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Background
Motivation

Monitoring the state of kidneys functioning becomes an increasingly important task of 
the modern medical diagnostics. The growing rate of patients with various renal dis-
eases in the developed countries is—besides other factors—linked to the aging society 
phenomenon. Failure in renal operation may impair physiological homeostasis, leading 
to improper management of electrolytes, acid–base balance perturbation, or deregu-
lation of arterial blood pressure. Kidneys are responsible for blood filtration, removal 
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ing thereof. Recently, there is a growing interest in phase contrast angiography (PCA) 
sequence due to the capabilities of blood flow quantification that it offers. Moreover, 
as it is a non-contrast enhanced protocol, it has become an attractive option in areas, 
where usage of invasive contrast agents is not indifferent for the imaged tissue. Moni-
toring of the kidney function is an example of such an application.

Results:  We present a computer framework for simulation of the PCA protocol, both 
conventional and accelerated with echo-planar imaging (EPI) readout, and its applica-
tion to the numerical models of kidney vasculatures. Eight patient-specific renal arterial 
trees were reconstructed following vessel segmentation in real computed tomography 
angiograms. In addition, a synthetic model was designed using a vascular tree growth 
simulation algorithm. The results embrace a series of synthetic PCA images of the 
renal arterial trees giving insight into the image formation and quantification of kidney 
hemodynamics.

Conclusions:  The designed simulation framework enables quantification of the PCA 
measurement error in relation to ground-truth flow velocity data. The mean velocity 
measurement error for the reconstructed renal arterial trees range from 1.5 to 12.8% of 
the aliasing velocity value, depending on image resolution and flip angle. No statisti-
cally significant difference was observed between measurements obtained using EPI 
with a number of echos (NETL) = 4 and conventional PCA. In case of higher NETL fac-
tors peak velocity values can be underestimated up to 34%.
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of water-soluble waste products of metabolism and surplus glucose and other organic 
substances. The kidney diseases include, among others, acute kidney injury (AKI), 
chronic kidney disease (CKD) and various cancers (e.g. renal cell carcinoma). The treat-
ment depends on the pathological condition and may require life-long dialysis, kidney 
removal or transplantation. In any case, exact knowledge of the kidney performance is 
needed for the proper diagnosis, treatment and follow-up prognosis. Especially in case 
of CKD, caused by e.g. longstanding hypertension or diabetes mellitus, it is important to 
continuously and precisely monitor renal function, since early detection of the disease 
allows prevention of its development to the end stage [1].

One of the diagnostic methods available for assessment of the kidney functioning is 
phase contrast angiography (PCA)—a non-contrast enhanced magnetic resonance imag-
ing (MRI) protocol. It uses special bipolar gradients implemented within the measure-
ment sequence whose role is to shift MR signal phase relative to blood flow velocity. The 
imaging sequence is always performed twice, each time with opposite velocity encoding 
gradients polarity, so that the signal from the stationary tissue is attenuated whereas the 
signal from the flowing spins is enhanced. Hence, PCA enables visualization of the renal 
vessel system topology and simultaneously provides with quantitative information about 
velocity and flow rate of the blood entering the kidney. As such, PCA facilitates measur-
ing of the renal arterial input function and thus opens a way to absolute quantification 
of the kidney perfusion [2, 3]. With the higher magnetic field strengths, introduction 
of respiratory gating free breathing protocol, undersampled projection reconstruction 
[4], and adoption of echo-planar imaging readout [5], phase contrast angiography has 
emerged as an attractive non-invasive alternative for contrast-enhanced acquisitions. 
Also, these recent advances have extended applicability of PCA onto the smaller vessels, 
such as those present in the kidneys.

Clinical usefulness of PCA becomes especially apparent in case of atherosclerotic renal 
artery stenosis. In order to properly grade the stenosis, not only the level of narrowing 
but also blood flow velocity must be estimated. The latter information is needed to cal-
culate the acceleration time, i.e. the time between the onset of the cardiac wave and the 
systolic peak [6]—an important predictor of stenosis. This parameter can be conveni-
ently estimated during the Doppler ultrasound (DUS) examination, which is however 
inferior to PCA in regard to its ability of reconstructing anatomical details of the arterial 
system [7]. The intravascular ultrasound can be employed to estimate the level of steno-
sis or guide the stent placement, but its clinical use is reported mainly in relation to cor-
onary and carotid arteries [8, 9]. Besides, it is considered as an interventional procedure 
that can performed only by a trained angiographer. Another method which, similarly to 
PCA, ensures accurate quantification of both arterial geometry and blood velocity is the 
catheter angiography [10]. Although this technique offers the highest spatial and tempo-
ral resolution, it is remarkably invasive, as it uses iodinated contrast agents, requires ion-
izing radiation, and raises the risk of conscious sedation, bleeding and dissection. These 
factors exclude catheter angiography as a screening protocol.

Despite the mentioned features, PCA must be used with care. Firstly, MRA tends to 
overestimate a vessel narrowing due to signal loss caused by turbulent flow regime at 
locations proximal to stenosis. At distal sections of the artery, vessels diameters can be 
overestimated, e.g. due to partial volume effects [11].
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Secondly, velocity quantification using PCA can also be biased. The measurement 
errors of the PCA method are linked to several factors and these include: inadequate 
spatial resolution, oblique orientations of the imaging plane in relation to the velocity 
encoding direction, phase shifts due to magnetic field inhomogeneity or intra-voxel 
flow-related offsets, too high or too small value of the aliasing velocity, respiratory 
motion or aortic pulsation [12]. These impediments can be partly reduced by apply-
ing appropriate remedies, such as increased resolution, flow compensation or adjusting 
the VENC parameter. However, discrepancy between a measured and true value of the 
flow velocity remains unknown. Its exact assessment in case of real images of biological 
organs is hampered due to the lack of ground-truth data.

The PCA-based measurements can only be compared with the flow estimates obtained 
by using some other modality, as showed e.g. in [13], where an attempt was made to 
validate PCA against a 133Xenon washout method. However, it was rather an isolated 
approach and there is a gap in the literature as far as exact assessment of the PCA-based 
velocity estimation error is concerned. Besides, the 133Xenon washout method is itself 
error-prone. It measures blood velocity based on microcirculation flow and as such it 
ignores blood plasma transport from the interstitial to the intravascular space and can-
not be treated as a gold-standard. PCA estimations can also be compared to DUS. The 
latter however measures a range of velocities from a whole volume of interest lying 
within the field of acquisition of a scanning probe. Thus, their spatial identification can-
not be easily resolved.

On the other hand, it must be underlined that knowledge about the scale and source 
of PCA measurement errors is crucial for concerned planning and possibly optimiza-
tion of the data acquisition protocol, reliable interpretation of image analysis outcomes, 
disease diagnosis and its development prognosis. Therefore, an alternative way to esti-
mate the error of PCA, exploited in several studies, though not particularly focused on 
the kidney, employs computer simulations of MRI [14, 15]. This approach—postulated 
in this paper—possesses the advantage of the ability to evaluate the impact of individ-
ual imaging factors separately. We demonstrate how to efficiently set up the simulation 
experiment starting from construction of a realistic renal vasculature model. For that 
purpose we have designed a dedicated computer program called VesselKnife and encour-
age development of custom datasets allowing optimization of imaging protocols for spe-
cific clinical applications. To this end we made the code of VesselKnife available at [16].

Related work

The observed progress of MRI simulators indicates that the proposed tools become more 
and more specialized in modeling specific phenomena underlying image formation pro-
cess. The very first systems, e.g. [17, 18], based on analytical solution to the Bloch equa-
tion, enabled simulation of basic sequences such as T1-, T2- or proton density-weighted 
imaging, either using spin- or gradient-echo schemes. Simulators proposed in [19, 20] 
incorporated, as an additional feature, a possibility to account for magnetic field inho-
mogeneity induced by differences in imaged objects susceptibility. The authors of [21] 
focused on functional MRI and thus their solution, called POSSUM, deals with time-
dependent characteristics of a virtual organ. It refers to T1 and T2 constants, as well as 
to spatial coordinates of an object, which may change either in response to alterations in 
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the blood oxygenation level, or due to respiratory motion. However, in POSSUM move-
ment of virtual spins only affects a resultant image in the form of an artifact but it does 
not generate signals, as required for MR unenhanced angiography. JEMRIS system, pro-
posed in [22], introduced a numerical solver to update the magnetization vectors state 
for a modeled spin system. Although such an approach offers a universal simulation 
scheme, allowing e.g. to account for time-varying gradients, it is computationally more 
demanding than strategies based on analytical solution. In effect, dynamic applications 
become less feasible even if high performance computing resources are employed, and 
there is only a moderate number of published attempts to implement MR angiography 
sequences using JEMRIS [23]. On the other hand, its advantage—though not linked to 
numerical approach—is the option to model distribution of magnetic fields (both static 
and radiofrequency), as well as electric field for multiple transmit and receive coils. Sim-
ilar capabilities are offered by the software described in [24]. Another step forward is 
made in MRiLab [25]. In contrast to previous solutions, where each tissue type is mod-
eled as a separate uniform compartment, it proposes a multi-pool exchanging model 
of interacting spins. The effective usage of this software is, however, constrained by the 
availability of a CUDA-enabled GPU as an execution platform.

Imaging of the blood flow constitutes a separate research path within the field of MR 
simulations. A number of papers have been published, where implementations of the 
Time-of-Flight, black-blood angiography, or PCA protocols are described. From the 
viewpoint of this study the most relevant works are reported in [14, 15, 26, 27], which 
are strictly focused on PCA. However, those studies refer to simplistic structures, such 
as isolated flow channels—straight [14], or with stenosis [27], relatively large vessels with 
one side branch (e.g. carotid [15] or femoral [26] arteries). Although various flow-related 
effects linked to the flow regime (pulsatile, turbulent, plug) or imaging technicalities 
(timing parameters) can be examined with such structures, they do not allow testing of a 
given measurement sequence with respect to its capabilities in proper reconstruction of 
a real organ anatomical and functional details.

Current contribution

In light of the above-presented state of the art in the MRI simulation domain, our con-
tribution consists in providing a solution to two problems simultaneously—simulation 
of the PCA technique and modeling of the renal arterial system. Specifically, the pur-
pose of this paper was to apply numerical simulations to evaluate capability of the PCA 
sequences—both conventional and accelerated—to accurately measure the renal hemo-
dynamics and simultaneously reproduce anatomical features of the kidney vasculature. 
The assumed goal decomposes into two main sub-objectives: (1) construction of digital 
phantoms of the renal arterial tree, and (2) numerical modeling of the phase contrast 
angiography protocol. In order to accomplish the first sub-objective we applied two 
alternative approaches resulting in two categories of vascularity models. The patient-
specific phantoms were constructed based on vessel segmentation in high-resolution 
contrast-enhanced computed tomography (CT) image. Alternatively, a synthetic model 
was designed using a vessel tree-growth simulation algorithm adapted to the kidney 
anatomy. Realization of the second sub-objective involved extension of our previously 
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described framework for MR angiography simulation [28] onto the echo-planar imaging 
(EPI) readout method.

Methods
Overview of the methodology workflow

In the part referring to arterial models constructed from real angiography data, the pro-
posed framework can be in general encapsulated into five main steps, as illustrated in 
Fig. 1. Initially, the images must be collected from a group of patients or healthy volun-
teers. The data acquisition and its subsequent analysis step embraces two parallel paths: 
(1) high spatial-resolution scanning in order to achieve detailed information about renal 
vasculature topology, and (2) functional examination in order to acquire blood flow 
velocity profiles in the arteries of interest. In our study the data were gathered using CT 
angiography of the abdomen and Doppler ultrasound. After completion of vessel seg-
mentation and having estimated the blood velocity, the procedure moves on to recon-
struction of the arterial tree geometrical model and simulation of blood flow through it. 
We accomplish both tasks in Comsol Multiphysics [29]—a computational fluid dynamics 

Fig. 1  The overview of the experimental workflow implemented in the study
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software. The combined geometrical and functional model is then fed into the magnetic 
resonance imaging simulator, which implements phase contrast angiography sequence. 
For that purpose we employ our own solution [28], however each MRI simulator capable 
of tracking positions of moving virtual spins can be applied. Eventually, the synthesized 
velocity-encoded phase images are compared with the ground-truth data, i.e. velocity 
field simulated in Comsol. By playing with the PCA configuration parameters, one gains 
the knowledge about feasible impact of various imaging factors on the velocity estima-
tion errors. In the following, each of the above-summarized five steps are described in 
detail and in application to the kidney.

Real data set acquisition

In our study, the contrast-enhanced angiograms of the abdomen were acquired for four 
patients. In case of two patients, no abnormal changes in the main renal arteries were 
observed. In one patient there was a severe renal artery stenosis (RAS) diagnosed in the 
left kidney (cf. Fig. 2) and one patient had bilateral RAS graded by a specialist as moder-
ate. The data sets were anonymized and processed after collecting a written informed 
consent from the patients and approval from the local ethics committee (Approval No. 
RNN/132/17/KE). The in-plane resolution of the images was equal to 0.703 × 0.703 mm2 
with the matrix size—512 × 512 pixels. The number of axial slices was varied from 571 to 
770 (depending on patient) and the spacing between slices, as well as slice thickness was 

Fig. 2  CT data set for a patient with severe stenosis in the left renal artery (blue arrow)—axial, sagittal and 
coronal slices (bottom row) and volume reconstruction (top panel). Image visualization performed using 
Slicer 3D software [30]
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set to 0.625 mm for each individual. Hence, there were overall eight kidney vasculatures 
reconstructed using real data sets, five of which were normally appearing structures and 
three degenerated ones referred to as normal or RAS models respectively.

In parallel to CT acquisition, the DUS imaging was performed. The collected US 
images contain information about temporal blood flow velocity in renal artery and distal 
vessels, i.e. smaller-size vessels located further from the main feeding renal arteries. In 
the case of one RAS model, the measurement in the left RA was missing. Nevertheless, 
it was possible to configure blood flow simulation in the reconstructed kidney arterial 
tree using only the information from the distal vessels. As an example, Fig. 3 presents 
the US-measured velocity profiles in the right and left kidneys for the patient with severe 
stenosis.

Vessel segmentation and vascular tree modeling

Construction of the realistic arterial tree models started from segmentation of vessels 
in the CT angiogram. This operation was split into two automatic procedures, i.e. ves-
sel enhancement and flood filling. The first step was executed by the help of multi-scale, 
image Hessian filter with a Gaussian probing kernel [31]. We used five scales to identify 
voxels potentially belonging to the arterial trees and they were equal to 0.5, 1, 2.5, and 
5 mm. The chosen scales range allows detection of most large and medium-sized ves-
sels visible in the image. The filtered image was binarized by performing flood fill opera-
tion with the seed points placed at entry regions of the left and right renal arteries. The 
lower intensity threshold was adjusted as the average brightness of 100 locations ran-
domly sampled from the vessel walls regions and ranged from 128 to 160, again depend-
ing on a patient. The upper threshold was set to the top bound of the image dynamic 
range, as the contrast-enhanced arteries were much brighter than soft tissues. The only 
structures with a comparable or higher intensity level was the spine and other bones. 
Unfortunately, the spine orientation usually collides with the abdominal aorta causing its 
co-segmentation together with the arterial tree during the flood fill operation. Therefore, 
the spine was manually removed from the segmented objects.

Following segmentation, geometrical description of the vessel system could be 
extracted. First, the binary objects were skeletonized to determine initial courses of 
the vessel centerlines. The centerlines defined on the discrete raster were smoothed to 
obtain continuous descriptions. Smoothing was performed by minimization of the sec-
ond derivatives calculated at the subsequent centerlines nodes.

For determination of the vessels radii, we employed our algorithm previously described 
in [32]. In short, the procedure starts from finding the points of intersection between 
vessel walls and half-lines lead from a given centerline node and equally spaced around 
that node. Next, a covariance matrix is constructed for the distribution of these points 
of intersection. The highest eigenvalue of the covariance matrix determines (through its 
associated eigenvector) the local direction of a vessel, whereas the square root of the 
smallest one multiplied by an empirically found factor of 

√
2 gives the radius estimate.

All of the above mentioned automatic procedures, i.e. vessel enhancement, flood-
filling, skeletonization and radius estimation were accomplished using the above-men-
tioned VesselKnife software. Partly, the algorithms implemented therein are based on the 
ITK image processing library [33].
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Fig. 3  Doppler ultrasound images of the distal vessels in the left kidney (top) and in the right RA (in the 
middle) acquired for the same patient as the CT data shown in Fig. 2. Bottom: reconstruction of the mean 
velocity profile in the right RA from the DUS data within one cardiac cycle (blue line). The red horizontal line 
indicates the calculated velocity value averaged over the cycle duration
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Based on the geometrical description of the kidney vessel tree, its 3-dimensional 
surface model is constructed. Vessel surface could be determined using visualization 
libraries (e.g. VTK [34]), and then exported in a 3-D object file format, such as stereo-
lithography (STL). Such an approach is postulated e.g. in [35] in application to cardiac 
and carotid arteries. Although this mechanism appears to be straightforward and rela-
tively automated, the generated surfaces embrace numerous defects, of which non-man-
ifold edges and self-intersecting faces constitute the most dominant faults that cannot be 
entirely repaired by surface smoothing during post-processing. In effect, the STL models 
imported into a computational fluid dynamics (CFD) software may not be tractable as 
the composition of the volumetric mesh for degenerated surfaces fails.

Therefore, we used COMSOL built-in tools for 3-D geometrical modeling to recon-
struct the renal vasculatures directly from their vector data. Firstly, we imported all cen-
terline courses into the COMSOL’s workspace. Note, a centerline is described by a series 
of nodes—points in 3-D coordinate space. Then, we represent each centerline as a curve, 
where subsequent nodes of a centerline become the knots of an interpolated curve (see 
Fig. 4).

Secondly, each vessel is assigned another interpolation function responsible for the 
determination of its corresponding vessel radius relative to the distance from this ves-
sel inlet and measured along the centerline. Hence, each centerline length must be first 
normalized to unity. Subsequent nodes locations are expressed in terms of their rela-
tive distance to the starting node. As a result, we obtain a series of pair numbers, which 
relate the radius of a vessel to its length at discrete locations on a centerline. This relation 
is eventually interpolated by the cubic spline functions in order to achieve a continuous 
curve.

Fig. 4  The proposed procedure for construction of a vessel surface in the Comsol Multiphysics software. The 
swept plane (disk) is a base of a cylinder. Radius of the cylinder base = 1 mm (hence the unit-base cylinder)
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Finally, the vessel surface is constructed using the Sweep tool of COMSOL. We place 
a circular (radius = 1 mm) disk (called plane in the COMSOL’s environment) at a vessel 
inlet node and align its normal vector with the local orientation of the vessel centerline. 
Then, the plane is swept along the centerline. The plane orientation is adjusted accord-
ing the local vessel direction, and the radius is modified by the appropriate interpolation 
function. The trace of swept disk perimeter produces a vessel surface. The union of all 
surfaces forms a kidney arterial tree and can be used in blood flow simulation.

Synthetic renal vessel tree‑growth simulation

For synthesis of the vascular system we adopted the algorithm described in [36, 37]. Tree 
growth starts with one initial vessel. When a new outlet is selected, a bifurcation is gen-
erated. The outlet location is controlled by the shape and spatial position of the perfu-
sion volume and physiological needs of the tissue, expressed in the required flow rate. 
The bifurcation point is determined in the optimization procedure which is constrained 
by the following three principles: matter preservation, Poiseuille’s law and the bifurca-
tion law. The first principle states that the blood flow in the bifurcating vessel must be 
equal to the total flow in the child (outflow) vessels. The second constraint relates the 
pressure drop along a vessel segment to its associated flow rate, radius, and length, as 
well as blood viscosity. Eventually, the bifurcation law governs the relation between radii 
of the parent (inflow) and child vessels. The optimization criterion is the total volume of 
the bifurcation, which is minimized.

The simulated vessel tree constructed for the purpose of this research was also 
designed based on a real CT angiogram of the human abdomen. Specifically, we used the 
CALIX data set from a publically available Osirix database [38] presenting the normal 
state of the abdominal arteries. However, this time the real image (right kidney) served 
only as a reference for choosing locations for the synthetic tree terminals. Moreover, the 
flow rates on the individual outlets of the tree model (hereafter called the CALIX model) 
were adjusted so that the inlet radius of the root vessel at the end of the optimization 
process matched the size of the right renal artery visible in the image.

Note, that the output of the tree-growth simulation algorithm is a set of vessel seg-
ments modeled as straight tubes. In order to better approximate real vascular systems, 
the individual vessel segments were redefined to imitate the curved shapes of the vessels 
and diameter variation along the axes. This remodeling was accomplished in COMSOL, 
using a similar approach as described for the normal and RAS trees.

Phase contrast angiography simulation

Our framework for simulation of PCA sequences consists of two integral modules. The 
first one is responsible for modeling blood flow through the vasculature of an imaged 
organ. This part is accomplished with COMSOL Multiphysics. The blood flow dynamics 
is described by the Navier–Stokes equation and solved by assuming a laminar regime, 
rigid walls, constant viscosity and incompressibility of the fluid. The solution is repre-
sented in form of a velocity vector field and flow streamlines, i.e., motion paths of virtual 
particles traversing the blood vessel system from the inflow to the outflow terminals. 
This information is then imported by the MRI simulation module.



Page 11 of 29Klepaczko et al. BioMed Eng OnLine  (2018) 17:41 

The import algorithm populates the streamlines along their entire length with parti-
cles corresponding to blood spin isochromats. Particles on a streamline are distributed 
relative to the local blood velocity. If velocity increases, as in a narrowed region, the dis-
tances between particles become larger. This strategy ensures the assumed incompress-
ibility of the fluid. Furthermore, the same library keeps track of all moving particles and 
whenever a given particle passes its trajectory end node, it is replaced by a new one at 
the inlet. Hence, the vessel tree is constantly filled with particles throughout the whole 
experiment. Eventually, particle positions can be monitored at arbitrary temporal reso-
lution. Whenever required the simulation time step can be decreased, e.g. during an RF 
pulse, or enlarged, e.g. during free precession, in order to keep the trade-off between 
computational precision and complexity. The number of streamlines and the number of 
particles on a streamline vary for each investigated object and they are adjusted with 
respect to the resolution of the final simulated image. Our experiments reported in [26] 
showed that 15–20 particles per 1  mm3 are sufficient to reproduce the characteristic 
effects of the Time-Of-Flight MRA.

In the MRI simulation which follows fluid flow modeling, particles represent portions 
of the blood and simultaneously carry information on spin isochromats. Their net mag-
netization state is calculated based on analytical solution to the Bloch equation [39]—a 
central mathematical formula underlying MR physics. Depending on the stage of the 
measurement sequence, a magnetization vector �M of a particle p is modified accord-
ing to an appropriate variant of that solution. For free precession and during gradient 
encoding steps, �Mp is given by

where δt is the simulation time step, Rotz is a rotation matrix which turns Mp around 
the z-axis either due to the phase encoding gradient ( θg ) or field inhomogeneity ( θi ). �M0 
denotes the equilibrium magnetization. In the designed system it relies solely on proton 
density. Evolution of a magnetization vector caused by the transverse and longitudinal 
relaxation phenomena, dependent on tissue-specific T1 and T2 constants, is controlled 
by the matrix R12

relax
 and the R1

relax
 vector:

In the excitation phase, we assume that the radio-frequency (RF) pulse duration τRF 
takes much shorter than the relaxation times. Then, �Mp is flipped from the direction of 
the main magnetic field by a rotating operator RRF:
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where an effective angle αeff accounts for the off-resonance effects alternating the pre-
sumed flip angle α [37]. The RF pulse duration τRF is also divided into time intervals δt 
and spins magnetization vectors are flipped only by a fraction of δt/τRF.

Figure 5 shows sequence waveforms used in our implementation of the phase-contrast 
angiography. The assumed gradients shape has a rectangular form. The signal acquisition 
window width tACQ is adjusted to ensure that the Nyquist–Shannon sampling theorem is 
met. In the conducted experiments, tACQ = 1–2.5 ms, depending on the acquisition pro-
tocol (see Table 1). In addition to conventional 2D and 3D PCA, we also designed a 2D 
echo-planar imaging readout. The latter has been recently adopted for PCA imaging of 
e.g. pulmonary arteries [40]. Here we study its feasible application to kidney vasculatures 
as an alternative to other accelerated sequences which employ k-space undersampling or 
radial acquisitions.

Moreover, spoiling of the remnant transverse magnetization at the end of each repeti-
tion cycle is performed numerically, be zeroing the components of �Mp in the readout 
(RO) and phase encoding (PE) direction. Also, the RF excitation event is accomplished 
without explicit gradient lobes in the slice (or slab in 3D) selection (SS) direction. 
Instead, the simulator selects the particles to excite based on their current position along 
the z axis and prescribed acquisition region (bounded by zmin and zmax coordinates).

Note, that the PCA acquisition sequence is always launched twice, with opposite 
polarization of the velocity encoding gradients. In the post-processing step, based on the 
two reconstructed phase images we calculate the so-called phase-difference image �ϕ 
[41]. Then, velocity in a given i-th voxel is estimated as.

MR image acquisition protocol

In the presented study, the measurement sequences parameters were varied depending 
on the vasculature model and experimental setting. Details of the acquisition protocols 
in specific configurations are collected in Table 1.

Results
In order to show capabilities of the designed simulation framework we arranged a series 
of experiments which aimed to inspect ability of PCA to properly reproduce the flow 
velocity and to examine the dependence of PCA-based velocity quantification from vari-
ous sequence measurement parameters. Therefore, presentation of the results is divided 
into three parts. Firstly, we show the constructed renal arterial models along with the 
blood flow simulation setup. Secondly, we study 3D PCA sequence applied to patient-
specific arterial trees reconstructed from CT angiograms. Eventually, the conventional 
2D readout is compared against echo planar imaging. In each experiment, we refer the 
PCA measurements to the speed rates determined in COMSOL. The latter values con-
stitute the ground-truth data, whose comparison with the image-derived velocities leads 
to estimation of the measurement errors associated with specific imaging sequences 
(Fig. 5).

(5)vi =
�ϕ

π
VENC.
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Fig. 5  PCA sequence waveforms implemented in the designed MR angiography simulator. In our study, 
for the 2D PCA velocity encoding gradients are switched on only in the slice-selection (SS) direction. In 3D, 
velocity encoding is also performed on phase-encoding (PE) and read-out (RO) axes. The dotted lines in the 
VENC lobes indicate that the sequence is repeated for reversed polarization of the gradients. EPI is presented 
for NETL = 4 with three gradient blips interleaving consecutive readouts during one TR cycle. Conventional 
PCA waveforms (2- and 3-dimensional) are presented for two TR cycles
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Kidney vascular tree models

Figure 6 presents reconstructed patient-specific models of the kidney vasculatures. The 
detailed characteristics of the models geometry is summarized in Table 2.

It can be observed, that complexity of the constructed models differ significantly 
between the objects or even between kidneys from the same object. The smaller num-
ber of vessels, especially in the RAS phantoms, is partly due to reduced volume of blood 
delivered to a given kidney resulting in its decreased performance in blood filtration, 
contraction of the renal parenchyma, and weaker signal from vessels even in the con-
trast-enhanced CT angiogram. However, as shown for cases presented in Fig. 6b and h, 
the proposed methodology allows reconstruction of arbitrarily complex renal vascula-
tures provided that visibility of the blood vessels in CT images is sufficiently high.

In case of the simulated tree (Fig. 7a), the number of outlets was set to 14. The diam-
eters of the vessels in this model range from 1.5 mm (minimum outlet) to 5 mm (inlet). 
This model was used in a 2D experiment with objective to measure the blood velocity in 
the main renal artery. In relation to kidney location in the original CALIX dataset, the 
tree was rotated, so that the main feeding renal artery co-aligned with the Z axis. This 
operation has significantly simplified the imaging simulation and the post-processing 
stage. 2-dimensional PCA gives the most credible velocity estimates when the through-
plane flow is maximized. Thus, without rotation, acquired cross-sections of the renal 
artery must have been selected in configuration with oblique slice orientation. Note, 
that current implementation of the used angiography simulator disallows oblique slices. 
Hence, by rotating the tree we made the dominant flow direction coherent with the sim-
ulator’s slice-selection axis and it became possible to acquire the designated slices simply 
in the axial direction.

The blood flow simulation was configured by forcing laminar inflow on the renal arter-
ies inlet boundaries with prescribed average flow velocities. These average velocity values 

Table 1  Acquisition sequence parameters used in the experiments

Parameter name Vasculature models

Normal RAS CALIX

Dimension 3D 3D 2D

Readout type Conventional Conventional, EPI

TE (ms) 2.5 3 4

TR (ms) 40 40 70

FA 15, 25, 35 20 30

tACQ (ms) 1 1 1.25

In-plane resolution 0.8 × 0.8 mm2 0.5 × 0.5 mm2

0.8 × 0.8 mm2

1 × 1 mm2

0.5 × 0.5 mm2

FOV (mm) 80 × 80 64 × 64 16 × 16

Slice spacing (mm) 1 2.5 1 3

Matrix size 100 × 100 128 × 128
80 × 80
64 × 64

32 × 32

Number of slices 90 36 56 2

VENC (cm/s) 250 100 100, 150

NETL – – 4, 8, 16 (EPI)
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selected for the simulation in the patient-specific models were determined based on the 
corresponding DUS measurements. In case of the normal tree models we used the time-
averaged mean velocities measured in the renal artery (see Table 2 and Fig. 3 as an exam-
ple). For the RAS model, where the velocity profile in the renal artery was unavailable, 

Fig. 6  All eight numerical models of kidney vasculatures constructed in the study. Each row correspond to a 
specific patient. The model in a comes from the patient with diagnosed severe stenosis in the left renal artery, 
whereas models shown in e and f correspond to the patient with bilateral moderate stenosis. The remaining 
models, i.e. b, c, d, g and h correspond to normal vasculatures
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we adjusted the inflow velocity to achieve the time-averaged mean value measured for 
the kidney distal vessels. The experimentally found value was vAVG = 10 cm/s . Even-
tually, in case of the CALIX phantom, the flow was forced by setting the pressure dif-
ference between the inlet and outlet branches. The inlet pressure was varied to achieve 
ten different velocity measurement levels. This range was determined in relation to the 
maximum velocity in the renal vasculature volume. Based on the data reported in the 
literature for healthy kidneys [42] the presumed velocity interval embraced values from 
45 to 93 cm/s.

The presented configuration of the blood flow simulation experiments assume a sim-
plified model of the true renal hemodynamics. One such assumption refers to the blood 
material, which was treated as homogeneous, Newtonian and incompressible fluid. 
Moreover, the vessel walls were rigid and stationary. Such an arrangement may be inap-
propriate even in case of larger arteries of the vascular system, as comprehensively dis-
cussed in e.g. [43]. However, despite these simplifications and the previously described 

Table 2  Summary of  geometrical and  functional characteristics of  the  models shown 
in Fig. 6

a  Model identifiers correspond to labeling in Fig. 6

Geometrical feature Model identifiera

(a) (b) (c) (d) (e) (f) (g) (h)

RA inlet radius (mm) 3.8 4.7 4.1 3.9 4.5 4.7 2.9 4.2

Average outlet radius (mm) 0.45 0.50 0.78 0.83 0.81 0.76 0.51 0.49

Number of outlets 10 27 16 12 8 9 9 31

Contraction in the RA (%) 80 – – – 50 55 – –

Time averaged mean inlet velocity (cm/s) 10 118 40 25 11 12 20 108

Fig. 7  Model of the simulated renal arterial tree (a) with the indicated cutplanes and cutlines imaged 
in the study. Synthesized magnitude images of the cutplane #1 and #2 (b) using conventional 2D 
PCA and EPI-based sequences. Image acquisition parameters: TE/TR/FA = 4 ms/70 ms/30°; in-plane 
resolution = 0.5 × 0.5 mm2; slice width = 3 mm; VENC = 100 cm/s
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constraints linked to MR imaging procedure itself, the reconstructed images exhibit 
characteristic features of the true angiography, as we qualitatively and quantitatively 
showed in [28].

3D PCA imaging
3D PCA images of the normal and RAS model were simulated for a variety of acquisition 
parameters. In any case, the velocity encoding gradients were sequentially switched on 
to obtain images sensitive to velocity in every spatial direction. Hence, for a given acqui-
sition parameters set, we synthesized three separate data sets, from which we recon-
structed pairs of magnitude and phase difference images. A magnitude image was used 
as a mask to cancel out random phase values in locations outside arteries in a corre-
sponding phase image. Then, we calculated maps of velocity magnitude values by evalu-
ating voxel-wise the formula

where u, v, w denote velocity components in x, y, and z direction respectively of an i-th 
voxel in a corresponding (masked) phase difference image processed with Eq. (5). Exam-
ples of the simulated magnitude images and reconstructed velocity maps (maximum 
intensity projections) are shown in Fig. 8a–h.

In order to validate the performed measurements we compared the image-derived 
velocity magnitude values with the reference data simulated in the flow simulation 
software. The comparison procedure consisted in finding K nearest mesh elements of 
the model lattice processed in Comsol for every voxel belonging to an arterial tree in 
the reconstructed velocity map. In our experiments, we tested K = 5 and 10. Note, that 
velocity vector field—as it results from flow simulation—is determined on a lattice com-
posed of approximately 75 × 103 up to 125 × 103 nodes. Thus, one voxel in a simulated 
PCA image roughly corresponds to 13–20 velocity vectors depending on the acquisition 
matrix size and slice spacing. The values measured by a PCA sequence in a given voxel is 
the average of velocities contributed by a subset of particles traversing this voxel region. 
Location of the particle streamlines is determined in Comsol based on the mesh ele-
ments, however their spacing is larger than the mesh resolution. Therefore we calculate 
the measurement error committed in an i-th voxel using two estimates defined as:

where m denotes velocity magnitude. Equation (7) defines the error as the average dif-
ference of the measured velocity and the reference velocities determined in the K clos-
est mesh elements of a given voxel, whereas (8) finds the minimum of such differences. 
While the prior estimate appears to be a natural choice, the second one can be justi-
fied by the fact, that e.g. in case of the smaller branches (such as the outlet segments) 

(6)mi =
√

u2i + v2i + w2
i ,

(7)ēi =
1

K

K
∑

j=1

mi −mj ,

(8)êi = min
j=1..K

mi −mj ,
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the distribution of the streamlines is more sparse and K closest mesh elements may 
embrace quite different velocity values, which would fictitiously increase the overall 
error estimate.

Table  3 collects the measurement errors calculated for various image acquisition 
parameters for the RAS models. The error estimates obtained for the normal models 
are graphically visualized in Fig.  9. The reported errors are the mean values averaged 

Fig. 8  Maximum intensity projections of the 3D magnitude (left column) and velocity-encoded phase (right 
column) images simulated for models shown in Fig. 6a, b, e and h (from top to bottom)
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Fig. 9  Velocity measurements error estimated based on normally-appearing models
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over the whole vasculature volumes. As it can be observed, in case of the RAS mod-
els the mean velocity measurement error reaches the value of 10.6 cm/s [model (a), in-
plane resolution = 1.0 × 1.0 mm2]. It is equivalent to 10.5% of the VENC parameter, i.e. 
the maximum assumed blood velocity. In case of the normal models, the largest error 
equals to 32.5 cm/s or 12.8% of the VENC value [model (h), flip angle = 25°, slice thick-
ness = 2.5 mm]. On the other extreme, the lowest error estimates are obtained for K = 10, 
where there are more chances to find mesh elements which represent similar speed rates 
as their corresponding image voxels. For example, in case of the model (d) and the most 
optimal setting (FA = 15°), êi = 1.8 cm/s, which falls below 1% of the VENC parameter. 
The same estimate for the RAS model (f ) equals 1.4 cm/s (~ 1.5% of VENC).

The best scores are achieved for the finest in-plane resolution and slice-spacing. For 
example, in case of the RAS phantom (a) and K = 10, doubling the matrix size from 
64 × 64 to 128 × 128 reduces the average error ēi from 10 to 8.4 cm/s, whereas the mini-
mum bias êi drops on average from 4.8 to 3 cm/s. It means that although improvement 
of the measurement accuracy is noticeable, it is not as high as the relative increase of 
the image resolution and in specific applications the gain in estimation precision may 
not compensate the longer scan time. Eventually, based on the experiment with the 
normally-appearing models it can be observed that there is small but significant (con-
fidence level = 95%) dependence of the measurement errors from the flip angle. The t 
test performed for the differences of errors calculated between all scores obtained for 
FA = 25° and 15° and between FA = 35° and 25° results in p = 0.0148. The lowest errors 
are ensured by the smallest FA. Apparently, higher values of flip angle cause the spins 
residing within the imaging slab for a couple of TR cycles to get saturated and decrease 
their contribution to the measured signal. In effect, the reconstructed velocity maps pos-
ses incomplete information about the blood flow rates.

2D conventional PCA vs. EPI imaging
In this part of experiments, we simulated 2-D PCA imaging for two selected cross-sec-
tions of the renal artery in the CALIX model. As marked in Fig. 7, the first cross-section 
was chosen in the entry region of the artery, whereas the second one was located after 
the artery split into sub-trees. As noted before, the velocity encoding gradients were 
switched on only in the slice-selection direction. The measurements were repeated for 
ten various inlet velocities, two VENC parameter values (100 and 150 cm/s) and three 
echo train lengths, as reported in Table  1. In order to enable visual evaluation of the 
results, the PCA-based velocity maps are accompanied by the corresponding reference 
(ground-truth) plots created in the flow simulation software (Figs. 10, 11, 12). For quanti-
tative comparison of conventional and EPI readouts, we first averaged velocity estimates 
over the corresponding cross-sectional areas. Then, agreement between two measure-
ment methods was evaluated using the Bland–Altman plots (shown in Fig. 13, left-hand 
side), separately for different VENC and EPI acceleration factors. On the other hand, the 
measurement errors are calculated against the ground truth values. In the latter case, we 
performed linear fitting of the image-derived velocities to the CFD-simulated quanti-
ties and calculated correlation coefficients between thereof (Fig. 13, right-hand side). We 
also conducted a paired t-test in order to verify whether the observed differences in the 
measurement errors are significant.
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The analysis of the obtained results reveals high level of agreement between con-
ventional PCA and the EPI-based variant with NETL = 4. The absolute mean differ-
ence in velocity estimates does not exceed 0.25 cm/s for VENC = 100 and 0.12 cm/s for 
VENC = 150 cm/s. Also, both methods appear equally accurate in approximation of the 
true flow velocity values. Correlation coefficients calculated between series of cross-sec-
tional velocity averages, for both conventional and EPI schemes, surpass 99%. Conse-
quently, at the confidence levels greater than 90%, the t test disallows rejecting the null 
hypothesis of there being no difference between the corresponding measurement errors 
(p ≥ 0.3).

When analyzing the image-derived velocity maps with respect to the increasing value 
of blood flow speed, it becomes apparent that for conventional PCA, the shape of a ves-
sel cross-section remains unaltered. In case of the EPI readout and the higher simulated 
flow velocities, the imaging artifacts are observed and manifest in signal blurring in the 
phase-encoding direction. This effect results in larger observed velocity measurement 
errors what can be noticed e.g. in Figs. 11 and 12 (bottom rows) or in Fig. 13 (Bland–Alt-
man plots) in relation to peak velocities or cross-section averages, respectively. In the 
latter case, the biases between conventional PCA and EPI-based measurements for the 
higher speed rates reaches the limits of the estimated 95%-confidence interval.

Fig. 10  Z-component velocity maps reconstructed from conventional PCA and EPI-based images (upper 
panel). Ground-truth reference map as simulated in Comsol Multiphysics is shown at the bottom-left. Velocity 
profiles along the cutline #2 (bottom-right) exhibit high-level of correspondence
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Fig. 11  Distribution of z-component flow velocity through cutplane #1 of the CALIX model. Left column: 
plots obtained in the flow simulation software. Middle and right columns: color-coded velocity maps 
obtained by the designed MR-PCA simulator using conventional and echo-planar imaging readouts 
respectively (VENC = 100 cm/s)

Fig. 12  Distribution of z-component flow velocity through cutplane #1 of the CALIX model. Left column: 
plots obtained in the flow simulation software. Middle and right columns: color-coded velocity maps 
obtained by the designed MR-PCA simulator using conventional and echo-planar imaging readouts 
respectively (VENC = 150 cm/s)
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The velocity profiles drawn for cutline #1 also exhibit high level of similarity between 
conventional PCA, PCA with EPI and the reference curve plotted from the flow simula-
tion data, as shown on the example plots depicted in Fig. 14. The peak velocities (in the 
middle of the artery) estimated from the image data are slightly higher than the refer-
ence values. On the other hand, velocities measured at pixels lying further from the ves-
sel axis are underestimated. The largest observed differences reach the value of 24 cm/s. 
However the overall shape of the corresponding curves are congruent. It is especially 
apparent for the highest flow velocity (93 cm/s) as well as for the cutline #2, where the 
velocity profile deviates from ideally symmetric parabolic curve.

The EPI-related phase artifacts become even more pronounced with increased num-
ber of echos (Fig.  15). Especially the fastest-flowing spins are spatially miscoded and 
it results in false signal mapping in reconstructed images. This is less noticeable for 
NETL = 4 since the shifted locations have much smaller intensity relative to the actual 
signal position and they are easily masked out from the phase images by the magnitude 
data. Moreover, the peak velocity values become remarkably underestimated for the 

Fig. 13  Bland–Altman plots for conventional and EPI-based velocity measurements and linear fitting of the 
image-derived estimates to reference velocities simulated in Comsol Multiphysics
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Fig. 14  Examples of velocity profiles along the cutline in cross-section #1

Fig. 15  Examples of the magnitude velocity maps for cutplane #1 with respect to various echo train lengths 
and flow velocity rates
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higher EPI acceleration ratios. Depending on the velocity measurement level, this under-
estimation ranges from 14 to 34%. Apparently, the cross-sectional averages still allow 
accurate approximations of the true values, as shown on the linear fitting diagram in 
Fig. 16.

Discussion
The presented study illustrates usage of the designed MR angiography simulator in 
application to quantitative validation of image-based measurement of blood velocity 
in renal arteries. The proposed experimental framework involved development of one 
simulated and eight patient-specific phantoms of the kidney vasculature, so as to mimic 
realistic flow conditions characteristic for renal hemodynamics. Our implementation of 
the MR imaging system enables simulation of the phase contrast angiography sequence, 
optionally with the usage of echo-planar readouts. We thus presented, that the pro-
posed approach facilitates assessment of image-based flow velocity rating through direct 
comparison of the measured values with ground-truth data, not available in case of real 
examinations. An attractive feature of this strategy is the ability to study the impact of 
various scanning options, such as flip angle, resolution or the value of aliasing velocity, 
in isolation from other factors.

Based on the obtained results, the PCA method emerges as a feasible technique for 
diagnosing the kidneys. The mean measurement error in case of a 3D sequence reaches 
the level of 12.8% in the worst case but it can be reduced by adjusting the acquisi-
tion parameters, such as flip angle or slice spacing. In 2D, the observed discrepancies 
between the estimated and reference values are even smaller. However, high level of 
agreement has been achieved due to maximization of the through-plane flow. Therefore, 
under real scanning conditions, similar accuracy could be achieved if the orientation of 

Fig. 16  Linear fitting of the image-derived velocities estimated based on PCA images synthesized using 
different EPI acceleration factors to reference speed rates simulated in Comsol Multiphysics
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oblique slice selection axis is properly determined. From the studied imaging param-
eters, the influence of the flip angle on the measurement accuracy occurred to be the 
most remarkable observation. However, the effect of in-plane resolution and slice spac-
ing, although self-evident, was objectively quantified. All these effects, along with the 
other factors not studied here but also adjustable by the simulation framework (such as 
e.g. repetition and echo times or width of the acquisition window), should be considered 
when designing and optimizing specific PCA sequences.

Although we put much effort in the development of realistic renal arterial system 
phantoms, the complexity of the underlying hemodynamics was not fully reproduced 
in the finally designed models. The assumption of the laminar flow and blood incom-
pressibility simplifies the computations, but does not reflect the true flow regime. More-
over, under real imaging condition the velocity estimation errors might be larger than 
calculated in this simulation study as additional examination factors would come into 
play. These include motion-related and susceptibility artifacts or partial volume effects. 
Therefore, the designed simulator and the accuracy of the achieved results should be fur-
ther validated against the PCA sequence run on a real MRI scanner. Hence, the achieved 
results must be evaluated in light of the presumed simplifications.

Future research is planned into further extension of the designed MRA simulator. It 
includes implementation of the EPI technique in 3D, as well as other acceleration tech-
niques, such as undersampling and projection reconstruction. We also plan to account 
for more complex flow phenomena, such as turbulent and pulsatile flow. These improve-
ments will enable more in-depth investigation of the PCA sequence behavior and its 
applicability in diagnosing renal performance.

Conclusions
Firstly, it must be underlined, that the proposed approach to modeling kidney vascu-
lar trees leads to constructing realistic renal arterial models, tractable by flow and MR 
imaging simulation software. Extraction of proper geometrical descriptions of vessel 
walls and usage of Comsol’s built-in modeling tools facilitates design of the arterial trees 
which are free from common surface- and edge-related defects otherwise generated by 
automatic tools.

Secondly, the presented simulation framework enables quantification of the measure-
ment error committed by the PCA imaging sequences. The image-derived velocities can 
be compared against ground-truth data available from blood flow simulation on a voxel 
by voxel basis. The mean velocity measurement error for the reconstructed renal arterial 
trees range from 1.5 to 12.8% of the VENC value, depending on image resolution and flip 
angle.

Moreover, the designed simulator enables quantitative validation of an accelerated 
PCA sequence based on echo-planar imaging against conventional readout. No sta-
tistically significant difference was observed between velocity measurements obtained 
using echo-planar imaging with NETL = 4 and conventional sequence. Finally, for higher 
acceleration factors, i.e. NETL = 8 or 16, the peak velocity values in selected image slices 
were considerably underestimated by 14–34%.
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