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Abstract 

Background:  Long-term electrocardiogram (ECG) is one of the important diagnos-
tic assistant approaches in capturing intermittent cardiac arrhythmias. Combination 
of miniaturized wearable holters and healthcare platforms enable people to have 
their cardiac condition monitored at home. The high computational burden created 
by concurrent processing of numerous holter data poses a serious challenge to the 
healthcare platform. An alternative solution is to shift the analysis tasks from healthcare 
platforms to the mobile computing devices. However, long-term ECG data processing 
is quite time consuming due to the limited computation power of the mobile central 
unit processor (CPU).

Methods:  This paper aimed to propose a novel parallel automatic ECG analysis 
algorithm which exploited the mobile graphics processing unit (GPU) to reduce the 
response time for processing long-term ECG data. By studying the architecture of the 
sequential automatic ECG analysis algorithm, we parallelized the time-consuming parts 
and reorganized the entire pipeline in the parallel algorithm to fully utilize the hetero-
geneous computing resources of CPU and GPU.

Results:  The experimental results showed that the average executing time of the 
proposed algorithm on a clinical long-term ECG dataset (duration 23.0 ± 1.0 h per 
signal) is 1.215 ± 0.140 s, which achieved an average speedup of 5.81 ± 0.39× without 
compromising analysis accuracy, comparing with the sequential algorithm. Meanwhile, 
the battery energy consumption of the automatic ECG analysis algorithm was reduced 
by 64.16%. Excluding energy consumption from data loading, 79.44% of the energy 
consumption could be saved, which alleviated the problem of limited battery working 
hours for mobile devices.

Conclusion:  The reduction of response time and battery energy consumption in 
ECG analysis not only bring better quality of experience to holter users, but also make 
it possible to use mobile devices as ECG terminals for healthcare professions such as 
physicians and health advisers, enabling them to inspect patient ECG recordings onsite 
efficiently without the need of a high-quality wide-area network environment.

Keywords:  Automatic ECG analysis, Parallel computing, Mobile GPU, Energy 
consumption
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Background
With the development of information and healthcare technologies, large number of peo-
ple tend to monitor their health condition at home using wearable holters. Due to the 
unique nature of healthcare service, users typically follow a similar schedule and upload 
the electrocardiogram (ECG) data collectively, creating a high computational burden on 
the healthcare platform at a certain time of day. In particular, concurrent processing of 
long-term ECG data, which is an important assistant approach to capture intermittent 
cardiac arrhythmias, tortures the healthcare platform heavily. How to efficiently process 
long-term ECG data collectively is an important issue to be solved.

ECG, as one of the vital physiological data, shows the time evolution of the heart’s 
electrical activity, which is caused by distinct electrical depolarization–repolariza-
tion patterns of the heart. Disorders of heart rate or rhythm, or changes in the mor-
phological patterns, are indicators of underlying diseases [1]. For example, myocardial 
infarction, cardiomyopathy, and myocarditis can lead to obvious ECG changes. Various 
ECG heartbeat classification methods were proposed by researchers in previous stud-
ies [2, 3]. An automatic ECG heartbeat classification pipeline mainly consists of basic 
steps including noise reduction [4–6], QRS complex detection [7, 8], feature extraction 
[9–11], and heartbeat classification [3, 12–18]. Heartbeat classification is a critical step 
in automatic ECG analysis. In the past few years, heartbeat classification methods are 
still under development with novel algorithms being proposed continuously. Liang et al. 
used hidden markov models (HMMs) to classify patient ECG signals in the free-living 
environment [13]. Lannoy et al. proposed weighted conditional random fields classifier 
for the automatic classification of heartbeats [17]. Furthermore, with the development of 
machine learning, many artificial intelligent methods have been applied in ECG heart-
beat classification. Ye et al. applied wavelet transform and independent component anal-
ysis separately to each heartbeat to extract morphological features, then support vector 
machine (SVM) was used for heartbeat classification [14]. Yu et al. used wavelet trans-
formation and probabilistic neural network (PNN) to classify the ECG heartbeats [18]. 
Oliveira et al. employed a dynamic bayesian network to predict premature ventricular 
heartbeats [15]. Lagerholm applied unsupervised clustering methods to partition the 
QRS complex into clusters, then self-organized neural networks were used to identify 
heartbeat types [16]. However, most ECG heartbeat classification methods are time-con-
suming, especially for processing long-term ECGs such as 24-h long ECGs. Although 
healthcare cloud platforms have been widely built to collect and manage ECG data from 
large populations, it is technically infeasible to provide prompt feedback for a large num-
ber of concurrent ECG analysis requests for even a median platform managing ten thou-
sands of users.

To reduce the burden of remote healthcare platforms, many researchers shifted analy-
sis tasks from remote healthcare platforms to local mobile computing devices [19–21]. 
However, processing long-term ECG data on mobile computing devices is time-consum-
ing and leads to poor quality of experience as it occupies too many central processor unit 
(CPU) computation resources which are limited on mobile devices. At the same time, 
the heavy computation demanded by long-term ECG analysis leads to a long period in 
which the CPU runs at full frequency, which greatly shortens the working hours of bat-
tery in case the ECG analyzing tasks are frequently launched, i.e., in a mobile device of a 
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physician or a health advisor. With the aforementioned limitations of mobile devices, a 
fast and energy-efficient analysis algorithm for long-term ECG is urgently needed.

This paper aimed to propose a novel parallel automatic ECG analysis algorithm based 
on mobile graphics processing unit (GPU). The 24-h long ECG recordings collected 
from volunteers were utilized to evaluate the computing performance and energy effi-
ciency of the parallel algorithm. The test was conducted on a smartphone named One-
Plus 3 equipped with an Qualcomm Snapdragon 820 processor along with 6 GB memory 
and an integrated Adreno 530 GPU. The parallel automatic ECG analysis algorithm was 
optimized through workgroup size tuning, data vectorization, and zero memory copy 
technology to take full advantage of the potential of heterogeneous computation. Addi-
tionally, the optimized parallel automatic ECG analysis algorithm consumed less energy 
per second in average compared with the sequential automatic ECG analysis algorithm. 
This led to a significant energy saving and longer working hours of battery for mobile 
devices when they were served as ECG processing terminals. Note a preliminary version 
of this paper has been reported [22].

The subsequent sections of the paper are organized as follows. Section of “Methods” 
introduces the OpenCL parallel computing model, parallel optimization technologies, 
the sequential automatic ECG classification algorithm, and the parallel implementation 
of the sequential automatic ECG classification algorithm on mobile GPUs. The results 
including experimental environment, data source, classification performance of auto-
matic ECG analysis algorithm, and parallel efficiency and energy efficiency are described 
in the section of “Results and discussion”. The final section summarizes the paper.

Methods
The OpenCL parallel computing model

OpenCL is a common multi-CPU/multi-GPU heterogeneous computing framework. 
OpenCL uses heterogeneous CPU/GPU hardwares to perform large-scale computa-
tion tasks, especially tasks with high parallelism, more efficiently taking full advantage 
of the powerful parallel GPU computation capabilities [23, 24]. OpenCL has many 
advantages, such as platform independence, simple hardware acceleration, and easy pro-
gramming. Figure 1 shows the memory model of OpenCL framework. Memory hierar-
chy of a GPU device consists of global memory, constant memory, local memory, and 
private memory. Global memory and constant memory are shared among all computa-
tion units, while every computing unit owns independent local memory which can be 
accessed with much shorter latency. All work items in a workgroup share the same local 
memory. This model owns great generality and matches well with the computing archi-
tecture of mobile devices. Generally, OpenCL provides a unified computing model that 
allows many intensive tasks of mobile computation to be implemented in parallel and 
assigned to mobile GPU. It shortens the executing time and proffers users better quality 
of experience.

Automatic ECG analysis algorithm

ECG is an electrical signal caused by the electro-physiologic activities of the human 
heart. A normal heartbeat of ECG includes the P, Q, R, S, and T wave segments. As 
shown in Fig. 2, two prominent features of ECG are the RR interval and QRS complex 
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width. The RR interval is the width between two nearby R peaks, and the QRS complex 
width is defined as the distance between Q and S wave. Other features of ECG include 
PR interval, QT interval, ST segment, and T wave. Accurate identification of ECG fea-
tures is important for the automatic ECG analysis algorithm.

Figure 3 shows the entire computation procedure of the automatic ECG analysis algo-
rithm, which consists of three processing phases: (1) preprocessing phase; (2) feature 
detection phase; (3) abnormal heartbeat detection phase. The preprocessing phase 
includes two steps: infinite impulse response (IIR) band-pass filtering and artifact removal. 
The IIR bandpass filter with a cut-off frequency of 0.5 and 40 Hz is used to cancel baseline 
drift, high-frequency noise, and powerline interference [25]. Then, in the artifact removal 
step, the dynamic threshold method is used to mark the noise signal segments that would 
be abandoned in the succeeding processes [26]. In the feature detection phase, the mor-
phological transform method is used to enhance the amplitude of R peaks to locate the 
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Fig. 2  ECG signal example with two cycles
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positions of R peaks and QRS complexes [27]. R peak positions can be detected easily 
based on the dynamic threshold method. The start and end positions of QRS complex are 
set at 50 ms before R peak and 80 ms after R peak, respectively [2]. In addition, the RR 
interval and the QRS complex width are calculated. In the abnormal heartbeat detection 
phase, abnormal heartbeats are identified based on judgment rules given by physicians 
with the acquired position lists of R peaks and QRS, RR intervals, and the QRS complex 
width [29, 30]. Moreover, the template matching method is utilized to reconfirm abnor-
mal heartbeats to avoid the misjudgment of abnormal heartbeats. Following general clini-
cal ECG arrhythmia detection guidelines [28], this approach could identify five types of 
abnormal ECG arrhythmias, including normal sinus heartbeats (NB), bigeminy (BG), 
trigeminy (TG), atrial premature heartbeats (APB), and ventricular premature heartbeats 
(VPB). The detailed judgments of 5 types of ECG rhythms are listed in Table 1.

Parallel implementation of automatic ECG classification method on OpenCL framework

Modern mobile devices have a highly integrated circuit that combines all the primary 
components, such as CPU, GPU, and memory, into a single chip. One of the benefits 
is high bandwidth memory. The ultra-wide memory standard essentially accelerates the 
data transfer speed between memory and CPU/GPU. Another important feature is that 
CPU and GPU memory are integrated on the same chip and separated by embedded 
software. Instead of repeatedly transferring data between CPU and GPU memory in 
accordance with the task shifting, memory mapping technology could be introduced to 
map the same piece of physical memory in both the memory space of CPU and GPU. As 
a result, data transfer can be cut down or even avoided. Figure 4 shows the entire archi-
tecture of the parallel automatic ECG analysis algorithm. Compared with the sequential 
algorithm, the entire program flow in parallel algorithm is reorganized in this study to 
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fully utilize CPU/GPU heterogeneous computing resources. IIR filter is hard to be par-
allelized due to its tight-coupling pattern and a processing iteration relies on the result 
of the previous one [31]. Therefore, it remains running on CPU. The morphological 

Table 1  Detailed judgment rules of 5 types of ECG rhythms.

Type of rhythms Rules

NB QRS complex width < 120 ms

0.75× average RR interval < current RR interval

Current RR interval < 1.2× average RR interval

APB QRS complex width < 120 ms

Current RR interval < 0.75× current average RR interval

Current RR interval + next RR interval < 2× current average RR interval

VPB QRS complex width > 120 ms

Current RR interval < 0.75× current average RR interval

Current RR interval + next RR interval ≥ 2× current average RR interval

BG Alternating appearance of VPB and NB

TG Alternating appearance of 2 NBs and 1 VPB
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transform method with inherent parallel characteristic is implemented in parallel on 
GPU. The following processes including R peak detection and QRS complex detection 
are also implemented in parallel on GPU. The abnormal heartbeat detection runs on 
CPU to better utilize CPU computing resources. At the same time, the artifact removal 
process is implemented in parallel on GPU. Finally, QRS complex templates are gener-
ated from noise-free signals and used to correct misjudgment on abnormal heartbeats. 
For details of the parallel implementation, refer to Algorithm 1.

Algorithm 1 Parallel automated ECG analysis
Input: Raw ECG data(S)
Output: Abnormal type of heartbeats(ab list)
1: // Raw ECG data through IIR filter to remove power interference and baseline drift.
2: h filtered ecg ← IIR(S)
3: // filtered signal is copied from CPU memory to GPU memory
4: clEnqueueWriteBuffer(queue, d filtered ecg, CL TRUE, 0, size, h filtered ecg)
5: // Start kernel of feature detection
6: // Structure elements of morphological transformation is assigned on local memory
7: local g vec ← {0, 50, 100, 50, 0}
8: // Sub process in “for” are executed in parallel
9: for k ← 1 to N do
10: k ← get global id(0) // work item global id
11: // Erosion
12: d ern(k) ← min(d filtered ecg(k + l) - g vec(l)) //1 ≤ l ≤ L
13: // Dilation
14: d dlt(k) ← max(d ern(k + l) + g vec(l)) //1 ≤ l ≤ L
15: end for
16: // R peaks detection by dynamic threshold method
17: d rpos ← dynamic threshold(d dlt)
18: // QRS complexes detection: the start and end position of QRS complex is set at 50 milliseconds

before R peak and 80 milliseconds after R peak.
19: d qrs list ← search qrs(d rpos, d filtered ecg)
20: // QRS complexes list is mapped from GPU memory to CPU memory
21: h qrs list ← clEnqueueMapBuffer(queue, d qrs list, CL TRUE,CL MAP READ, 0, size,
22: NULL,NULL,NULL, error)
23: // End of feature detection kernel
24: // Abnormal heartbeats detections by rule on CPU
25: h ab list by rule ← rule classify(h qrs list)
26: // Copy h ab list by rule from CPU to GPU
27: clEnqueueWriteBuffer(queue, d ab list by rule, CL TRUE, 0, size, h ab list by rule)
28: // End of abnormal heartbeats detection by rule on CPU
29: // Start of artifact removal kernel
30: d filtered ecg is segmented into N epochs
31: // The artifact epoch is identified by threshold method on standard deviation of the epoch
32: // Sub process in “for” are executed in parallel
33: for k ← 1 to N do
34: d artifact(k) ← stdev(d filtered ecg(k))
35: d flag(k) ← threshold(d artifact(k))
36: end for
37: // End of artifact removal kernel
38: // Start of abnormal heartbeats reconfirmation kernel
39: // Sub process in “for” are executed in parallel
40: for k ← 1 to N do
41: // Heartbeats template is created on each epoch
42: d heartbeat template(k) ← template(d flag(k), d filtered ecg(k))
43: // Abstract template features
44: d heartbeat feature(k) ← template feature(d heartbeat template(k))
45: // Update abnormal heartbeats according to template features
46: for j ← 1 to M do //M is the size of ab list
47: ab list(j) ← template compare(d heartbeat feature(k), d ab list)
48: end for
49: end for
50: // d ab list is mapped to CPU memory
51: ab list ← clEnqueueMapBuffer(queue, d ab list, CL TRUE,CL MAP READ, 0, size,NULL,
52: NULL,NULL, error)
53: // End of abnormal heartbeats reconfirmation kernel
54: return ab list
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Parallel optimization technologies

The parallel algorithm could obtain a higher speedup through workgroup size tuning, 
data vectorization, and zero memory copy technologies. The details as follows: (1) work-
group size tuning. Workgroup size is an important factor affecting program efficiency. 
No general formula is available to calculate the optimal workgroup size, besides some 
constraints. Larger workgroups are better at hiding memory latency, while they would 
lead to cache thrashing. Proper workgroup size must be determined considering the reg-
ister usage and the presence of barrier instructions inside kernels. (2) Data vectoriza-
tion technology. As vector operations are common in OpenCL framework, GPUs are 
designed to be particularly powerful in dealing with vectors. Native vector operations, 
including addition and multiplication, are supported by most of GPU architectures with 
the development of mobile GPU technologies. Meanwhile, GPU memory architecture 
has also been developed to be efficient in loading/storing batches of data concurrently. 
(3) Zero memory copy technology. Data transfer between CPU and GPU memory is 
quite slow. It is a common case that the time cost of pure computation in parallelized 
programs takes up only a small portion of the entire time cost. The intrinsic latency for 
data transfer between CPU and GPU memory is a big obstacle in parallelization prac-
tice on the traditional CPU/GPU heterogeneous architecture. The CPU and GPU in 
mobile devices are usually integrated in one chip owing to the compact hardware struc-
ture of smartphones, making it possible for them to share the same memory. The CPU 
can recognize the memory allocated by the GPU as a part of its own memory with the 
zero memory copy technology and access it directly. Instead of repeatedly copying data 
between CPU and GPU whenever needed, the algorithm spends only its efforts on the 
initial mapping that takes comparatively much lesser time.

In order to maximally utilize the computing resources, these technologies were 
applied on the proposed parallel program. For workgroup size, we started from 64, and 
scaled up and down until the peak performance was found. The result was that most 
tasks were most efficiently completed when workgroup size was 128, while a workgroup 
size of 256 offered the highest performance for the task morphological transformation, 
as they relied on less registers. For data vectorization, the data were loaded/processed/
stored in batches of 128 bits for all the transactions. As 32-bit float-point numbers were 
employed, four numbers were packed as a vector and operations on them were re-writ-
ten using vector instructions. For zero memory copy, it was utilized throughout the 
design of the entire parallel algorithm. When CPU requires processed data from GPU, 
data were mapped directly to host memory from GPU memory directly, as it was shown 
in Fig. 4.

Experiments
Experimental environment

The compiling and linking from Android application through Java and C/C++ to 
OpenCL could be complemented owing to the Java Native Interface designed to enable 
native libraries’ calls from Java code. The experimental environment is benchmarked on 
a smartphone named OnePlus 3 equipped with a Qualcomm Snapdragon 820 processor 
along with memory of 6 GB. In detail, the processor consists of two CPU cores running 
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at 2.15  GHz and another two cores running at 1.6  GHz, together with an integrated 
Adreno 530 GPU in which 256 arithmetic and logic units run at 624 MHz.

Data collection

In this study, a multi-parameter patient simulator (FLUKE ProSim 8), the heart rate of 
which was 60 beats/min, was used to generate 5 types of ECG signals. Then, our devel-
oped wearable Holter (Mini-Holter, 58 × 50 × 10 mm, 20 g, over 30  h of battery working 
time, single channel three leads, 150/250/500  Hz sampling frequency) was connected 
with the multi-parameter simulator via ECG lead wire cables to capture 40 5-min long 
ECG recordings at a sampling frequency of 150 Hz. A total of 3120 NB, 240 APB, 240 
VPB, 600 BG and 400 TG were generated. These simulated ECG records were utilized 
to evaluate the classification performance of the automatic ECG analysis. On the other 
hand, a public ECG dataset named MIT-BIH arrhythmia database [32] (total 48 records 
including 74,695 NB, 2745 APB, and 5976 VPB) was also utilized for the classification 
performance. These ECG records were sampled at 360 Hz with 11-bit resolution over 
a 10 mV range. Heartbeat types of NB, APB and VPB were selected for identification in 
this paper.

To further verify the performance of the proposed method on clinical ECG records, 
seven subjects (2 males and 5 females) from the General Hospital of People’s Liberation 
Army (301 hospital) were recruited to generate independently representative dataset. 
The age of the subjects ranged from 49 to 75 years, reaching an average of 63 ± 9 years. 
Each subject wore the Mini-Holter (150 Hz sampling frequency) to collect a long-term 
ECG signal, the duration of which is 23 ± 1.04 h (ranging from 21.1 to 24.0 h). The clini-
cal long-term ECG dataset consists of 673147 NB, 481 APB, 268 VPB, 2 BG, and 1 TG. 
All the subjects were requested to sign the informed consent form before the experi-
ment. At the same time, abnormal arrhythmia heartbeats of the dataset were marked by 
an expert physician.

Experimental procedure

As Fig. 5 shown, Mini-Holter was placed on the skin of volunteer’s chest with glue-like 
gel to record a long-term ECG signal. The attached position was between the middle 
line of the body and the heart. Volunteers would wear Mini-Holters for 12–24  h as 
they go about daily routine. After ECG data collection was completed, the Mini-Holter 
would be taken down from volunteer’s body. The long-term ECG data was transferred 
to smartphone via Bluetooth. The first and last 2 min of data were cut off to ensure that 
the signal is stable as volunteers need time to attach/detach the Mini-Holter. The data 
was analyzed by aforementioned mobile GPU-based automatic ECG analysis method. 
Then, subjects could browse the analysis results and original ECG signals. At the same 
time, the executing time of the program was recorded backstage as well as the energy 
consumption using Trepn Profiler from Qualcomm. Experiments of power consump-
tion were conducted at a starting battery life of 100% or close to 100%. Both parallel 
and sequential program were executed five times on each tested ECG record and results 
were saved to be averaged. As for throttling, we launched a third-party CPU adjuster to 
keep CPU running at full frequency while the tested experiments were conducted.
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Results and discussion
Classification performance

Several metrics including classification accuracy (ACCU​), sensitivity (SENS), and spec-
ificity (SPEC) were calculated to measure the classification performance, and they are 
defined as follows combining statistical quantities:

where TPOS is true positive, TNEG is true negative, FPOS is false positive, and FNEG is 
false negative.

The performance of the sequential and parallel algorithm in detecting APB, VPB, 
BG, TG, and NB was evaluated on the synthetic dataset. The experimental results 
were shown in Table 2. The accuracy, sensitivity and specificity were more than 98%. 
On the other hand, MIT-BIH arrhythmia database was also employed to evaluate the 
classification performance of NB, APB and VPB. The results were shown in Table 3. 
The sensitivity of the proposed algorithm in detecting APB and VPB were 86.12 and 
89.01%. Compared with the noise-free synthetic data, the sensitivities of the proposed 
algorithm in detecting on MIT-BIH arrhythmia database decreased a little bit.

(1)ACCU =
TPOS + TNEG

TPOS + FNEG + FPOS + TNEG

(2)SENS =
TPOS

TPOS + FNEG

(3)SPEC =
TNEG

FPOS + TNEG

Bluetooth

Mini-Holter

Smartphone
Fig. 5  Experimental procedure. Long-term single lead ECG signals were taken by Mini-Holter. After the 
Mini-Holter was taken down from body, the ECG signals were transfer to smartphone for analysis via 
Bluetooth
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Apart from validating the proposed method’s high classification performance on the 
synthetic dataset and MIT-BIH arrhythmia dataset, we also evaluated the performance 
on clinical ECG dataset which was collected from the 301 hospital. As shown in Table 4, 
over 94.53% of normal sinus heartbeats were identified. The sensitivity of APB and VPB 
were 80.04 and 83.95%, correspondingly. The classification performance of the proposed 
program in detecting APB and VPB on the clinical ECG data was obviously lower than 
that on the synthetic data. The cause was that clinical ECG data were collected by wear-
able Mini-Holter and contaminated by a variety of noise such as artifact noise, power 
frequency interference, baseline drift, etc. The signal-to-noise (SNR) of the noise-free 
synthetic data was obviously higher than that of the clinical ECG data. The number of 
subjects who suffered BG and TG is very little, two subjects (one suffered two events 
of BG in a day and another suffered one event of TG in a day) were found to satisfy our 
experimental requirement. The sensitivity, specificity, accuracy of BG and TG were 100% 
as two events of BG and one event of TG were correctly identified. It demonstrated that 

Table 2  Classification performance of  the  sequential and  parallel automatic ECG 
algorithm on synthetic ECG data

Type of rhythms Number of records SENS (%) SPEC (%) ACCU​ (%)

NB 3120 98.92 99.52 99.02

APB 240 99.60 99.34 99.34

VPB 240 98.03 99.02 98.00

BG 600 99.33 98.77 98.81

TG 400 100 99.07 99.10

Average 99.18 99.14 98.85

Table 3  Classification performance of  the  sequential and  parallel automatic ECG 
algorithm on MIT-BIH arrhythmia database

Type of rhythms Number of records SENS (%) SPEC (%) ACCU​ (%)

NB 74,695 98.24 97.76 98.15

APB 2745 86.12 99.27 99.03

VPB 5976 89.01 99.76 98.95

Average 91.12 98.93 98.71

Table 4  Classification performance of  the  sequential and  parallel automatic ECG 
algorithm on clinical long-term ECG data

Type of rhythms Number of records SENS (%) SPEC (%) ACCU (%)

NB 673,147 94.53 83.64 94.52

APB 481 80.04 96.31 96.30

VPB 268 83.95 98.88 98.87

BG 2 100 100 100

TG 1 100 100 100

Average 91.70 95.77 97.94
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our proposed method could identify BG and TG correctly even if BG/TG are few in 
number.

Parallel program efficiency

In order to give users real-time response after their physiological data were transmitted 
to smartphones, it was considered only viable to run automatic ECG analysis on pow-
erful servers. In this study, the focus was shifted from powerful computing servers to 
long-underestimated potential computing capability of smartphone-based GPU. Parallel 
structures in the sequential automatic ECG analysis algorithm were fully extracted, and 
then these specific parts were redesigned using a framework designed for computing 
heterogeneous platforms known as OpenCL.

Speedup is an effective measurement to validate the efficiency of the parallel program 
[33]. It is defined as the proportion of the elapsed time when executing a program on a 
single processor to the execution time on n processors. The speedup with n processors is 
defined as:

where SP(n) is speedup with n processors. Ts is the execution time of the algorithm run-
ning on a single processor. Tp is the execution time of program running on n processors.

The time-consumption analysis of the automatic ECG algorithm was performed on a 
24-h long ECG signal (no. 5) which collected from the 301 hospital. It was found that 
the artifact removal, feature detection, and abnormal heartbeats detection took up 16.7, 
60.4, and 15.1% of the time cost, respectively, summing up to more than 92.2%. There-
fore, the artifact removal, feature detection, and abnormal heartbeats detection were 
implemented in parallel with OpenCL framework to shorten the executing time of the 
entire automatic ECG analysis algorithm.

The same 24-h long ECG signal was also selected to evaluate the computing effi-
ciency of the parallel program in each step. As shown in Table 5 and Fig. 6, the time 
cost of the automatic ECG analysis algorithm was reduced from 7.57 to 1.45  s. The 
parallel automatic ECG analysis algorithm achieved a speedup of 5.22× compared 
with the sequential algorithm. Then the parallel algorithm was further optimized 
using workgroup size tuning, data vectorization and zero memory copy technologies. 

(4)SP(n) =
Ts

Tp

Table 5  Speedup of the parallel automatic ECG analysis algorithm in each step on a 24-h 
long ECG signal

Step Sequential 
program (s)

Parallel 
program 
(s)

Parallel-
optimized 
program (s)

Speedup 
(parallel vs. 
sequential)

Speedup (parallel-
optimized vs. 
sequential)

Artifact removal 1.267 0.061 0.055 20.78× 23.05×
QRS complex detec-

tion
4.560 0.834 0.652 5.47× 6.99×

ECG waveform clas-
sification

1.155 0.268 0.265 4.31× 4.36×

Total 7.565 1.448 1.257 5.22× 6.02×
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With the optimization mentioned above, the time cost of parallel algorithm was fur-
ther reduced to 1.26 s, which achieved a speedup of 6.02×. In detail, the optimized 
parallel automatic ECG algorithm achieved a speedup of 23.05×, 6.99×, and 4.36× 
in the artifact removal, QRS complex detection, and waveform classification respec-
tively. Meanwhile, the remained long-term ECG signals were also utilized to test the 
computing efficiency. As shown in Table 6, the average executing time of the sequen-
tial program and the parallel program on long-term ECG dataset (duration: 23.0 ± 1.0 
h) were 7.018 ±  0.592 and 1.215 ±  0.140 s correspondingly. The parallel program 
achieved an average speedups of 5.81 ±  0.39×, which showed its great superiority 
over the sequential algorithm.

To further explore the proposed parallel algorithm’s performance for records with dif-
ferent lengths, short signals, the duration which were 1, 4, 8, 12, 16, 20, and 24 h, were 
generated by randomly cropping a 24-h ECG signal. As shown in Fig. 7, both parallel and 
sequential algorithm presented a near-linear execution time increase in response to the 
increase of data length. More obviously presented by the speedup curve, was that the 
speedup increased sharply when data length increased from 1 to 4 h, and entered into a 
much gentle ascendance afterwards. Two factors would help to interpret this trend: (1) 
the utilization rate of computing resources dropped when input was too short, as the 

20.78 

5.47 4.31 5.22 
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4.36 
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Fig. 6  Speedup of the parallel automatic ECG analysis algorithm. Parallel means the parallel automatic ECG 
algorithm; parallel-optimized means that the parallel automatic ECG algorithm was further optimized by 
workgroup size tuning, data vectorization and zero memory copy technologies

Table 6  Speedup of  the  parallel program on  the  long-term ECG dataset collected 
from the 301 hospital

ECG no. Length (h) Sequential program (s) Parallel program (s) Speedup

1 23.3 7.412 1.307 5.67×
2 22.9 5.926 0.935 6.34×
3 24.0 7.530 1.331 5.66×
4 21.1 6.984 1.125 6.21×
5 24.0 7.565 1.257 6.02×
6 22.2 6.594 1.255 5.26×
7 23.4 7.118 1.294 5.50×
Average 23.0 ± 1.0 7.018 ± 0.592 1.215 ± 0.140 5.81 ± 0.39×
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lack of workloads caused the tasks to be more sparsely assigned to the GPU. (2) Una-
voidably, part of the algorithm contributed a constant part to the execution time, and 
became more significant as the other part shrank in accordance with the input size.

Program energy efficiency

The need for the computing power of smartphones has increased with the continuing 
trend for smartphones to be more versatile. However, the greater performance comes 
with a price, which includes the reduced working hours of the battery. Thus, energy con-
sumption is one of the key performance indicators of an application. In order to evaluate 
the energy efficiency of the proposed algorithm, the long-term ECG dataset from the 
301 hospital were also utilized for test. The average battery power and total battery usage 
of test smartphone were recorded with Trepn Profiler provided by Qualcomm, which 
was reported to have an accuracy of 99% when Monsoon Power Monitor was used as 
a reference [34]. Furthermore, compared with the sequential program, the parallel pro-
gram could save energy consumption greatly. The energy conservation is defined as:

where Esave is the energy saved by the parallel program, Es is the energy consumption of 
the sequential program, and Ep is the energy consumption of the parallel program.

(5)Esave =
Es − Ep

Es

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

8

1 4 8 12 16 20 24

T
im

e 
C

os
t (

se
co

nd
)

Record length (hour)

Speedup Sequential Parallel

Fig. 7  Time cost analysis of the parallel program with ECG records with different lengths. Parallel means 
parallel automatic ECG classification algorithm; sequential means sequential automatic ECG classification 
algorithm
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As shown in Table  7, the average power of the sequential algorithm was 
1860.95  ±  42.07  mW, while the average power of the parallel algorithm was 
1826.91 ±  21.44  mW. The parallel automatic ECG analysis algorithm consumed less 
power per second in average compared with the sequential algorithm. The aver-
age battery energy consumption of the sequential algorithm executed five times 
was 33.93  ±  1.95  mWh, while the parallel algorithm executed five times consumed 
12.16 ± 0.65 mWh. According to Eq. (5), the parallel algorithm could save about 64.16% 
energy. However, the energy consumption was recorded for the whole Android applica-
tion, which also included data loading and other operations, as it was very hard to meas-
ure the energy consumption of only the algorithm. Excluding the energy consumption 
from data loading, the energy conservation of the parallel program could be saved about 
79.44%, greatly improving the battery working hours of smartphone.

Conclusion
This paper proposed a parallel automatic ECG analysis algorithm based on smart-
phone GPUs. The processing steps of artifact removal, QRS complex detection, and 
ECG waveform classification were implemented in parallel according to time cost 
and parallel feasibility analysis of the sequential automatic ECG analysis algorithm. 
Compared with the sequential algorithm, the average time cost of the parallel auto-
matic ECG analysis algorithm on the long-term ECG dataset from the 301 hospital 
was reduced from 7.018 ± 0.592 to 1.215 ± 01.40 s, and a speedup of 5.81 ± 0.39× 
was achieved. Additionally, the average power and execution time of the parallel auto-
matic ECG analysis algorithm was less than that of the sequential automatic ECG 
analysis algorithm, and about 64.16% of the battery energy was saved. If the energy 
consumption from data loading was excluded, the parallel program could save 79.44% 
of the energy consumption.

The reduction of response time and battery energy consumption in ECG analysis 
not only bring better quality of experience to holter users, but also make it possible 
to use mobile devices as ECG terminals for healthcare professions such as physicians 
and health advisers, enabling them to inspect patient ECG recordings onsite efficiently 
without the need of a high-quality wide-area network (WAN) environment. This is very 
helpful to extend the use of onsite ECG monitoring in rural, outdoor or ambulatory 

Table 7  Power consumption for  sequential and  parallel algorithm on  ECG data from  310 
hospital

ECG no. Data loading The sequential The parallel

Energy (mWh) Power (mW) Energy (mWh) Power (mW) Energy (mWh)

1 6.84 1908.98 35.08 1845.93 12.48

2 6.36 1861.02 30.52 1841.35 11.5

3 6.65 1819.40 35.49 1807.44 12.86

4 6.55 1800.24 35.32 1811.56 11.21

5 6.96 1893.36 35.40 1818.13 12.83

6 6.12 1900.71 32.14 1805.11 11.82

7 6.22 1842.94 33.55 1858.84 12.44

Average 6.53 1860.95 ± 42.17 33.93 ± 1.95 1826.91 ± 21.44 12.16 ± 0.65
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situations. Moreover, the migration of ECG processing pipeline to mobile device without 
heavy CPU occupation paves the way for real-time identification of cardiac arrhythmias 
which is of great value in prevention of acute cardiovascular event (e.g., stroke and myo-
cardial infractions). This would be the further direction of our research.
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