage coefficient was performed. After 
demonstrating the lack of normal distribution (Shapiro-Wilk test), the Wilcoxon test was 
used to verify the median equality. Statistically significant differences in median DICE 
coefficient for the method of generalized statistical form factor in relation to Active 
Shape Model based on medium shape and a single atlas were demonstrated. The graphi-
cal representation of the results below presents the best and worst result of liver organ 
segmentation (according to the criterion of the DICE—Fig. 4).

Figure 5 presents drawings of registered liver surfaces in axial and coronal projections 
using the rigid registration method for training data set.

Discussion
Liver segmentation using the methods used (single-atlas method, ASM and general-
ized statistical model of shape deformation) showed differences in results depending on 
the approach used (Table  1). The more complex the shape model used, the better the 
results. The poorest results were obtained for the single atlas method, with the meas-
ure of MI from the SSD measure being a better measure of similarity. In the case of the 
ASM method, in 10 analyzed new cases for seven test images, the DICE coefficient was 
obtained above 55% , of which for three of them the coefficient was over 70% , which 
placed the method in second place.The best results were obtained for the method of gen-
eralized statistical distribution of the deformation field. The best results had a DICE of 
75% . Various specialized methods of liver segmentation are described in the literature [2, 
23, 24]. They present DICE coefficients between 85 and 95 % . The lower value of DICE in 
the presented approach can be explained by the use of general-purpose shape modeling 
methods, with a large variance of the shape of the modeled object—the liver. Due to the 
database of contoured expert cases, the training set was limited to 10 cases and number 
of shape model points was limited to 10,000.

To confirm the competitiveness of the proposed method, the approach used was 
compared with the three best methods dedicated to liver segmentation indicated in the 
MICCAI challenge [22]. In these studies we demonstrated the scalability of the pro-
posed method. We increased the number of model points holding four times with an 
average DICE rating of 88.5% and scoring according to the MICCAI Challenge criterion 
65 pts. The authors of these articles shared the results they obtained. The best methods 
[25–27] scored 73, 59 and 43 pts respectively. Compared with the dedicated methods 

Table 1  Quantifying segmentation results according using methods - shape model points 
was limited to 10,000 and to 10 cases in training set

Similarity 
measure

Single atlas 
SSD

Single atlas 
MI

Classical 
ASM

Modified 
ASM

GPMM 
10,000 
pts

GPMM 
19,000 
pts

GPMM 
40,000 
pts

MSD (mm) 3.49 3.08 2.91 2.85 2.79 1.95 1.7

H (mm) 6.02 4.65 574.29 572.95 4.32 3.7 2.9

DICE (%) 0.49 0.59 0.57 0.57 0.74 0.85 0.885



Page 11 of 13Spinczyk and Krasoń ﻿BioMed Eng OnLine  (2018) 17:65 

Fig. 4  The best (left) and worst (right) result of liver segmentation according to the criterion of the dice 
coefficient: expert delineation (pink color), automated results (green color), common part (white color)

Fig. 5  Drawings of registered liver surfaces in projections: axial (left) and coronal (right) using the Rigid 
registration method for training data set
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for liver segmentation with MICCAI challenge [22], the method took the 2nd place. The 
first place was taken by a method containing both a deformation based on Free-Form 
Segmentation statistics and shape statistics. However, this method required advanced 
assumptions and calculations related to Constrained Free-Form Deformation for a typi-
cal intensity distribution around the liver. In addition, the model the statistical was built 
on a four times larger training set [25]. The presented method does not contain any 
stages characteristic for the liver and is also fully automatic. In addition, the deforamtion 
features of the model can be modeled mathematically by using various kernel functions 
[12], which allows to segment the liver on a comparable level using a smaller learning 
set.

In the future, it is planned to create a deformation model on a larger training set.

Conclusions
The aim of the work is automatic liver segmentation using general purpose shape mod-
eling methods. A new element in the work is the application of the generalized statistical 
model of the shape deformation method presented in [12]. Due to the clinical relevance 
of the problem of automatic liver segmentation and the existence of many highly spe-
cialized methods and the development of general-purpose methods of statistical shape 
modeling, research on the effective use of general-purpose methods to support clinical 
goals seems to be one of the many significant directions of development of modern bio-
medical engineering.

In the presented approach, a DICE of 88.5% potentially indicates an the possibility of 
effective use of the modern general-purpose methods while building the most repre-
sentative dictionaries that cover the variability of anatomical shapes in the patient popu-
lation. The obtained results in presented fully automatic method are comparable with 
dedicated methods for liver segmentation. In addition, the deforamtion features of the 
model can be modeled mathematically by using various kernel functions, which allows 
to segment the liver on a comparable level using a smaller learning set.
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