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Background
Abnormal swallowing, referred to as dysphagia, can present multiple different signs 
and symptoms such as the feeling of food being stuck in the throat, difficulty in placing 
and controlling food in the mouth, and coughing after swallowing [1]. These swallow-
ing difficulties can result from a multitude of different medical conditions, particularly 
neurological conditions, but physical trauma and stroke are among the most preva-
lent individual causes [2]. Though not immediately life-threatening in all but the most 
extreme cases, dysphagia that is not treated in a timely manner can lead to serious medi-
cal issues such as malnutrition, dehydration, or pneumonia, and so early detection of 
dysphagia risk is a high priority [2, 3].

The current accepted diagnostic gold-standard methods for evaluating swallow-
ing function include nasopharyngeal endoscopy and videofluoroscopy [4, 5]. However 
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these specialized procedures are not available in all situations, and so attempts have 
been made to improve the accuracy of simpler and more mobile swallowing screening 
techniques. Several such methods have been investigated over the years, most notably 
including the widely adopted 3 ounce water swallow challenge which achieves a very 
high sensitivity in predicting aspiration [6, 7]. Unfortunately it seriously overestimates 
the likelihood of aspiration, thereby forcing potentially unpleasant or harmful interven-
tions upon patients waiting for a full diagnostic exam [6, 7]. Screening methods that use 
more portable instrumentation, such as pulse-oximetry and surface electromyography, 
have also demonstrated limited sensitivity and specificity [8, 9]. Cervical auscultation on 
the other hand, which is also an imprecise screening technique when deployed in a tra-
ditional manner, has shown some promise attributable to recent technological advances 
and has been studied in much greater detail [10].

Cervical auscultation, a method by which a clinician uses a stethoscope to listen to the 
throat while a patient swallows boluses of food and liquid, has not yet demonstrated ade-
quate predictive value for swallowing disorders despite claims to the contrary by numerous 
methodologically flawed studies [3, 10, 11]. Recently, however, researchers have begun using 
microphones and accelerometers to obtain data [12–14]. As digital devices, these transduc-
ers do not have the same physical or interpretive biases as humans, making it much easier 
to apply desired signal processing and analysis techniques to the data. Multiple noise filter-
ing as well as feature extraction and classification techniques have been applied in previous 
studies to improve the signal quality and objectively assess the information obtained [12].

If an improved, non-invasive method of investigating swallowing difficulties is to be 
developed, it is imperative to characterize and compare swallows from both healthy and 
non-healthy patients. From there, it could then be possible to determine how these two 
sets of data differ and subsequently determine how to automatically differentiate the two 
classes. Accomplishing this normal-abnormal differentiation with greater precision than 
current methods would be invaluable with regards to the early detection of dysphagia 
and prevention of subsequent adverse events. Our paper offers two notable contribu-
tions. First, mirroring a previous study that investigated only healthy subjects [15], we 
investigate mathematical features from time, frequency, and time–frequency domains 
of swallowing vibrations and sounds simultaneously recorded from patients with swal-
lowing disorders. Second, we then compare the values of these features with the swal-
lowing signal features obtained from healthy participants. We hypothesized that, since 
swallowing performance is known to differ between these two populations, our features 
would show statistical differences in the resulting vibrations and sounds between our 
test groups. We analyzed only those swallows that did not result in aspiration because 
swallows in which the person aspirates rarely occur in healthy people [16, 17] and we 
sought to determine whether our method of cervical auscultation could differentiate 
between healthy and disordered swallows.

Methods
Equipment

Our recording equipment consisted of a tri-axial accelerometer and a contact micro-
phone attached to the participant’s neck with double-sided tape. The accelerometer 
(ADXL 327, Analog Devices, Norwood, Massachusetts) was mounted in a custom 
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plastic case, and affixed over the cricoid cartilage (as seen in Fig. 1) in order to provide 
the highest signal quality [18]. The two main accelerometer axes were aligned parallel to 
the front of the neck (approximately parallel to the cervical spine) and perpendicular to 
the same surface (approximately perpendicular to the coronal plane). These directions 
will be referred to as superior–inferior (S–I) and anterior–posterior (A–P) axes, respec-
tively. Data from the third axis of the accelerometer was not used in this study. The sen-
sor was powered by a power supply (model 1504, BK Precision, Yorba Linda, California) 
with a 3V output, and the resulting signals were bandpass filtered from 0.1 to 3000 Hz 
with ten times amplification (model P55, Grass Technologies, Warwick, Rhode Island) 
as swallowing vibrations have been shown to be band-limited to approximately this 
range [19]. The voltage signals for each axis of the accelerometer were fed into a National 
Instruments 6210 DAQ and recorded at 20 kHz by the LabView program Signal Express 
(National Instruments, Austin, Texas). This set-up has been proven to be effective at 
detecting swallowing activity in previous studies by maximizing the signal-to-back-
ground-noise ratio [19, 20]. The microphone (model C 411L, AKG, Vienna, Austria) was 
placed below the accelerometer and slightly towards the right lateral side of the trachea 
so as to avoid contact between the two sensors but record events from approximately the 
same location (see Fig. 1). This location has previously been described to be appropriate 
for collecting swallowing sound signals by maximizing the signal-to-background-noise 
ratio [21, 22]. The microphone was powered by a power supply (model B29L, AKG, 
Vienna, Austria) set to ‘line’ impedance with a volume of ‘9’ and the resulting voltage 
signal was sent to the previously mentioned DAQ. Unlike the swallowing vibrations, this 
signal was left unfiltered as an upper limit to the bandwidth of swallowing sounds has 
not yet been found. Instead we recorded the entire dynamic range of our microphone 
signal (10 Hz–20 kHz) to ensure that we did not lose any important components of our 
signal. Again, the signal was sampled by Signal Express at 20 kHz. This data recording 
setup is virtually identical to that found in our previous work [15] so that the data sets 
could be compared accurately.

Fig. 1  Transducer mounting locations. Location of recording devices during data collection. A: Thyroid 
cartilage B: top of the suprasternal notch For reference, the microphone (lower device) is approximately 
10 × 30 mm and the accelerometer (upper device) is aligned with the centre axis of the neck. This figure has 
been previously published by BioMed Central in [41]
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For the non-healthy patients only, concurrent videofluoroscopy images were also 
obtained during their examinations as described in a later section. For these partici-
pants, the images output by the x-ray videofluoroscopy machine (Ultimax system, 
Toshiba, Tustin, CA) were input to a video capture card (AccuStream Express HD, Fore-
sight Imaging, Chelmsford, MA) and recorded with the previously mentioned LabView 
program.

Participants and data collection

Data from our control group, healthy subjects without swallowing disorders, was gath-
ered and reported on in a previous study [15]. In that study, a total of 55 healthy par-
ticipants (28 males, 27 females, mean age 39) were recruited from the neighborhoods 
surrounding the University of Pittsburgh campus. All healthy participants confirmed 
that they had no history of swallowing disorders, head or neck trauma or major sur-
gery, chronic smoking, or other conditions which may affect swallowing performance. 
All testing was performed in the iMED laboratory facilities at the University of Pitts-
burgh. The healthy participants were presented with chilled (5°) water in five separate 
8 mL cups. With their head in a neutral position, they were asked to make five swallows 
with a few seconds of rest between each swallow while taking no more than a single 
bolus from each cup. This process was repeated while using Resource Thickened Apple 
Juice—Moderately Thick 400 (Nestlé Health Care, Inc. Florham Park, NJ) to demon-
strate swallowing higher viscosity fluids. These two categories (listed a ‘water swallows’ 
and ‘honey-thick swallows’ in our previous work [15]) will be referred to as healthy thin 
swallows and healthy viscous swallows, respectively, in the remainder of this manu-
script. A total of 550 unique data points were recorded from healthy subjects where 225 
swallows were recorded with each bolus type.

The non-healthy participants consisted of a separate group of 53 patients with sus-
pected dysphagia that were scheduled to undergo a videofluoroscopic swallowing evalu-
ation at the University of Pittsburgh Medical Center (Pittsburgh, Pennsylvania). Thirteen 
of these non-healthy patients (10 men, 3 women, mean age 66) had a current diagnosis of 
stroke while the remaining 40 (24 men, 16 women, mean age 62) had medical conditions 
unrelated to stroke. Routine, standard institutional screening and clinical assessment 
procedures were used to identify all patients who were in need of an instrumental exam-
ination to evaluate and manage their swallowing disorder. Those patients that had a his-
tory of major head or neck surgery, were equipped with assistive devices that obstructed 
the anterior neck such as a tracheostomy tube, or were not sufficiently competent to give 
informed consent were not included in the study, but no other conditions were excluded.

Patients with dysphagia did not undergo a standardized data collection procedure, as 
the videofluoroscopy examination is routinely modified by the examiner to suit the indi-
vidual patient, but analyzed swallows were limited to those made while in a neutral head 
position. The liquids swallowed during the examination included chilled (5 °C) Varibar 
Thin Liquid, with < 5 cps consistency, and Varibar Nectar, with ≈ 300 cps consistency, 
(Bracco, Milan, ITA) presented as either self-administered from a cup or administered 
by the examiner from a 5 mL spoon. The consistencies of these two liquids were deter-
mined to be sufficiently similar to the liquids presented to healthy participants based 
on available product information and qualitative guidelines. On average, each patient 
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contributed four swallows that were usable in our analysis, but the exact number varied 
between one and ten due to the personalized nature of the medical exam. A total of 64 
swallows were recorded from non-healthy patients with stroke while 158 were recorded 
from non-healthy patients without a history of stroke.

Digital signal processing

The signals recorded with the microphone and accelerometer underwent the same digi-
tal processing steps applied in our previous work [15], which we reproduce here for the 
convenience of the reader. The techniques cited have been developed and optimized for 
cervical auscultation signals in previous studies.

At an earlier date, the accelerometer’s baseline output was recorded and modified 
covariance auto-regressive modeling was used to characterize the device noise [23, 24]. 
The order of the model was determined by minimizing the Bayesian information cri-
terion [23]. These autoregressive coefficients were then used to create a finite impulse 
response filter and whiten the recording device noise in our signal [23]. Afterwards, 
motion artifacts and other low frequency noise were removed from the signal through 
the use of least-square splines. Specifically, we used fourth-order splines with a num-

ber of knots equal to 
Nfl

fs
 , where N is the number of data points in the sample, fs is the 

original 20 kHz sampling frequency of our data, and fl is equal to either 3.77 or 1.67 Hz 
for the superior–inferior or anterior–posterior direction, respectively. The values for fl 
were calculated and optimized in previous studies [25]. After subtracting this low fre-
quency motion from the signal we removed white noise from our data by using tenth-
order Meyer wavelets with soft thresholding [26]. The optimal value of the threshold was 
determined through previous research to be σ

√

2 logN  , where N is the number of sam-
ples in the data set and σ , the estimated standard deviation of the noise, is defined as the 
median of the down-sampled wavelet coefficients divided by 0.6745 [26].

The device noise filtering algorithm was recalculated with respect to the microphone 
system and an FIR filter was applied to the swallowing sound signal to whiten the device 
noise in that signal. We also applied the same 10 level wavelet denoising process to 
remove the white noise from our sound data. No splines or other low-frequency removal 
techniques were applied to the swallowing sounds because we had not investigated if 
such frequencies contained important sound information.

In a clinical environment, the moments that a swallow begins and ends are determined 
through visual analysis of a concurrent videofluoroscopy exam. However, our healthy 
data set did not incorporate this imaging technique as these subjects did not have a med-
ical need for such a procedure. We instead utilized a custom segmentation algorithm 
that has been shown, in an earlier study, to provide similar results for healthy subjects 
[27]. Previous research by Wang and Willett demonstrated a useful method for segment-
ing data sets into two distinct categories based on the local variance of the data [28]. We 
applied a modified version of their method to this study, which utilizes a two-class fuzzy 
c-means classification algorithm [27]. This algorithm analyzes only the swallowing vibra-
tion data and identifies continuous periods of time where swallows are (periods of high 
variance in the vibration signal) or are not (periods of low variance in the vibration sig-
nal) occurring [27]. The timepoints this algorithm produced allowed us to identify what 
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portions of our data directly corresponded to swallows made by our healthy subjects, 
thereby segmenting our healthy acoustic and vibratory data.

Unlike in the healthy subject study [15], our fuzzy c-means algorithm has not been 
fully tested on data from non-healthy subjects and so we could not use it to segment 
that half of our dataset. We instead utilized a concurrent videofluoroscopic analysis that 
was carried out as part of the examination of our non-healthy subjects. Two judges, both 
speech language pathologists with dysphagia research experience and whose inter- and 
intra-rater reliability in the measures used in this study have been established in prior 
published research, visually inspected the videofluoroscopic data to measure two param-
eters: the duration of the swallowing segments and the extent of airway penetration or 
aspiration during the swallowing segments using the penetration aspiration scale [29]. 
One of these judges is a co-developer of the penetration aspiration scale who developed 
decision-making rules for selection of specific frames marking segment duration onset 
and offset and in rating of the extent of airway protection during the swallow using the 
eight-point penetration-aspiration scale. They then trained the second judge in methods 
of selection of these video frames. After training, both judges evaluated a set of twenty-
five unfamiliar video recorded swallows, none of which were included in the participant 
data for the present study. Judgment reliability was evaluated using the intraclass cor-
relation coefficient. The intra-rater and inter-rater intraclass correlation coefficients 
were both 0.998. Following establishment of acceptable intra- and inter-rater reliability 
for segment durations and penetration-aspiration scores, the second judge then evalu-
ated the segment onset, segment offset, and penetration-aspiration scale scores for each 
swallow described in the present study.

Blinded to the recorded signals, these judges segmented and labeled each individual 
swallow. The beginning (onset) of a swallow segment was defined as the time at which 
the leading edge of the swallowed bolus intersected with the shadow cast on the x-ray 
image by the posterior border of the ramus of the mandible while the end (offset) was 
the time at which the hyoid bone completed motion associated with swallowing-related 
pharyngeal activity and returned to its resting or pre-swallow position. The time points 
provided by this procedure were used to segment the vibratory and acoustic signals, 
thereby obtaining data corresponding to individual non-healthy swallows. Each swallow 
was also rated on a standard 8-point ordinal clinical penetration-aspiration scale (PA 
scale) [29] and any swallows with a rating of 3 or lower were included in our analysis as 
a non-aspirating swallow. Scores of 3 or lower on this scale indicate that either no mate-
rial entered the upper airway (score of 1), or shallow penetration of the larynx without 
(score of 2) or with (score of 3) some residue of swallowed material remaining in the lar-
ynx after the swallow. Our cut-off point for penetration-aspiration scores was chosen to 
equalize the severity of airway protection between healthy and disordered participants 
and minimize the effect of confounding variables, as these scores are common among 
more elderly patients even without dysphagia [30]. Deeper laryngeal penetration, and 
especially aspiration into the trachea, represented by scale scores of 4 and higher, have 
been found to occur with negligible frequency in healthy persons and so would not be a 
reasonable comparison to our healthy data set [30, 31].
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Feature extraction

Once the signals were filtered and segmented we calculated several different mathemati-
cal features in order to characterize each swallow. Our feature selection (the details of 
which are reproduced below for convenience) once again mirrored the selection used 
in our previous work that exclusively analyzed healthy subjects [15], so that we could 
compare our healthy and non-healthy data sets fairly. None of these features are explic-
itly designed to analyze swallowing signals. Nonetheless, we feel that they are applicable 
to most signals and should provide a generalized overview of these signals’ traits as they 
have for similar preliminary studies [20, 32–34].

In the time domain, we investigated the skewness and kurtosis of the signal, which 
can be calculated with the typical statistical formulas [35]. We also calculated multiple 
information-theoretic features. The signals were first normalized to zero mean and unit 
variance, then quantized into ten equally spaced levels, ranging from zero to nine, that 
contained all recorded signal values. We then calculated the entropy rate feature of the 
signals. This value is found by subtracting the minimum value of the normalized entropy 
rate of the signal from 1 to produce a value that ranges from zero, for a completely ran-
dom signal, to 1, for a completely regular signal [20, 36, 37]. The normalized entropy rate 
(NER) is calculated as

where perc is the percent of unique entries in the given sequence L [20]. SE is the Shan-
non entropy of the sequence and is calculated as

where ρ(j) is the probability mass function of the given sequence. Quantizing the origi-
nal signal to 100 discrete levels instead of ten allowed us to calculate the Lempel–Ziv 
complexity (LZC) as

where k is the number of unique sequences in the decomposed signal and n is the pat-
tern length [38].

We also investigated several features in the frequency domain. The center frequency 
(C), sometimes referred to as the spectral centroid, was simply calculated by taking the 
Fourier transform of the signal and finding the weighted average of all the positive fre-
quency components:

(1)NER(L) =
SE(L)− SE(L− 1)+ SE(1) ∗ perc(L)

SE(1)

(2)SE(L) = −

10L−1
∑

j=0

ρ(j) ln(ρ(j))

(3)LZC =

k log100 n

n

(4)C =

N−1
∑

n=0

f (n)x(n)

N−1
∑

n=0

x(n)
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where x(n) is the magnitude of a frequency component and f(n) is the frequency of that 
component. Similarly, the peak frequency was found to be the Fourier frequency com-
ponent with the greatest spectral energy. We defined the bandwidth of the signal as the 
standard deviation of its Fourier transform [20].

Lastly, we characterized our signal in the time–frequency domain. Previous contribu-
tions found that swallowing signals are to some degree non-stationary [39], to which 
wavelet decomposition is better suited than a simple Fourier analysis [40]. We chose to 
decompose our signal using tenth-order Meyer wavelets because they are continuous, 
have a known scaling function, and more closely resemble swallowing signals in the time 
domain compared to Gaussian or other common wavelet shapes [26]. The energy in a 
given decomposition level was defined as

where x represents a vector of the approximation coefficients or one of the vectors rep-
resenting the detail coefficients. || ∗ || denotes the Euclidean norm [20]. The total energy 
of the signal is simply the sum of the energy at each decomposition level. From there, we 
could calculate the wavelet entropy (WE) as:

where Er is the relative contribution of a given decomposition level to the total energy in 
the signal and is given as [20]

Statistical analysis

After calculating the relevant features we performed four sets of statistical comparisons 
on our data set. Since we only compared identical signals with respect to our chosen 
variables (i.e. anterior–posterior signals from one group are compared only to the ante-
rior–posterior signals from the other group) and each of our three signals have nine 
descriptive features, we used a ‘statistical family’ size of 27 for the relevant corrections. 
First, we used the Wilcoxon rank sum test to non-parametrically test for differences with 
regards to each feature of all three signals for swallows made by healthy people and swal-
lows made by patients with dysphagia but without stroke. We used the common null 
hypothesis that the distribution of features in both groups are statistically similar. In 
this situation, data were separated based on the consistency of the ingested bolus and 
a p-value of 0.002 was used to determine significance after applying the Bonferroni cor-
rection to a standard p-value of 0.05. This process was repeated to test for differences 
between non-healthy patients with and without stroke. To mirror the results of our pre-
vious study we performed a third set of rank sum tests to examine sex-based differences 
in the data recorded from the non-healthy population. The data were separated based 
on the presence or absence of stroke and the Holm–Bonferroni correction was applied 
with a starting p-value of 0.05. The different correction factors were applied due to the 
expected effect of a given trait on the signal. For example a preliminary analysis showed 

(5)Ex = ||x||2

(6)WE = −

Era10
100

log2
Era10
100

−

10
∑

k=1

Erdk
100

log2
Erdk
100

(7)Erx =
Ex

Etotal
∗ 100%
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that the sex of the test subject had a low impact on the recorded signal, and so the more 
computationally complex but less conservative correction factor was used.

Finally, the effects of bolus viscosity on our data were examined through the use of 
Wilcoxon signed-rank tests. Again, the data were analyzed separately based on the pres-
ence or absence of stroke and the Holm–Bonferroni correction was applied. The null 
hypothesis remained unchanged. Table 1 summarizes our statistical strategy. The age of 
the subjects was not utilized as a variable for any of our statistical tests since previous 
work has shown little significant effect of age on cervical auscultation signals even for 
large age differences [41].

Post hoc estimates of our statistical power were carried out in the GPower software 
program [42]. We used Lehmann’s method of estimation with a target power of at least 
0.80. In mathematical form:

where c is the critical value of the test statistic and is equal to 1.64, E() and Var() are 
the expected value and variance operators, respectively, and � is the normal cumulative 
distribution function. W is the Mann–Whitney statistic and is the number of instances 
where a data point from one group has a lower rank than the data points in the alternate 
group. We found that our comparisons of normal and non-healthy populations had a 
sufficient number of swallows to identify a relatively small ( d = 0.23 ) effect size accord-
ing to standard conventions [42]. Our remaining tests, due to having fewer samples 
in each group, only had sufficient power to differentiate moderately larger ( d = 0.41 ) 
effects.

Results
Tables 2, 3, 4, 5 present the mean and standard deviation of each feature of our data set 
separated by bolus viscosity. Values for these features corresponding to healthy subjects 
can be found in our previous work [15].

Comparing data from this study collected from patients with dysphagia but without 
stroke to data collected in our previous study from healthy subjects [15] found many 
significant differences. For thin swallows, the non-healthy population data demonstrated 
greater Lempel–Ziv complexity, center frequency, peak frequency, and bandwidth for all 
three signals ( p << 0.001 for all) while demonstrating lower kurtosis, entropy rate, and 
wavelet entropy ( p << 0.001 for all). The skewness of the data was mixed. It was lower in 

(8)power = 1−�(
c − E(W )
√

Var(W )
)

Table 1  Summary of statistical tests

Statistical test Population Between-groups 
variable

Within-groups  
variable

Correction

Rank-sum Any non-stroke Presence of dysphagia Bolus consistency Bonferroni ( p = 0.002)

Rank-sum Any non-healthy Presence of stroke Bolus consistency Bonferroni ( p = 0.002)

Rank-sum Any non-healthy Participant’s sex Presence of stroke Holm–Bonferroni 
( p = 0.05)

Sign-rank Any non-healthy Bolus viscosity Presence of stroke Holm–Bonferroni 
( p = 0.05)
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magnitude for the anterior–posterior accelerometer signal ( p << 0.001 ), but higher in 
magnitude for the superior–inferior signal as well as the microphone signal ( p << 0.001 
for both) in those subjects suspected of having dysphagia. The viscous swallows demon-
strated fewer differences between the healthy and non-healthy populations. As with the 
thin swallows, the viscous non-healthy swallows exhibited greater Lempel–Ziv complex-
ity as well as lower entropy rate and wavelet entropy for all three signals ( p << 0.001 

Table 2  Time domain features for patients with dysphagia performing thin swallows

Non-stroke Stroke

A–P S–I Sounds A–P S–I Sounds

Skewness 0.307 ± 1.800 − 0.087 ± 2.396 0.331 ± 5.253 0.545 ± 2.710 − 1.038 ± 1.751 2.082 ± 9.061

Kurtosis 21.98 ± 29.58 25.18 ± 67.34 342.1 ± 482.3 49.86 ± 152.3 22.54 ± 44.13 523.7 ± 978.5

Entropy rate 0.986 ± 0.006 0.988 ± 0.004 0.987 ± 0.008 0.985 ± 0.009 0.986 ± 0.008 0.989 ± 0.008

L–Z complexity 0.065 ± 0.024 0.073 ± 0.027 0.034 ± 0.018 0.056 ± 0.020 0.065 ± 0.017 0.028 ± 0.019

Table 3  Frequency domain features for patients with dysphagia performing thin swallows

Non-stroke Stroke

A–P S–I Sounds A–P S–I Sounds

Peak frequency (Hz) 11.68 ± 27.98 11.74 ± 14.58 304.0 ± 491.0 34.54 ± 97.57 14.94 ± 54.28 257.0 ± 433.4

Center frequency 
(Hz)

73.15 ± 113.9 54.60 ± 84.64 801.9 ± 682.6 199.3 ± 291.0 90.75 ± 184.6 895.9 ± 899.3

Bandwidth (Hz) 134.75 ± 211.4 92.45 ± 106.8 552.1 ± 562.0 344.2 ± 498.2 136.4 ± 265.6 697.3 ± 704.4

Wavelet entropy 0.905 ± 0.703 1.063 ± 0.707 1.185 ± 0.725 1.204 ± 0.870 1.171 ± 0.772 1.027 ± 0.776

Table 4  Time domain features for patients with dysphagia performing viscous swallows

Non-stroke Stroke

A–P S–I Sounds A–P S–I Sounds

Skewness 0.414 ± 1.126 − 0.350 ± 1.684 − 0.454 ± 6.055 − 0.440 ± 3.314 − 0.050 ± 1.078 1.083 ± 2.478

Kurtosis 14.88 ± 28.27 13.80 ± 14.75 426.9 ± 965.2 43.32 ± 147.3 10.42 ± 13.04 281.2 ± 468.1

Entropy rate 0.988 ± 0.005 0.988 ± 0.005 0.990 ± 0.006 0.988 ± 0.006 0.988 ± 0.005 0.991 ± 0.005

L–Z complexity 0.068 ± 0.021 0.073 ± 0.025 0.033 ± 0.018 0.060 ± 0.028 0.072 ± 0.024 0.029 ± 0.018

Table 5  Frequency domain features for patients with dysphagia performing viscous swal-
lows

Non-stroke Stroke

A–P S–I Sounds A–P S–I Sounds

Peak frequency (Hz) 10.53 ± 22.95 10.02 ± 12.65 64.03 ± 217.5 21.07 ± 54.81 19.55 ± 48.17 59.36 ± 199.0

Center frequency 
(Hz)

93.42 ± 301.3 32.27 ± 23.70 850.4 ± 1289 132.5 ± 315.1 34.34 ± 67.53 788.5 ± 1242

Bandwidth (Hz) 202.7 ± 557.1 63.60 ± 68.09 615.3 ± 762.6 283.6 ± 518.1 82.99 ± 116.7 666.4 ± 824.2

Wavelet entropy 0.625 ± 0.637 0.946 ± 0.693 0.908 ± 0.786 0.568 ± 0.610 0.719 ± 0.545 0.801 ± 0.794
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for all). However, only the anterior–posterior accelerometer signal demonstrated greater 
skewness, center frequency, and bandwidth as well as lower kurtosis ( p << 0.001 for 
all) for viscous swallows from non-healthy subjects. Meanwhile the superior–inferior 
accelerometer signal demonstrated a lower center frequency and bandwidth while the 
superior–inferior accelerometer and microphone signals demonstrated increased peak 
frequencies ( p << 0.001 for all). These results are also seen in Tables 6 and 7.

While normal and non-healthy swallows showed many differences, comparing non-
healthy data with and without the presence of stroke resulted in few statistically signifi-
cant differences. The data from patients with a history of stroke demonstrated a higher 
center frequency in the anterior–posterior accelerometer signal ( p = 0.006 ) along with 
a greater skewness magnitude in the superior–inferior accelerometer signal ( p = 0.01 ) 
and greater entropy rate in the microphone signal ( p = 0.03 ). These results are also seen 
in Table 8.

Our results continued to demonstrate statistical significance when grouped by the sex 
of the participants. For non-healthy patients without stroke males demonstrated greater 

Table 6  Statistically significant features (healthy vs non-healthy thin swallows)

Feature A–P S–I Sound

Skewness p << 0.001 p << 0.001 p << 0.001

Kurtosis p << 0.001 p << 0.001 p << 0.001

Entropy rate p << 0.001 p << 0.001 p << 0.001

L–Z complexity p << 0.001 p << 0.001 p << 0.001

Peak frequency p << 0.001 p << 0.001 p << 0.001

Center frequency p << 0.001 p << 0.001 p << 0.001

Bandwidth p << 0.001 p << 0.001 p << 0.001

Wavelet entropy p << 0.001 p << 0.001 p << 0.001

Table 7  Statistically significant features (healthy vs non-healthy viscous swallows)

Feature A–P S–I Sound

Skewness p << 0.001 – –

Kurtosis p << 0.001 – –

Entropy rate p << 0.001 p << 0.001 p << 0.001

L–Z complexity p << 0.001 p << 0.001 p << 0.001

Peak frequency – p << 0.001 p << 0.001

Center frequency p << 0.001 p << 0.001 –

Bandwidth p << 0.001 p << 0.001 –

Wavelet entropy p << 0.001 p << 0.001 p << 0.001

Table 8  Statistically significant features (stroke vs non-stroke)

Feature A–P S–I Sound

Skewness – p = 0.01 –

Entropy rate – – p = 0.03

Center frequency p = 0.006 – –
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skewness magnitude ( p = 0.015 ) but lower kurtosis ( p = 0.020 ) for the anterior–poste-
rior accelerometer only. For non-healthy patients with stroke, our data showed signifi-
cantly greater Lempel–Ziv complexity ( p = 0.013 ) and bandwidth ( p = 0.003 ) in the 
anterior–posterior accelerometer signal for male participants while the center frequency 
( p = 0.018 ) and wavelet entropy ( p = 0.005 ) for the anterior–posterior accelerometer 
signal and the entropy rate of the superior–inferior accelerometry signal ( p = 0.005 ) 
were lower in the male population. These results are also seen in Tables 9 and 10.

Lastly, we found a few significant differences between thin and viscous swallows. For 
non-stroke patients, the higher viscosity bolus produced lower kurtosis ( p = 0.005 ) and 
wavelet entropy ( p = 0.019 ) for the anterior–posterior accelerometer signal along with a 
lower peak frequency ( p = 0.024 ) and wavelet entropy ( p = 0.032 ) for the microphone 
signal. For stroke patients, we found that increasing the viscosity decreased the ante-
rior–posterior center frequency ( p = 0.028 ), microphone peak frequency ( p = 0.023 ), 
anterior–posterior wavelet entropy ( p = 0.011 ), and superior–inferior wavelet entropy 
( p = 0.029 ). These results are also seen in Tables 11 and 12.

Figures 2 and 3 show the mean and standard deviation of the energy distribution of the 
wavelet decomposition of all three signals for thin and viscous swallows, respectively, 

Table 9  Statistically significant features (male vs female non-stroke)

Feature A–P S–I Sound

Skewness p = 0.015 – –

Kurtosis p = 0.020 – –

Table 10  Statistically significant features (male vs female stroke)

Feature A–P S–I Sound

Entropy rate – p = 0.005 –

L–Z complexity p = 0.013 – –

Center frequency p = 0.018 – –

Bandwidth p = 0.003 – –

Wavelet entropy p = 0.005 – –

Table 11  Statistically significant features (thin vs viscous non-stroke)

Feature A–P S–I Sound

Kurtosis p = 0.005 – –

Peak frequency – – p = 0.024

Wavelet entropy p = 0.019 – p = 0.032

Table 12  Statistically significant features (thin vs viscous stroke)

Feature A–P S–I Sound

Peak frequency – – p = 0.023

Center frequency p = 0.028 – –

Wavelet entropy p = 0.011 p = 0.029 –
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from non-healthy subjects. The x-axis of these figures represents the time–frequency 
bands of the decomposition, with d1 being the highest (5–10 kHz) and a10 being the 
lowest (0–10 Hz), while the y-axis indicates the percent of the signal’s energy that is con-
tained within that frequency band. The vibrations demonstrate similar behavior to those 
observed in our previous studies, with the majority of energy being present in the lowest 
frequency level [15, 41]. The swallowing sounds, however, demonstrate a large increase 
in energy in the d8 through d6 bands (corresponding to approximately 40–300 Hz in this 
study) that was not present in our earlier findings [15, 41]. No statistical tests were used 
to analyze these decompositions because the wavelet entropy feature already provides a 
holistic summary of this information.
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Fig. 2  Wavelet energy composition of swallowing vibrations and sounds during thin swallows. From left to 
right, the bars for each decomposition level correspond to the signals recorded from the anterior–posterior 
accelerometer, the superior–inferior accelerometer, and the microphone
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Fig. 3  Wavelet energy composition of swallowing vibrations and sounds during viscous swallows. From left 
to right, the bars for each decomposition level correspond to the signals recorded from the anterior–poste-
rior accelerometer, the superior–inferior accelerometer, and the microphone
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Discussion
Our study found many differences between acoustic and vibratory signals recorded dur-
ing swallows produced by healthy and non-healthy patients. When performing thin 
swallows, subjects with dysphagia demonstrated higher frequency sounds and vibra-
tions with greater Lempel–Ziv complexity, but lower kurtosis, entropy rate, and wavelet 
entropy. Similar results were found when comparing swallows made with viscous liq-
uid, but in this case the statistical significance of the swallowing sounds and superior–
inferior vibrations were lost with respect to skewness, kurtosis, and center frequency. 
Together, these factors all indicate a signal that contains more, sudden changes in inten-
sity with less predictability. We chose to rule out the possibility that administering differ-
ent brands of test liquids caused these results due to the viscosity information gathered 
(via repeated measures) in both this and our previous study [15] indicating that the two 
brands provide similarly viscous products. Additionally, if the different brands were to 
blame, then we would expect the data from non-healthy patients to give results opposite 
to those shown as the Varibar Thin Liquid is known to be slightly more viscous than 
ordinary water. However, we are still unsure as to what underlying mechanics did result 
in this reported variation between healthy and non-healthy swallows. Since we did not 
control for the original cause of dysphagia, with the exception of stroke patients, the sig-
nal variations we observed could represent different pathophysiological effects caused 
by the various disease-related causes of dysphagia. We suspect that our data could be 
indicative of pathology-specific impairments in hyolaryngeal movement during a swal-
low, as this motion contributes significantly to swallowing vibrations [32], but we have 
no further evidence to support this point at this time.

In contrast to our previous work on this subject with healthy patients [15, 41], the 
data gathered from non-healthy patients showed few significantly different features with 
respect to the subject’s sex. Also, some of the differences that are present appear to be 
counter-intuitive, such as how males with stroke showed decreased anterior–posterior 
center frequency but greater bandwidth than women. This implies that, rather than hav-
ing similar frequency distributions that are shifted in one direction or the other, swallows 
made by non-healthy males and females have completely different frequency distribu-
tions. However, we did note that the distribution of feature values was notably wider for 
non-healthy subjects than those without dysphagia [15]. We feel that this is indicative of 
the increased perturbation of swallowing function in patients with dysphagia as well as 
etiological differences in the pathophysiology of each patient’s swallowing disorder. Even 
if two patients receive the same diagnosis they may express different symptoms or sever-
ity of those symptoms due to a variety of neurological and other disease-specific factors. 
For example, two patients may experience a stroke and have difficulties swallowing as a 
result, but the location and size of the lesion will affect their overall sensori-motor func-
tions and can result in a ‘personalized’ form of dysphagia [2]. As a result, we conclude 
that the increased feature variability is greater than and may mask any effect that the 
patient’s sex has on the data recorded from non-healthy subjects.

Though we did not find as many statistical differences for non-healthy patients as we 
did for the healthy cohort [15], our examination of the effects of fluid viscosity are sim-
ilar to what was expected. For non-healthy patients both with and without stroke we 
see that swallowing higher viscosity fluid produced sounds and vibrations with lower 



Page 15 of 18Dudik et al. BioMed Eng OnLine  (2018) 17:69 

frequency, kurtosis, and entropy. Again, for much the same logic as to why we observed 
fewer effects of the patient’s sex, we feel that the lower number of features demonstrat-
ing statistical significance is a result of the highly variable nature of dysphagia.

The increase in wavelet energy for swallowing sounds in the 40–300 Hz range may 
or may not be a clinically significant finding. The initial, and perhaps most likely, con-
sideration is that this range corresponds to the frequency of electrical power transmis-
sion along with several higher harmonics. Since any x-ray camera will have a significant 
power draw when it is under operation, it is possible that the wiring for our microphone 
picked up this radiation during the experiment and corrupted our signal to some degree. 
However we did not see a similar spike in energy for the signals recorded by the accel-
erometer, which is not as well shielded from such interference. One also cannot help 
but notice that this range also corresponds to the reported range of the fundamental 
frequency of human vocal folds during speech related phonation [43, 44]. Approximately 
half of the swallows made by non-healthy subjects and included in this study rated a 
level of 2 or 3 on the penetration-aspiration scale, which indicated that the laryngeal ves-
tibule was either not completely closed at the time the swallowed material was present in 
the lower pharynx or did not close in a timely manner. Such behavior is commonly seen 
as a result of the many functional or structural forms of dysphagia and enables shallow 
penetration of the bolus into the airway [30]. However, shallow laryngeal penetration 
is not uncommon across the age spectrum [30, 45]. It is at least theoretically possible 
that the pressure changes during a swallow, combined with an incomplete sealing of the 
laryngeal vestibule, forces air across the vocal folds and produces sounds which would 
never occur in a healthy subject whose larynx is completely closed during the swal-
low. Another explanation might be that in some pathological states the coordination of 
swallowing and breathing is affected with reversal of the typical exhale-swallow-exhale 
pattern predominating [46–48]. Again, the lack of similar results for swallowing vibra-
tions is perplexing, but we believe that this issue could merit further investigation in the 
future.

Our study found only 3 out of 27 statistically different features with respect to the 
sounds and vibrations produced by patients with stroke and those produced by patients 
with other causes of dysphagia. This implies one of three possibilities. The first is that, 
despite other differences, dysphagia as a symptom of a stroke is functionally equivalent 
to dysphagia as a symptom of another condition and produces the same sound and vibra-
tion pattern. The second, and seemingly much more likely option given the voluminous 
studies demonstrating distinctly different disease-specific patterns of swallow kinemat-
ics, is that dysphagia as a symptom of stroke does not result in any reliable and consist-
ent alterations to our chosen signals. Instead, the feature values of our signals may vary a 
great deal but not in such a way to make the population distribution significantly higher 
or lower than the non-stroke population. Lastly, these results may simply be due to a 
small sample size of patients with stroke and that we were unable to properly estimate 
the true distribution. However, as each patient made multiple swallows over the course 
of their examination, we believe that the effect of our population size is minimized. Judg-
ing by the high standard deviation of all of our chosen features and previously described 
variable nature of dysphagia, we believe that the second option is the most likely cause of 
our reported results.
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Implications and Limitations
It is important to note that the conclusions drawn from this study are based exclusively 
on our selection of features. These mathematical features were chosen, not necessar-
ily because they are known to characterize swallowing sounds and vibrations well, but 
because they are rather generalized and can be applied reasonably effectively to most 
signals. Though our results can be easily compared to other studies or assessed intui-
tively, we lose a certain amount of precision and statistical power to do so. It should be 
noted, however, that this is not entirely a design decision. At the time of this writing, no 
consensus has been reached on what the key features of a cervical auscultation signal 
are. Past research has shown the usefulness of these features with regards to characteri-
zation and classification [20, 32–34], but they have not been widely adopted in the field. 
We chose to use a broad selection of generalized, multi-domain features in order to take 
advantage of this past work and minimize the risk of producing overly-specific results. 
From this foundation, we can provide insights as to what more complex, and potentially 
better suited, features would or would not be beneficial to investigate in future studies.

We also make note of the narrow selection of swallows we utilized for this study, spe-
cifically thin or somewhat viscous liquid swallows made in a neutral head position. In 
order to minimize the number of variables involved in a single study we did not analyze 
different head positions or swallowing strategies, more varied liquid or solid boluses, or 
boluses of greater or smaller volumes. All of these variables are known to have an effect 
on swallowing performance, but their relation to cervical auscultation signals is unclear 
and was not investigated in this study.

We believe that our results help to further reveal the nature of cervical auscultation 
signals. By providing a simple baseline that can be used to generalize the differences 
between signals recorded from healthy and non-healthy subjects, it should be easier to 
develop more specialized analysis methods. For example, many of our simple frequency 
domain features demonstrated statistically significant differences between healthy and 
non-healthy subjects, which indicates that an analysis method which examines the rela-
tive strength of several frequency components in greater detail could be of benefit. Like-
wise, our results provide a general guide as to what frequency components would be of 
greatest interest and help to simplify a high-dimensional problem.

It is also possible that the results of this study could be utilized in a more direct man-
ner for differentiating normal and abnormal swallows. This study has demonstrated that 
the value of many cervical auscultation features change based on the condition of the 
subject. If the differences are of a sufficient magnitude, our findings could be used to 
develop a novel classification technique to differentiate healthy and non-healthy patients 
in a clinical setting. Such a technique would add a degree of objectivity and automation 
to otherwise subjective clinical swallowing screenings.

Conclusion
In this study, we sought to characterize how swallowing sounds and vibrations differ 
between healthy subjects and subjects with dysphagia using a broad selection of gen-
eralized statistical features. We found that, for non-aspirating swallows, the majority 
of our chosen features did show significant differences between these two groups for 
both sounds and vibrations. We were also able to confirm our previous findings on the 
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effects of fluid viscosity and the subject’s sex on our chosen features. Finally, we found 
extremely few differences in our chosen signal features between patients with dyspha-
gia as a symptom of stroke and patients with other causes of dysphagia, indicating that 
dysphagia due to stroke does not result in a single, well-defined functional change. These 
findings should greatly help the development of the cervical auscultation field and serve 
as a reference for future investigations into more specialized characterization methods.
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