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Abstract 

Background:  Schizophrenia is a clinical syndrome, and its causes have not been well 
determined. The objective of this study was to investigate the alteration of brain func-
tional connectivity between schizophrenia and healthy control, and present a practical 
solution for accurately identifying schizophrenia at single-subject level.

Methods:  24 schizophrenia patients and 21 matched healthy subjects were recruited 
to undergo the resting-state functional magnetic resonance imaging (rs-fMRI) scan-
ning. First, we constructed the brain network by calculating the Pearson correlation 
coefficient between each pair of the brain regions. Then, this study proposed a novel 
non-negative discriminant functional connectivity selection method, i.e. non-negative 
elastic-net based method (N2EN), to extract the alteration of brain functional connec-
tivity between schizophrenia and healthy control. It ranks the significance of the con-
nectivity with a uniform criterion by introducing the non-negative constraint. Finally, 
kernel discriminant analysis (KDA) is exploited to classify the subjects with the selected 
discriminant brain connectivity features.

Results:  The proposed method is applied into schizophrenia classification, and 
achieves the sensitivity, specificity and accuracy of 100, 90.48 and 95.56%, respectively. 
Our findings also indicate the alteration of functional network can be used as the bio-
marks for guiding the schizophrenia diagnosis. The regions of cuneus, superior frontal 
gyrus, medial, paracentral lobule, calcarine fissure, surrounding cortex, etc. are highly 
relevant to schizophrenia.

Conclusions:  This study provides a method for accurately identifying schizophrenia, 
which outperforms several state-of-the-art methods, including conventional brain 
network classification, multi-threshold brain network based classification, frequent sub-
graph based brain network classification and support vector machine. Our investiga-
tion suggested that the selected discriminant resting-state functional connectivities 
are meaningful features for classifying schizophrenia and healthy control.
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Background
Schizophrenia is a severely  debilitating psychiatric disease, and its symptoms include 
obstacles in  thinking,  perception, emotion, behavior, etc. [1]. According to estimation 
of the world health organization, the global lifetime risk of schizophrenia is about 3.8–
8.4‰. Schizophrenia poses a huge burden on patients, families and society. So it is very 
important to investigate the accurate diagnosis method for schizophrenia.

Schizophrenia is often considered  to  be  a disorder of connectivity between brain 
regions. However, among the large-scale brain network, the alteration of the connec-
tivity between schizophrenia and healthy control has not been well investigated. With 
advance in machine learning [2, 3] and modern imaging technologies, e.g., functional 
magnetic resonance imaging (fMRI) providing the functional interaction of the brain 
regions, more and more attention has been focused on machine learning based disease 
diagnosis using fMRI [4–8].

In general, the machine learning based diagnosis methods using fMRI can be sum-
marized as two categories, i.e. the voxel based methods and the brain network [9–11] 
based methods. The voxel based methods need to construct the correlation model for 
each pair of voxels. For example, Demirci et al. used independent component analysis 
(ICA) to obtain independent component (IC) spatial maps from the voxels of fMRI data, 
and exploited projection pursuit algorithm for classification [8]. A three-phase feature 
selection method was proposed for diagnosis of schizophrenia using fMRI [12]. Cao 
et al. exploited sparse representation classification for voxel based schizophrenia diag-
nosis and biomarker selection [13]. It is usually hard to obtain enough schizophrenia 
participants to construct robust voxel network model, and the high computational cost 
also constrains its application. Besides above voxel based methods, brain network based 
methods also have been applied into neurodegenerative diseases diagnosis including 
schizophrenia and Alzheimer’s disease [14]. Most of these methods first constructed 
the brain functional network by measuring the correlation between each pair of brain 
regions, and then they selected the significant regions with different metrics, e.g. clus-
tering coefficient [14] and Bayesian information criterion (BIC) [15]. Compared to the 
voxel based methods, the brain network based methods has higher classification effi-
ciency and can provide more intuitive biomarkers for diagnosis.

The mental activity occurring during rest is relevant to the phenomenology of schiz-
ophrenia [16]. The resting-state functional network analysis is potentially useful in 
revealing the pathophysiology of schizophrenia. Compared to task-driven analysis, 
resting-state functional analysis can provide more complete and accurate brain network 
features for identifying schizophrenia [17]. Many machine learning algorithms were 
developed to extract discriminative features from resting-state functional network for 
schizophrenia [18–20]. Shen et al. [21] proposed to use a correlation coefficient method 
to select the highly discriminative functional connectivity features from resting-state 
functional network, and then they mapped these features into low-dimensional space by 
using locally linear embedding (LLE). They found the data in mapping space can reveal 
the distinct differences of functional patterns between schizophrenia and healthy con-
trol. Lynall et al. [22] investigated the some topological properties of the functional con-
nectivity network, and found schizophrenia tends to have more diverse profile of brain 
functional network. Castro et al. [23] proposed to use multiple kernel learning to fuse 
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the magnitude and phase data in fMRI, and achieved promising result in schizophre-
nia classification. By using multivariate statistics, Pergola et al. [24] found accounting for 
the alternation of thalamic would improve the detection of subjects at familial risk for 
schizophrenia.

In most of the schizophrenia classification problems, the size of the subjects is limited 
and the number of the features, such as brain connectivities and voxels, is very large. 
Schizophrenia classification with fMRI data is a typical small sample size learning prob-
lem, which leads curse of dimensionality, overfitting and poor generalization ability for 
classification algorithms. It is well known that feature selection stage plays an important 
role in improving the classification performance. Therefore, it is very necessary to design 
an effective feature selection method for schizophrenia classification problem.

Lasso [25, 26] is one of the most famous feature extraction methods. It aims to identify 
the most significant features for a compact data representation by constructing l1-norm 
constraint based sparse representation model between feature and label. In Lasso, most 
of the sparse representation coefficients are equal or close to zero, and sparse represen-
tation coefficients with large amplitude are preserved, which makes it easy to explain the 
significances of the features in nature. Lasso and its variants have been widely used for 
removing redundant features in brain disease diagnosis. Rashid et al. exploited Lasso for 
estimating the dynamic connectivity from resting fMRI and identify differences among 
schizophrenia and other neurodegenerative diseases [14]. Zhang et  al. introduced the 
group structure into Lasso and applied it into identifying Alzheimer’s disease and its 
early stage. Fused Lasso exploits the ordering of data by explicitly regularizing the differ-
ences between neighboring samples [27]. Watanabe et al. used the fused Lasso regular-
ized support vector machine to account for the high dimensional correlation maps of 
brain [28].

Suppose we have p subjects and each subject has m brain connectivity or voxel fea-
tures (p ≪ m). Lasso can select at most p features from the data because of the convex 
optimization problem. On one hand, the limited features selected by Lasso are often dif-
ficult to descript the difference between healthy control and schizophrenia in complex 
brain structure and function. On the other hand, if there are some pairwise correlations 
among a group of connectivity or voxel features, Lasso selects only one feature and does 
not consider which one to select. By combining l1-norm and l2-norm regularizations in 
regression model, Zou et al. proposed elastic-net feature selection algorithm [29]. Elas-
tic-net takes both automatic feature selection and continuous shrinkage into account, 
and it can select groups of correlated variables. In elastic-net, the weights of two regular 
terms can be dynamically adjusted, which provides a flexible way to extract the discrimi-
native connectivities for identifying schizophrenia. In addition, the conventional feature 
extraction methods often cannot rank the significances of the brain connectivities with 
a uniform criterion. For example, in Lasso, the significance value of each connectivity 
could be positive or negative. Both the sign and absolute value of the significance have 
effect on the rank of the connectivities.

In this paper, we propose a novel feature extraction method, i.e. non-negative elastic-
net based method (N2EN), for robust classification of healthy schizophrenia patients 
and healthy controls. Figure 1 shows the flowchart of the proposed method. We first use 
the N2EN to select the most significant connectivities from the whole brain network, 
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and obtain the discriminative sub-network for schizophrenia. The N2EN is a multi-
variate representation model based on the connectivities, which can reflect the global 
structure of brain network. In N2EN, the significances of the brain connectivities are all 
positive, so we can rank the brain connectivities according to the absolute values of the 
significances. Then, we project the features of discriminative sub-network into repro-
ducing kernel Hilbert space by kernel discriminant analysis (KDA) [30], in which the 
projection is obtained by maximizing the between-class covariance and minimizing the 
within-class covariance. Finally, the nearest neighbor classifier is used for classification. 
We applied the proposed method into schizophrenia identification. The results show 
that our method outperforms conventional brain network based methods and voxel 
based methods in identifying schizophrenia.

Methods
Participants

In this study, all participants were recruited from the department of psychiatry, affiliated 
Nanjing brain hospital of Nanjing medical university. 24 schizophrenia patients were 
recruited. All the recruited subjects were diagnosed by expert consensus panels. We 
used the positive and negative syndrome scale (PANSS) to obtain the score of severity 
of schizophrenia. PANSS is a widely used medical scale for measuring symptom severity 
of schizophrenia patients [31]. For each patient, an approximately 45-min clinical inter-
view is conducted. The patient is rated from 1 to 7 on 30 different symptoms based on 
the interview as well as reports of family members or primary care hospital workers. 
The higher the PANSS score is, the more serious the symptoms are. Patients were not 
included if they had a prior history of organic brain diseases, infectious diseases, alco-
hol or drug abuse. 21 healthy subjects with matched age, gender, and average education 
were recruited as a control group. The inclusion criteria are as follows: (1) No mental 
disorder, and the current state of mind was in good condition; (2) Without a family his-
tory of psychosis in the three generations. (3) Aged from 18 to 50 years old. (4) Without 

Fig. 1  Flowchart of the proposed method
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organic brain disease, infectious diseases or other chronic somatic diseases. Table  1 
shows demographic characteristics and clinical variables of the participants.

Image acquisition

Data acquisition was performed using a 3-T Siemens Tim-Trio scanner with a 12-chan-
nel head coil. The resting-state fMRI (R-fMRI) images of each participant were 
acquired with the following parameters: flip angle = 90°, TR/TE = 2000/30  ms, imag-
ing matrix = 64 × 64, FOV = 256 × 256  mm, 36 slices, 180 volumes, and voxel thick-
ness = 3 mm. During scanning, all subjects were instructed to keep their eyes open and 
stare at a fixation cross in the middle of the screen for 5 min.

Pre‑processing

For each participant, the image prepossessing step is as follows: the first 10 volumes of 
functional time series were discarded because of the instability of MRI signal. Then, the 
leaving volumes were slice acquisition corrected, head-motion corrected, normalized to 
the SPM5 Montreal Neurological Institute template, and re-sampled to 3-mm3 voxels. 
After linear detrending, data was filtered using typical temporal bandpass (0.01–0.08 Hz), 
slow-5 bandpass (0.01–0.027  Hz), and slow-4 bandpass (0.027–0.073  Hz), respectively. 
Next, the motion parameters, the global mean signal, WM, CSF as nuisance covariates 
were used to reduce the effects of head motion and non-neuronal BOLD fluctuations.

Identifying the alteration of connectivity by N2NE

Suppose we have the time series from m brain regions with a system of fMRI volumes. 
We can construct the brain functional network by the commonly used Pearson corre-
lation coefficient [2]. Among a large number of brain connectivities, it is necessary to 
extract the alteration or discriminative connectivities for schizophrenia. Let xi, j denote 
the ith connectivity feature of the brain network from jth subject, and yj denotes the 
class label of jth subject. For estimating the significance of the connectivity, we construct 
the following model:

where X = {xi,j} (i = 1, 2, . . . ,m, j = 1, 2, . . . , n) , y = [y1, y2, . . . , yn]T , 
a = [a1, a2, . . . , am]T , and e denotes the model error. Using l2-norm or Tikhonov regu-
larization to prevent over-fitting, the vector of regression coefficients can be obtained by 
solving the following problem:

(1)y = Xa+ e

(2)min ||y− Xa||22 + γ ||a||22

Table 1  Demographic characteristics and clinical variables of the participants

Diagnosis Number Age Gender (F/M) PANSS

Patients 24 30.78 ± 9.01 14/10 97.83 ± 11.09

Healthy controls 21 35.29 ± 7.94 15/6 Null
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where γ is the regular parameter. The coefficient vector a obtained by above model is not 
sparse, which implies it is difficult to select the discriminative feature by comparing the 
values of these coefficients. Furthermore, there are positive and negative values in rep-
resentation coefficients, which lead to the significance of the connectivity hard to rank 
with a uniform criterion. In this paper, we proposed non-negative sparse representation 
and ridge regression to guarantee an optimum. The objective function is as follows:

where ||.||1 denotes the l1-norm of the vector, e.g. ||a||1 =
∑

|ai| . γ1 and γ2 are the non-
negative parameter controlling the combination of the two regular terms. Figure 2 shows 
the comparison between the mixed norms used in elastic-net and the other norms. We 
define the following two augmented sets:

The size of X∗ and y∗ are (n+m)×m and n+m , respectively. Let α = γ1(1+ γ2)
−1/2 

and a∗ = (1+ γ2)
−1/2a . Then the objective function in Eq. (3) becomes

So computing the solution of the proposed feature selection problem is equivalent to 
solving a non-negative sparse representation problem on augmented sets.

Let b = (α/2)v − X∗T y∗ , where v is the vector whose elements are all 1, Eq.  (5) is 
equivalent to:

Because XTX  is nonnegative, symmetrical and semi-definite, the above problem is 
convex and has globally optimal solution. The non-negative elastic-net feature selec-
tion not only provides interpretation to the importance of the connectivity between 
two brain regions, but also tolerates data noise existing in brain network to some 
extent.  We perform the non-negative elastic-net on brain network data, and the 

(3)min ||y− Xa||22 + γ1||a||1 + γ2||a||2 s.t. ∀i : ai > 0

(4)X ∗ = (1+ γ2)
−1/2

(

X
√
γ2I

)

, y∗ =
(

y

0

)

(5)min ||y∗ − X∗a∗||22 + α||a∗||1 s.t. ∀i : a∗i > 0

(6)min a∗TXTXa∗ + 2bTX s.t. ∀i : a∗i > 0

Fig. 2  The comparison of different norms ( γ
2
= 1− γ

1
)
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selected connectivities form a brain sub-network, which is referred to as discrimi-
native sub-network for identifying schizophrenia (DSNIS). The ratio of the number 
of removed connectivities and the number of all the connectivities in original brain 
network are defined as the sparsity of DSNIS. The DSNIS can be expected has strong 
ability to simultaneously identify schizophrenia and evaluate the importance of the 
connectivity between two brain regions for schizophrenia.

Elastic-net is useful when multiple features are associated with another feature. 
Because, in above case, Lasso tends to pick one of them at random, while the elas-
tic-net prefers to pick two, which alleviates the small sample size problem in schizo-
phrenia classification. The non-negative elastic-net is a unified model to non-negative 
Lasso and ridge regression. When γ1 = 0 , the non-negative elastic-net degrades into 
non-negative ridge regression. When and γ2 = 0 , it degrades into non-negative Lasso. 
The proposed non-negative elastic-net is a well-defined convex optimization problem, 
which ensures the existence and uniqueness of solution.

Classification with significant alteration connectivity

Considering most of the brain network data are linearly non-separable, for achieving 
good classification performance, we exploit KDA, i.e. a nonlinear method, for clas-
sification. Suppose we have a set of DSNIS samples, let Z = {zi}, i = 1, 2, . . . , n . By 
the nonlinear mapping φ induced by the kernel function f, each sample is transformed 
into the feature space and becomes φ(zi), c = 1, 2, . . . , n . In the feature space, KDA 
seeks the projection directions on which the samples from different classes are far 
from each other and samples from same class are close to each other simultaneously. 
The objective function of KDA is as follows:

where c is the class number, ni is the sample number of ith class, and zji represents the 
ith sample from jth class; uφ and uiφ are the global centroid and the centroid of ith class 
in the feature space, respectively; Sφb  and Sφw are the between-class scatter matrix and 
within-class scatter matrix in the feature space, respectively. We also define the total 
scatter matrix in feature space.

Because Sφt = S
φ

b + S
φ
w , the Eq. (7) is equivalent to:

(7)

wopt = arg max
wTS

φ

b w

wTS
φ
ww

S
φ

b =
c

∑

i=1

ni(u
i
φ − uφ)(u

i
φ − uφ)

T , Sφw =
c

∑

j=1

nc
∑

i=1

(φ(z
j
i)− uiφ)(φ(z

j
i)− uiφ)

T

(8)S
φ
t =

c
∑

j=1

nc
∑

i=1

(φ(z
j
i)− uiφ)(φ(z

j
i)− uiφ)

T

(9)wopt = arg max
wTS

φ

b w

wTS
φ
t w
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which can be solved by the following Eigen-problem:

According to reproducing kernel theory, the projection w can be represented as:

where α = [α1,α2, . . . ,αn] . Substituting Eq. (11) into Eq. (9), and then we have

where K is defined as Ki,j = φ(zi)
Tφ(zj) = f (zi, zj) , and W is defined as:

If KK is singular, we perform Eigen-decomposition on K for obtaining a stable solu-
tion of the problem in Eq.  (12). For a sample z, its projection in feature space along 
direction w is:

where K (:, i) is the ith column of K. Finally, nearest neighbor classifier is used for disease 
classification.

Results
Classification for schizophrenia

We applied the proposed method to schizophrenia classification, and compared our 
method with conventional brain network classification (CNC) [32], multi-threshold 
brain network based classification (MTNC) [33], frequent sub-graph based brain net-
work classification (FSGNC) [34] and support machine vector (SVM) [20]. Accuracy, 
sensitivity, specificity, positive predictive value (PPV), and negative predictive value 
(NPV) are measured to evaluate the performance of these methods, and they can be 
calculated as follows.

(10)S
φ

b w = �Sφww

(11)w =
n

∑

i=1

αiφ(zi)

(12)αopt = arg max
αTKWKα

αTKKα

(13)Wi,j =
{

1/nc, if zi and zj are from the same class

0, otherwise

(14)φ(z)Tw = φ(z)T
n

∑

i=1

αiφ(zi) = αK (:, i)

(15)accuracy =
TP + TN

TP + FN + TN + FP

(16)sensitivity =
TP

TP + FN

(17)specificity =
TN

TN + FP
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where TP , TN  , FP and FN  are the number of the patients correctly predicted, healthy 
controls correctly predicted, healthy controls predicted as patients, and patients pre-
dicted as healthy controls, respectively.

The leave-one-out cross validation is carried out to assess classification performance. 
In experiment, we run our algorithm and the other brain network based algorithms 
including CNC, MTNC, FSGNC and SVM on our dataset. According to classification 
results of each brain network based algorithm, we counted the number of TP , TN  , FP 
and FN  , respectively. Then we calculated the above 5 measures for each brain network 
based algorithm, and the results are shown in Table 2. The results demonstrate that our 
method outperforms CNC, MTNC, FSGNC and SVM. The accuracies of these brain 
network based methods verses the variations of network threshold are shown in Fig. 3a. 
It demonstrates our method has higher accuracy than the other methods with the same 
network threshold. We also show the performance of our method versus the variation of 
threshold and sparsity in Fig. 3b. 

Several voxel based methods are also compared with our method. Table 3 shows the 
comparison between our method and several voxel based methods. In Table  3, the 

(18)PPV =
TP

TP + FP

(19)NPV =
TN

FN + TN

Table 2  The performance of  our method and  the  other three brain network based 
methods including CNC, MTNC, FSGNC and SVM

The highest value of each measure is in italics

Method Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

CNC 73.33 79.17 66.67 73.08 73.68

MTNC 82.22 87.50 76.19 80.77 84.21

FSGNC 77.78 100.00 52.38 70.59 100.00

SVM 75.56 83.33 66.67 74.07 77.78

Proposed method 95.56 100.00 90.48 92.31 100.00

Fig. 3  a Variations of accuracies of our method, CNC and FSGNC versus network threshold, b variations of 
accuracies of our method versus network threshold and sparsity
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accuracies of the these voxel based methods were the results reported in the relevant 
references [12, 13, 36, 37].

To evaluate the performance of non-negative sparse representation used in our 
method, several feature selection methods including t test, Lasso, Tikhonov regulariza-
tion, Laplacian and sparsity score are also compared. The accuracies of these methods 
are shown in Fig. 4.

The functional brain network is a kind of topologically complex network. In experi-
ment, the differences in topological properties of functional network are measured by 
connectivity strength [22], connectivity diversity [22], clustering coefficient [9], overlap 
score [35] and weighted overlap score [35]. These topological metrics are calculated in 
group-level, and the results are shown in Table 5.

Alternation of the brain connectivity

We also indicate the biomarks for identifying schizophrenia by extracting its altera-
tion of the brain connectivity. In our method, the discriminative ability of each con-
nectivity for identifying schizophrenia is learned by non-negative elastic-net. We 
show all the discriminative abilities of the connectivities of the brain network in 
Fig. 5a. In Fig. 5a, both the horizontal axis and the vertical axis stand for the brain 
region index used in Automated Anatomical Labeling (AAL) temple [38]. For 
example, the position in ith row and jth column in Fig.  5a denotes the connectivity 
between ith brain region and jth brain region, and its weight can be judged by the 

Table 3  The accuracies of our method and several voxel based methods

The highest accuracy is in italics

Method Data Accuracy (%)

Chyzhyk et al. [36] Resting state-fMRI (ALFF) 87.67

Chyzhyk et al. [36] Resting state-fMRI (fALFF) 82.19

Chyzhyk et al. [36] Resting state-fMRI (ReHo) 84.19

Chyzhyk et al. [36] Resting state-fMRI (VMHC) 91.19

Du et al. [37] Resting state-fMRI 93.00

Cao et al. [13] fMRI during sensorimotor task 83.11

Juneja et al. [12] fMRI during AOD task 89.70

Juneja et al. [12] fMRI during AOD task 92.00

Proposed method Resting state-fMRI 95.56

Fig. 4  Variations of accuracies of T-test, Lasson, Tikhonov regularization, Laplacian score and our methods 
versus threshold and sparsity. a Sparsity = 0.2, b sparsity = 0.25 and c sparsity = 0.3
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corresponding color. According to the rank of the discriminative abilities of the brain 
connectivities, we choose the top 10 significant alteration of connectivities (SAC) and 
show their positions in brain by Fig.  5b–d. Table  4 gives the top 30 SACs between 
schizophrenia and healthy control.

Discussion
For the classification performance, our method achieves the accuracy of 95.56% with the 
sensitivity of 100%. The experimental results imply that schizophrenia patients may have 
the altered graph structure of many brain region connectivities and our method is more 
appropriate in extracting the altered pattern than other methods. Figure 3 demonstrates 
that our method is robust to the variations of network threshold and sparsity.

As a brain network based method, our method achieves higher accuracy than the-
ses voxel based methods shown in Table 3. More importantly, although our method is 
performed on resting state-fMRI data, which is usually considered more difficult than 
classification on fMRI during special task, it still achieves higher accuracy than those 
methods performed on fMRI during sensorimotor task or auditory oddball  (AOD) 
task. In addition, our method is much more efficient than those voxel based methods 
in computational cost. Because the number of the brain region connectivity used in our 

Fig. 5  a All the discriminative abilities of the connectivities of the brain networks. (The position in ith 
row and jth column in a denotes the connectivity between ith brain region and jth brain region, and its 
weight can be judged by the corresponding color). b–d The top 10 alteration connectivities for identifying 
schizophrenia
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method is much smaller than the voxel number or voxel connectivity number used in 
voxel based methods.

As can be seen from Fig. 4, our method outperforms t-test, Lasso, Tikhonov regulari-
zation, Laplacian and sparsity score. It is noteworthy that although fully connected brain 
network (brain network threshold is set to 0) are directly used for feature selection and 
classification, our method still achieves better performance. It implies there exist some 
weak connectivities having discriminative ability for classification in brain network. As 
can be seen from Fig. 5a, the discriminative abilities of the connectivities are very sparse, 
which is a good property for determining biomarks in clinical trials.

Among the related brain regions of the top 10 SAC, cuneus, superior frontal gyrus, 
medial, middle temporal gyrus, superior temporal gyrus, median cingulate and 
paracingulate gyri, inferior frontal gyrus, triangular part and precuneus belong to 
default mode Network (DMN) [39, 40], which is a group of areas in the human brain 

Table 4  Significant alteration of  connectivity (SAC) between  schizophrenia and  healthy 
control

No. Brain area A Brain area B Weight score

SAC 1 Cuneus Superior frontal gyrus, medial orbital 41.36

SAC 2 Paracentral lobule Calcarine fissure and surrounding cortex 32.57

SAC 3 Inferior temporal gyrus Middle frontal gyrus 31.04

SAC 4 Fusiform gyrus Superior frontal gyrus, medial 25.79

SAC 5 Temporal pole: superior temporal gyrus Precentral gyrus 19.16

SAC 6 Median cingulate and paracingulate gyri Superior frontal gyrus, medial 17.84

SAC 7 Anterior cingulate and paracingulate gyri Inferior frontal gyrus, triangular part 17.02

SAC 8 Caudate nucleus Precentral gyrus 15.79

SAC 9 Lenticular nucleus, pallidum Inferior occipital gyrus 14.57

SAC 10 Precuneus Fusiform gyrus 14.45

SAC 11 Precuneus Superior parietal gyrus 13.76

SAC 12 Hippocampus Middle frontal gyrus 13.53

SAC 13 Temporal pole: middle temporal gyrus Paracentral lobule 12.73

SAC 14 Caudate nucleus Fusiform gyrus 11.26

SAC 15 Precuneus Supplementary motor area 10.44

SAC 16 Postcentral gyrus Inferior occipital gyrus 9.99

SAC 17 Inferior temporal gyrus Middle occipital gyrus 9.57

SAC 18 Lingual gyrus Superior frontal gyrus, medial 9.45

SAC 19 Precuneus Precentral gyrus 9.26

SAC 20 Middle temporal gyrus Inferior parietal, but supramarginal and 
angular gyri

8.40

SAC 21 Precuneus Precentral gyrus 8.03

SAC 22 Parahippocampal gyrus Anterior cingulate and paracingulate gyri 7.46

SAC 23 Middle temporal gyrus Precentral gyrus 6.99

SAC 24 Inferior frontal gyrus, triangular part Superior frontal gyrus, orbital part 6.31

SAC 25 Lenticular nucleus, pallidum Superior frontal gyrus, orbital part 5.97

SAC 26 Lingual gyrus Insula 5.72

SAC 27 Thalamus Gyrus rectus 5.40

SAC 28 Precuneus Rolandic operculum 5.13

SAC 29 Heschl gyrus Inferior occipital gyrus 4.72

SAC 30 Supramarginal gyrus Median cingulate and paracingulate gyri 3.84
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characterized, collectively, by functions of a self-referential nature. Buuren et al. also 
indicates that the alteration of the brain network of schizophrenia and Alzheimer are 
closely related to DMN [41]. Furthermore, Precentral_L and Paracentral_Lobule_L 
related to the movement are also selected by our method. Recent studies show that 
these movement related regions are very important for identifying schizophrenia 
patients with psychedelic covet condition [42]. As  we  know, there are positive and 
negative values produced by the previous feature extraction method, such as Lasso. 
Because of introducing the non-negative constraint term, all the weight score of the 
brain connectivity by using the proposed method are positive values, which enable us 
to rank all the brain connectivities with a uniform criterion.

The results shown in Table 5 demonstrate that the difference between schizophrenia 
and healthy control in connectivity strength is generally small and not significant. The 
connectivity diversity of schizophrenia patients group is higher than that of healthy 
controls group. In other words, there is a variety of differences in brain connectivi-
ties between patients, which might be viewed as the functional network evidence for 
why schizophrenia is a highly heterogeneous disease. The clustering coefficient of the 
functional network of schizophrenia patients group is lower than that of healthy con-
trols group. It demonstrates that a part of the connectivities may diminish or com-
pletely disappear in the functional network of patient. The overlap score and weighted 
overlap score are designed to capture the influence of network difference from each 
group [35]. Compared to the other three topological metrics, both of the overlap 
score and weighted overlap show more obvious difference between the schizophrenia 
patients and healthy controls. These two metrics are proper in distinguishing schizo-
phrenias and healthy controls in group-level.

Conclusion
In this paper, we proposed a simple and effective feature selection method for identify-
ing schizophrenia. On a real dataset, it achieved the sensitivity, specificity and accuracy 
of 100, 90.48 and 95.56%, respectively. Compared to conventional brain network signifi-
cant feature extraction methods, the proposed method can simultaneously alleviate the 
small sample problem and rank the significance of the connectivity with a uniform crite-
rion. The proposed method not only obtained good performance in classification accu-
racy, but also provided biomarkers to guide the schizophrenia diagnosis.

Table 5  Functional connectivity and  network topological metrics for  healthy controls 
and schizophrenia patients

Topology metrics Healthy controls (mean ± SD) Schizophrenia 
patients 
(mean ± SD)

Connectivity strength 6.3853 ± 2.3951 6.1172 ± 2.5732

Connectivity diversity 0.0138 ± 0.0087 0.0152 ± 0.0095

Clustering coefficient 1.1135 ± 0.0937 1.0690 ± 0.1059

Overlap score 0.0538 ± 0.0169 0.0461 ± 0.0042

Weighted overlap score 0.0118 ± 0.0060 0.0091 ± 0.0014
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