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Abstract 

Background:  Image segmentation is an essential and non trivial task in computer 
vision and medical image analysis. Computed tomography (CT) is one of the most 
accessible medical examination techniques to visualize the interior of a patient’s body. 
Among different computer-aided diagnostic systems, the applications dedicated to 
kidney segmentation represent a relatively small group. In addition, literature solutions 
are verified on relatively small databases. The goal of this research is to develop a novel 
algorithm for fully automated kidney segmentation. This approach is designed for large 
database analysis including both physiological and pathological cases.

Methods:  This study presents a 3D marker-controlled watershed transform devel-
oped and employed for fully automated CT kidney segmentation. The original and 
the most complex step in the current proposition is an automatic generation of 3D 
marker images. The final kidney segmentation step is an analysis of the labelled image 
obtained from marker-controlled watershed transform. It consists of morphological 
operations and shape analysis. The implementation is conducted in a MATLAB environ-
ment, Version 2017a, using i.a. Image Processing Toolbox. 170 clinical CT abdominal 
studies have been subjected to the analysis. The dataset includes normal as well as 
various pathological cases (agenesis, renal cysts, tumors, renal cell carcinoma, kidney 
cirrhosis, partial or radical nephrectomy, hematoma and nephrolithiasis). Manual and 
semi-automated delineations have been used as a gold standard. Wieclawek Among 
67 delineated medical cases, 62 cases are ‘Very good’, whereas only 5 are ‘Good’ accord-
ing to Cohen’s Kappa interpretation. The segmentation results show that mean values 
of Sensitivity, Specificity, Dice, Jaccard, Cohen’s Kappa and Accuracy are 90.29, 99.96, 
91.68, 85.04, 91.62 and 99.89% respectively. All 170 medical cases (with and without 
outlines) have been classified by three independent medical experts as ‘Very good’ in 
143–148 cases, as ‘Good’ in 15–21 cases and as ‘Moderate’ in 6–8 cases.

Conclusions:  An automatic kidney segmentation approach for CT studies to com-
pete with commonly known solutions was developed. The algorithm gives promising 
results, that were confirmed during validation procedure done on a relatively large 
database, including 170 CTs with both physiological and pathological cases.

Keywords:  Computed tomography, Segmentation, Watershed transform, 
Mathematical morphology, Markers, Abdomen, Kidney
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Background
Design of systems dedicated to computer-aided diagnostic (CAD) and medical image 
analysis has been a meaningful research area exploited for many years. This applies to 
various imaging modalities (X-ray, CT, MRI, OCT, ultrasound, etc.) as well as different 
parts of the human body. There is no effective and universal approach to segmentation 
of every medical image or even every anatomical structure. Therefore, research focused 
on such solutions is still justified.

Urology is one of the many research areas. Among various urological preventive or 
diagnostic test are CT examinations (apart from standard techniques: kidney X-rays or 
USG). CT scans of the kidneys can provide more detailed information related to inju-
ries, kidney diseases, etc. They are expected to detect tumors or other lesions, obstruc-
tive conditions such as kidney stones, congenital anomalies, polycystic kidney disease, 
accumulation of fluid around the kidneys, and the location of abscesses. Thus, computer 
systems aiding urological diagnosis and treatment require kidney segmentation as a first 
step of many high-level processing tasks. This step often precedes volume measurement 
or abnormalities detection (i.e. cyst, tumor, etc.). Several approaches for kidney segmen-
tation in CT studies are presented in the following section.

State‑of‑the‑art

Simple segmentation steps including region growing technique, gradient and edge-
based segmentation, or others basic transformations (i.e. mathematical morphol-
ogy operations) are implemented in kidney segmentation methods [1, 2]. More robust 
approaches are also employed. A level set deformable model has been extended to a sto-
chastic speed function guided level set model [3, 4] and tested on 21 cases. The manual 
selection of seed points makes this technique insufficient for clinical implementation. A 
more complex methodology based on 3D shape-constrained graph cut method has been 
developed by Chen et al. [5] and evaluated on kidney donors. Similarly, comprehensive 
analysis consisting of two stages is presented in [6]. The rough segmentation is based on 
a kernel fuzzy C-means algorithm with spatial information and then a refined segmenta-
tion is implemented with an improved GrowCut algorithm.

An automated segmentation of poor and noisy images with low spatial resolution in 
the coronal and axial planes is based on a statistical approach [7]. Therefore, the authors 
adopt a deformable model, which uses not only the gray value of the target, but also sta-
tistical information of the shapes [8]. Their model is defined by the NURBS surface [9] in 
order to achieve easy manipulation and representation of a smooth shapes.

The kidney segmentation in MRI images is also addressed in the literature  [10–12]. 
The two-phase genetic algorithm [10] as well as the detection of Maximally Stable Tem-
poral Volume [11] have been developed. The MSTV approach exploits both 3D spatial 
correlation among voxels and temporal dynamics for each voxel to provide a reliable seg-
mentation resistant to noise from surrounding tissues and kidney shape variations. This 
solution is a result of dynamic contrast-enhanced MRI images [12].

The data base, employed for evaluation, is limited to normal cases  [2–4, 6] only or 
extended to selected pathologies, including tumor, cyst, ureter obstruction, atrophic 
change of renal parenchyma, or mild hydronephrosis  [1]. A careful selection of cases 
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results in a relatively high evaluation rate (accuracy) that ranges between 70.5 and 
99.76%.

Kidney segmentation can also be applied as an intermediate step in a more complex 
procedure, such as cyst detection [13] or renal cortex segmentation [5]. Both cases refer 
to a small group of applications related to the specific pathology.

Recently, multi-organ segmentation techniques of the abdomen structures have been 
reported. Kidney extraction is one of the processing steps. The method presented in [14] 
is based on a hierarchical atlas registration and weighting scheme that generates target 
specific priors from an atlas database. The final segmentation is obtained by applying 
an automatically learned intensity model in a graph-cuts optimization step, incorporat-
ing high-level spatial knowledge. The proposition of a general framework of multi-organ 
segmentation which effectively incorporates interrelations among multiple organs and 
easily adapts to various imaging conditions without the need for supervised intensity 
information has been discussed in [15]. It consist of modeling the conditional shape and 
location priors and organ correlation graph analysis.

As shown above, the available solutions mainly focus on physiological cases or are 
dedicated to one specific pathology. It has been found that there is no versatile approach, 
which would work effectively in various situations and conditions. The methodology 
presented in this paper is meant to bridge this gap.

The aim of this study is to develop a new, fully automated kidney segmentation method 
able to extract normal as well as abnormal kidneys with no restriction on pathologies. 
The methodology employs a new marker generation approach for watershed transform. 
The method provides correct results for a variety of renal pathologies. Both kidneys are 
always segmented excluding agenesis, nephrectomy or resection cases  [1–6]. A set of 
170 CT studies have been subjected to the evaluation analysis. The majority of cases 
(158) are pathological, including agenesis, atrophy, nephrolithiasis, renal cysts, tumors, 
renal cell carcinoma, kidney cirrhosis, focal lesions, nephrostomy and partial or radical 
nephrectomy or resection. To the author’s best knowledge, segmentation of both kid-
neys in normal and pathological cases has not be reported so far [7–9].

Methods
Database

The testing database contained 170 volumetric abdomen CTs (including 89 female and 
81 male). Medical examinations were carried out in years 2008–2013 by the Depart-
ment and Institute of Medical Radiology and Radiodiagnosis in Zabrze, Medical Uni-
versity of Silesia, Poland. The Clinical Research Ethics Committee waived the need for 
the approval because anonymous clinical data was released from the hospital database. 
The medical protocol specified neither the size of axial section nor the range of abdomen 
(i.e. body range). Therefore, CT series consist of 33–337 slices (126 slices on average) of 
the resolution of 512 × 512 pixels. Other parameters of the CTs are: minimum voxel size 
0.41 × 0.41 × 0.63 mm, maximum voxel size 0.98 × 0.98 × 5 mm, mean voxel size 0.75 × 
0.75 × 2.5 mm and 32-bits depth. The scanning protocol always included pre-contrast 
phase, arterial phase, portal venous phase, and sometimes delayed phase. In the current 
study portal venous phase was used.
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The image data is summarized in Table  1. The first row presents all medical cases 
available in database, including 170 CT examinations. Whereas, the second row contains 
cases (67 CTs) with ground truth delineations (manual or semi-automatic). Since in sev-
eral cases more than one pathology occurs, the overall number of pathologies exceeds 
the number of exams. The next two rows shows the distribution of pathologies sepa-
rately for manual or semi-automatic delineation. Notice that the sum of these numbers 
does not equal the number pf all delineated cases. Patient age statistics are shown in 
Fig. 1. Physiological cases are marked using green, pathological cases using red, while 
whole cases using blue colors.

Image analysis

The proposed fully-automatic kidney segmentation algorithm consists of several steps 
(Fig. 2). The workflow starts with body segmentation and skeleton detection procedure, 
which detects the abdominal contour. As a result, a region of interest is obtained. Then, 

Table 1  Medical cases in database
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Fig. 1  Patient age: (green) physiological cases, (red) pathological cases, (blue) globally a for all 170 cases, 
b for 60 delineated cases. The boxes are spanned between the first and third quartiles of age value, the lower 
and the upper whiskers are a minimum and a maximum age value, respectively and isolated points are 
a mean of age value
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a two-stage kidney segmentation followed by a post-processing procedure are applied. 
The following subsections present these steps in details.

Body segmentation and skeleton detection

The reduction of the overall CT study starts with a removal of the area outside the 
patient’s body. At this stage, a small object removal is followed by binarization, which 
extracts voxels with a positive HU (hounsfield units [16]) value. Then, a rough location of 
a landmark region is needed in order to indicate the kidney position.

Initially, the lungs are used as landmark [13]. Despite the high accuracy of their seg-
mentation, the final results strongly depend on patient’s position during the medical 
examination. A non-standard positioning may yield a mislocation of the kidney and 
result in a missegmentation.

In the current study, the skeleton detection precedes the main segmentation proce-
dure and serves as a reference area. At this stage binarization is employed again. Yet, the 
threshold value corresponds to the HU of the bone structures [16]. The improvement of 
thresholding has been obtained by some morphological operations (i.e. opening), as well 
as 2D analysis of the transverse and sagittal planes.

Due to the kidneys’ anatomical location, 30% of the abdomen can be removed [7]. This 
straightens a part of the patient-border line (blue line in Fig. 3). Removed area is marked 
in red, while the region subjected to further processing is highlighted in green.

Kidney segmentation

In further processing, two anatomical features are employed. The first one is related to 
the kidney brightness, which is of approximately 30 HU for most abdominal CTs [16]. 
However, since the analyzed CT series are contrast-enhanced, a higher value range 

Kidney Segmentation Algorithm

Body Segmentation
&

Skeleton Detection

Preliminary Kidney
Segmentation

Generation of Markers

Final Kidney
Segmentation

Post-Processing

Fig. 2  Workflow
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(0–200 HU) has been assumed. In further processing the image is referred to as 
I(x, y, z).

The second feature deals with an anatomical constraint associated with geometric kid-
ney location. Based on the body and skeleton view, the smallest bounding box containing 
the area for further analysis is defined (Fig. 4). Then, the central axis of the bounding box 
is found and brightened along the spine position. It divides the bounding box into two 
smaller boxes, containing the left and right kidney, respectively (Fig. 4a). Their diagonals 
intersect each kidney indicating their initial location (Fig. 4a). Moreover, in further anal-
ysis only nonzero voxels from I(x, y, z) indicated by the mask are considered (Fig. 4b).

This initial mask permits two areas to be defined. One reflects the kidney, whereas the 
other indicates the background. In further processing (i.e. “Preliminary kidney segmen-
tation”) these areas are referred to as object marker and background marker, respectively.

Preliminary kidney segmentation

The binary mask presented in Fig.  4c indicates a large number of voxels constituting 
the kidneys. The sum of mean value and standard deviation of nonzero voxels along the 
diagonal is used as a h value in the HMAX transform:

that smooths the brightness of kidney voxels in I(x, y, z), by suppressing all maxima of 
the intensity value below the h level. The Rδ

I (•) is a morphological reconstruction by 
dilation, i.e.:

defined as an iterative geodesic dilation:
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Fig. 3  Patient body and skeleton segmentation
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and executed until stability is obtained (using the idempotence condition). The δB1 
denotes the standard dilation with the smallest unit structuring element B1 , m(•) is the 
mask image and i denotes the number of iterations.

Voxels of the resulting image, which are indicated by the mask shown in Fig. 4c, con-
stitute a subset D of pixels helpful to determine the threshold value defined as:

where D denotes the mean value of D. The binary image (satisfying the condition 
I(x, y, z) > thk ) is subjected to the opening operation followed by morphological recon-
struction to remove objects touching the rectangle borders in Fig. 4a. All operations are 
implemented in 3D.

The object removal procedure is performed until the number of remaining binary 
objects in each bounding box is larger than 1. When the volume of each object is compa-
rable, both of them are considered. In other cases the smaller one is removed. This refers 
to the nephrectomy.

These binary objects serve as kidney seeds. Typically, their volume is slightly smaller 
than the kidney volume. The seeds are subjected to the markers generation step.
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Fig. 4  Binary masks facilitate kidney segmentation: a mask location, b voxels indicated by mask, c 3D mask 
view
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Generation of markers

Two markers are expected in the marker-controlled watershed transform. The first one, 
referred to as a object marker, is the image region obtained in the previous step. Figure 5 
shows a single kidney, where green area reflects to object marker.

To obtain the background marker, for each slice including the kidney, a  rectangular 
convex hull is applied. Moreover, to increase the kidney region a morphological dilation 
with a medium size structuring element is performed. The size of the structuring element 
depends on the kidney size and is set to 10% of the smallest size measured in the (x, y, z)-
directions. Finally, the obtained image is inverted to mask the kidney background.

Both 2D markers are shown in Fig. 5. Due to 3D dilation the background marker in 2D 
may not be a rectangular. This improves its alignment to the kidney shape.

The spatial visualization of both markers is shown in Fig.  6. Red voxels refer to the 
background marker, green voxels correspond to the object marker. Dark voxels will be 
processed in the next stage to accurately extract the kidney edges.

Fig. 5  2D object (green) and background (red) markers required for marker-controlled watershed transform

Fig. 6  3D masks of the kidney (green) and background (red)
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Final kidney segmentation

The marker-controlled watershed transform (MCWT)  [17–19] is applied in the last 
stage in kidney segmentation. MCWT is a modified version of the standard watershed 
transform enhanced by a reduction of the oversegmentation effect. The idea of this algo-
rithm can be easily demonstrated based on a 2D gray level image or even 1D image pro-
file (the latter will be used).

The watershed transform considers the image as a topographic relief, which is flooded 
by water. The flooding starts from all local minima in the image (dark gray boxes in 
Fig. 7a at positions 1, 6, 9). The water level successively raises, filling up all basins. At 
points where the water, coming from different basins, would meet, dams are built (black 
boxes in Fig.  7a at 0, 5, 8, 10). When the water level reaches the highest peak in the 
landscape, the process stops. The final dams arrangement represents image division into 
regions (the classic definition of image segmentation). Since watershed lines (dams) pass 
through the brightest pixels, the gradient magnitude image should be subjected to a fur-
ther analysis.

The full analysis of all gradient local minima for the current application has two major 
drawbacks: the number of watershed basins is very high and watershed regions are 
located inside and outside of the kidney. To overcome these drawbacks the marker-con-
trolled watershed algorithm was adopted.

In MCWT only some local minima are considered. Therefore, in Fig. 7b one local min-
imum (number 6) was skipped and the number of basins decreases. The dams are only 
assigned to pixels 0, 8 and 10. To indicate a desired local minima and to skip the unim-
portant ones, the object and background markers are employed.

The background marker blinded the irrelevant areas (red part in Fig.  6), while the 
object marker identified areas that should not be split (green part in Fig. 6). Therefore, 
only a small area is formed where the kidneys’ edges are searched (dark voxels in Fig. 6).

Due to the overlap of the kidneys’ edges and the dams, the gradient magnitude 
image is prepared. Since the gradient computation methods are noise sensitive, the 
average spatial filtering and morphological opening were performed. Both were 
implemented in 3D. The gradient magnitude is also calculated in 3D space according 
to equation:

(5)�∇I� =

√
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∂

∂x
I

)2
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(

∂

∂y
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∂
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Fig. 7  Comparison of a watershed transform and b marker-controlled watershed transform based on an 
image profile (x-axis pixel number, y-axis pixel intensity)
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An example of the gradient magnitude for a single slice and only one kidney is shown in 
Fig. 8a. In the upper part a 2D view is shown, while the bottom graph shows the topo-
graphic relief.

Despite a relatively small gradient window size, the gradient magnitude in Fig. 8a indi-
cates the kidney edge as well as other structures. It is particularly visible when strong 
edge objects appear in the neighborhood. The use of markers allows only desirable edges 
to be obtained. This is shown in Fig. 8b. The area indicated by markers discovers only 
a corridor including the kidney edge. Thus, the watershed dams overlapped the kidney 
boundaries with high accuracy.

Post‑processing step

Since the watershed transform generated labeled images, the last step is a image bina-
rization. To find labels corresponding to the kidney, the object marker image is reused. 
This image always indicates a region belonging to kidney but its volume is smaller than 
the desired kidney volume. However, the surface area of the region obtained from the 
watershed transform is more reliable.

Finally, morphological filtering (consecutive opening and closing) and hole filling is 
provided in order to smooth the kidney edges. The comparison of both markers with the 
computerized kidney delineation is shown in Fig. 9. It is clearly visible that the kidney 
edge is located in the space between markers. Although the object marker indicates only 
three disjointed kidney parts, the obtained delineation covers the real object edge.

Statistical analysis

Statistical analysis was performed using the MATLAB environment, Version 2017a. The 
kidney segmentation quality has been assessed by the sensitivity:

and the specificity:

(6)Sens =
TP

TP + FN
,

(7)Spec =
TN

TN + FP

Fig. 8  Image gradient magnitude: a full view, b view limited by object and background markers
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coefficients. TP, TN, FP, FN denote the number of True Positive, True Negative, False 
Positive and False Negative voxel detections, respectively. The meaning of symbol nota-
tion is well known and it is as follows: TP refers to correctly identified as a kidney voxels, 
FP incorrectly identified voxels, TN correctly rejected and FN incorrectly rejected vox-
els. In the following section of the paper, both measures (sensitivity and specificity) are 
presented in a percentage scale.

Moreover, the segmentation results are validated by the Dice index:

and the Jaccard index:

Both the Dice index and Jaccard index are considered in the percentage scale.
Finally, the dispersion between manual or semi-automatic delineations and segmenta-

tion results is evaluated by Cohen’s Kappa [20] measure defined as:

where accuracy (Acc) is an observational probability of agreement and random accuracy 
(randAcc) is a hypothetical expected probability of agreement under an appropriate set 
of baseline constraints [21]. Accuracy can be written as:

while random accuracy as:

The κ value can be interpreted as shown in Table 2 [22].

(8)D =
2 · TP

2 · TP + FP + FN
,

(9)J =
D

2− D
.

(10)κ =
Acc − randAcc

1− randAcc

(11)Acc =
TP + TN

TP + TN + FP + FN
,

(12)randAcc =
(TN + FP) · (TN + FN )+ (FN + TP) · (FP + TP)

(TP + TN + FP + FN )2
.

Fig. 9  Comparison of a markers (red, green) and b final kidney delineation (blue)
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Results
Reference data set

Due to the large database employed for evaluation, a manual delineation of all slices 
is very time consuming. Since no commercial tool dedicated to accurate and fast kid-
ney segmentation is available, a semi-automated 3D Slicer [23, 24] procedure has been 
adopted. The Editor Module of 3D Slicer includes the Level Tracing Effect tool. It delin-
eates the boundary of segmented structures in 2D and snaps it on a user request. The 
segmentation with Level Tracing Effect tool has been carried out under the permanent 
visual control of the expert. Since the expert’s impact on the contour extracted is smaller, 
the delineation has been evaluated by comparing the results with a manual segmenta-
tion performed by a medical expert on a limited set of CT studies.

The comparison of the delineations performed manually and semi-automatically for 
12 is shown in Fig. 10. In addition to the typical values associated with box plots (such 
as minimum— lower whisker, maximum—upper whisker, the first and third quartiles 
values—the box span, median—vertical line within the box) the mean value has been 
marked (isolated points in the figures).

A discrepancy between the manual and semi-automatic delineation can be noticed in 
the vascular cavity region (Fig. 11a), yet the external edge delineations are well aligned 
(Fig. 11b).

Findings demonstrate a very high convergence of manual and semi-automatic delinea-
tion technique. Mean values of sensitivity, specificity, Dice, Jaccard, Cohen’s κ and accu-
racy are 91.49, 99.98, 94.11, 88.90, 94.07 and 99.92%, respectively. These metrics are 
obtain based on 12 CTs with both manual and semi-automatic delineations. The lack of 

Table 2  Interpretation of κ value

κ , % Strength of agreement

100–81 Very good

80–61 Good

60–41 Moderate

40–21 Fair

20–0 Poor

Sens Spec D J κ Acc

60

70

80

90

100

%

Fig. 10  Comparison between manual and semi-automatic delineations
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higher consistency between both delineation techniques is mainly due to differences in 
vascular cavity segmentation (Fig.  11). Since both delineations are highly comparable, 
the Level Tracing Effect tool can be successfully used to generate the gold standard in 
further evaluation stages.

The detailed summary of reference database is presented in Fig. 12. For further evalu-
ation three reference data sets with manual and semi-automatic segmentation as well as 
undelineated kidneys are employed. The validation was performed in two steps. First, the 
segmentation quality was assessed by comparing the automated segmentation results to 
the delineated kidney edges. Secondly, the Altman classes were used in order to assign 
each segmentation result to one of the edges.

Quality of kidney segmentation

The evaluation of the kidney segmentation quality is performed in two steps. The first 
step compares the segmentation results with the manual, expert delineations. The 
evaluation based on 23 cases is shown in Fig. 13a. The segmentation quality expressed 
by the aforementioned measures for the majority of cases is relatively high (averages 
reach 90%). Single cases feature small index values. This is caused by a small over- or 

Fig. 11  Examples of segmentation delineated manually by an expert (green) and by the Level Trace Effect 
tool (blue) for a left, and b right kidney

103 CTs (5/98)
56 CTs (7/49)

23 CTs (1/22)

12 CTs (1/11)
67 CTs (7/60)

Fig. 12  Reference database with number of CTs (physiological/pathological cases) where cases delineated 
manually has been highlighted using  color, semi-automatic , both manually and semi-automatic  and 
cases undelineated using  color
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under-segmentation effect or the aforementioned differences in the vascular cavity seg-
mentation. Moreover, the segmentation results of 5% of cases becomes outliers.

The second step of the evaluation procedure is based on a comparison of the segmen-
tation results with the semi-automatic expert delineations obtained with the Level Trac-
ing Effect tool. The accuracy indices of 56 CT studies are shown in Fig. 13b.

Segmentation results for all CT series with manual or semi-automatic delineation (67 
cases) have been summarized in Fig. 14.

Group quantitative assessment

Based on Cohen’s κ and the Altman rules [22], all delineated cases have been classified to 
one of five groups given in Table 3.

In order to evaluate the remaining CT exams with neither manual nor semi-automatic 
delineation, another test was performed. It runs in two steps. The first step is the training 
procedure. Delineated cases were used to teach medical experts the Altman rules [22]. 
Medical cases from the training database consisting of 67 CTs were assigned to one of 
five groups. The assignment was based on κ coefficient value. The obtained results are 
shown in Table  3 in three categories: delineated manually, delineated semi-automatic 
and delineated manually or semi-automatic. Letters A, B and C are refer to subsequent 
medical experts.
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Fig. 13  Segmentation quality coefficient for CTs with: a manual delineations, b semi-automatic delineations
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Fig. 14  Segmentation quality coefficient for CTs with any delineations
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Table 3  Classification of the segmentation results for delineated cases
Strength Delineation: All

of Manual Semi-automatic delineated
agreement No % No % No %
Very good 20 86.96 53 94.64 62 92.54

Good 3 13.04 3 5.36 5 7.46
Moderate 0 0 0 0 0 0

Fair 0 0 0 0 0 0
Poor 0 0 0 0 0 0

Globally 23 100 56 100 67 100

After the training procedure, all CTs have been classified by the medical expert into 
five groups according to Altman rules (Table 4). Since 103 CTs have no delineations, a 
medical expert validation procedure has been performed visually.

Graphical results

The graphical representation of the segmentation results in 3D view is shown in Fig. 15. 
Subsequent columns represent cases of different Altman classes. The following patholo-
gies are included: right kidney tumor (Fig. 15b), left kidney tumor and both kidney cysts 
(Fig. 15c), tumor and cysts in right kidney (Fig. 15d), tumors in both adrenal glands and 
the right kidney after surgery (Fig. 15e), left kidney adenoma and cysts and right kid-
ney cirrhosis (Fig. 15f ), right kidney tumor and hematoma (Fig. 15h), both kidney focal 
lesions (Fig. 15i), left kidney tumor (Fig. 15j) and left kidney focal lesions and nephro-
lithiasis (Fig. 15k). Moreover, Fig. 15g presents a case after nephrectomy (left kidney was 
removed).

The CT series visible in Fig. 15 have been selected only from cases delineated manu-
ally. Thus, determination of all quality measures for these cases is possible. Results for 
three Altman classes are presented in Fig. 16.

State‑of‑the‑art comparison

The study described in this paper exceeds the scope of work presented in  [1, 2, 5–8, 
10–12]. The presented method was developed, tested and validated on a large set of CT 
examinations (170 CTs) containing clinically normal and abnormal kidneys. In order 
to assess the performance of the presented method versus the state-of-the-art, one 
would need either algorithm sources or the image data with manual delineations from 
the respective studies. Since none of these conditions are fulfilled, the assessment was 
performed based on the accuracy, Dice indices, sensitivity and specificity reported by 
authors. Furthermore, in order to compare with research presented in [5] False Positive 
Volume Fraction index defined as:

Table 4  Classification of the segmentation results for delineated cases
Strength Cases

of Delineated Undelineated Globally

A B C A B C A B C
agreement No No No No No No No % No % No %
Very good 59 62 60 84 86 83 143 84.12 148 87.06 143 84.12

Good 8 5 7 13 10 12 21 12.35 15 8.82 19 11.18
Moderate 0 0 0 6 7 8 6 3.53 7 4.12 8 4.71

Fair 0 0 0 0 0 0 0 0 0 0 0 0
Poor 0 0 0 0 0 0 0 0 0 0 0 0

Globally 67 67 67 103 103 103 170 100 170 100 170 100
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
Fig. 15  3D view of the segmentation results (physiological cases are displayed in green, pathological cases 
are displayed in red, while nephrectomy is displayed in blue). a Case 751_11, b case 1167_10, c case 1480_10, 
d case 95_13, e case 1649_13, f case 1675_13, g case 1070_12, h case 2111_13, i case 3322_11, j case 
1223_11, k case 2802_13, l case 1972_12
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was used. Analogously, for Zollner et al. [11] the similarity measure:

is introduced. A detailed quality comparison is shown in Table 5. The obtained results 
for the presented algorithm are better than most of the reported in the literature.

Discussion
Automatic or semi-automatic kidney segmentation has been investigated by different 
research groups in the field. The underlying building blocks of these algorithms consist 
of region of interest extraction, region growing [1], edge detection [2] or more complex 
algorithms such as graph cut, GrowCut  [5], Fuzzy C-Means, level-set  [3, 4] and many 
others  [6, 13–15, 25–27]. Most algorithms in the literature usually incorporate over a 
dozen (no more than 37) CTs portal venous phase into their validation. In the current 
study, a fully automatic kidney segmentation approach is adapted to clinical conditions. 
A large database and variety of medical acquisition protocols have been subjected to the 
analysis. The applied algorithms in both processing steps provide satisfactory results. 
The first stage of rough kidney segmentation uses mathematical morphology operations 

(13)FPVF =
FP

TN + FP

(14)Sim = 1−
|FN − FP|

2 · TP + FN + FP
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Fig. 16  The segmentation quality measures for cases from Fig. 15: a left column, b middle column, c right 
column and d for all cases from Fig. 15



Page 18 of 21Wieclawek  ﻿BioMed Eng OnLine  (2018) 17:26 

and algorithms, in particular morphological image reconstruction. In this way, object 
and background markers are obtained. These images are crucial for the marker con-
trolled watershed transform. Consequently the rough segmentation results are matched 
to the real kidney edges. The current study database includes 170 cases whereas 67 are 
delineated by a medical expert manually (23 CTs) or semi-automatic (56 CTs). Since the 
semi-automatic delineation is less accurate yet faster and less time-consuming than the 
manual outline, its robustness has to be evaluated. Thus, the accuracy of the semi-auto-
matic delineation tool (Level Tracing Effect from Slicer3D) was identified.

Segmentation quality assessment was provided separately for manual and semi-auto-
matic delineation and globally for all cases delineated in any way. The results for both 
separable groups (Fig.  13) showed their high similarity. The majority of medical cases 
have high segmentation metrics. Boxes in Fig. 13 are small and located at about 90%. 
Specificity and accuracy exceed 99%, sensitivity, Dice index, and Cohen’s κ exceed 90% 
and the lowest value above 85% is a Jaccard coefficient. Only isolated cases deviate from 
mentioned values as evidenced by lower whiskers. Since the semi-automatic group 
is larger, the range of metric values is slightly smaller than for the group with manual 
delineations (boxes in Fig. 13b are smaller than in Fig. 13a). Due to the high similarity 
of the results for both delineation groups, the global results (Fig. 14) also show similar 
properties. These findings demonstrate the high efficiency of this kidney segmentation 
approach both for physiological and pathological cases, so the method appears quite 
robust in clinical applications. These results also prove that the use of semi-automatic 
expert delineations are reasonable.

The Cohen’s κ index can be interpreted as shown in Table 2. This gives a basis to clas-
sify delineated cases between five groups with different qualities of segmentation. The 
classification has been performed separately for manual and semi-automatic deline-
ations, and then together for all available delineations (Table  3). All delineated cases 
belong to the first two quality groups called ‘Very good’ and ‘Good’, wherein a ‘Very 
good’ group size exceed 92%.

Next, the assessment procedure was conducted since not all medical cases were delin-
eated by an expert. After a training procedure (conducted based on delineated cases) 
three different experts classified all available medical cases between Altman classes. 
Their assessments were very similar to each other. Each expert’s findings oscillate around 
values resulting from the κ index. Moreover, one expert (expert B) classified delineated 

Table 5  State-of-the-art comparison

Paper Year
Number Quality comparison

of Index Literature Current approach
cases approach 67 cases

Tsagaan [8] 2001 33
Sens

87%
Tsagaan [7] 2002 33 86% 90.29%

Lin [1] 2006 30 D 88% 91.68%
Chen [5] 2012 37 FPV F 0.29± 0.05% 0.04± 0.03%
Zollner [11] 2012 NA∗ Sim 96% 97.12%
Sawale [10] 2014 NA∗ Acc 97.2% 99.89%

Myint [2] 2015 20 Acc
70.5%**
85.5%*** 99.89%

Song [6] 2015 3
Sens 95.46% 90.29%
Spec 99.82% 99.96%
Acc 99.76% 99.89%

Yang [12] 2015 16 D 86− 98% 91.68± 5.38%

∗ Not available, ∗∗ for region growing, ∗∗∗ for gradient-based
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cases identically as it resulted from coefficient κ (compare green columns in Tables 3, 4). 
It can be stated that such a form of assessment is justified in the absence of delineations. 
These findings confirm both the reliability of the study and the high effectiveness of the 
method. Almost 85% of 170 cases were classified as ‘Very good’. Whereas the remaining 
15% included ‘Good’ and ‘Moderate’ classes, wherein the majority were ‘Good’. Only a 
few percent of cases were included in category ‘Moderate’.

The proposed numerical indicators and the graphical results confirm the high effi-
ciency of the method. This concerns both planar (Fig. 11) and spatial images (Fig. 15). 
Decreases in the coefficients of quality measure often resulted from differences in the 
kidney vascular cavities interpretation (Fig.  11). There were also cases with leaks to 
neighboring vessels (Fig. 15l) or organs (Fig 15h). Also, the opposite cases with incom-
plete segmentation occurred (Fig 15b, c, f, i, j). The reason is often a surgical intervention 
or some pathologies, i.e. cirrhosis, tumors. The worst segmentation cases has been pre-
sented in Fig. 15, although they represent a small percentage of the entire dataset. This 
figure does not reflect the true proportion between worse- and better-segmented cases.

These findings also seems competitive with respect to the state-of-the-art (Table 5). In 
most cases the quality indices are better than presented in the literature. Only the spec-
ificity reported in  [6] is higher than in the presented solution. However, the reported 
value is based on the evaluation of 3 cases, thus may not be representative. Moreover, 
state-of-the-art approaches were not verified with such a large and comprehensive clini-
cal database. Taking control of such a large number of differentiated medical cases has 
been a big challenge.

Conclusions
The current research develops a fully automatic kidney segmentation approach as a 3D 
extension of marker-controlled watershed transform. The expected marker images 
(object and background) are generated automatically based on image geometry and 
brightness. The kidney walls are located by the 3D watershed transform.

Findings based on large database demonstrate high values of segmentation quality 
metrics (accuracy over 99% and mean Dice and Cohen’s κ over 91%). Analogously, an 
expert assessment indicates its usefulness under clinical conditions. These relatively high 
metrics were obtained despite the database size and variety of CT studies performed by 
different medical staff and various CT scanners. Neither patient conditions nor cases 
have been selected. This makes the testing environment rather difficult. Nevertheless, 
the outcome was classified by the experts as ‘Very good’, ‘Good’ or ‘Moderate’ and is 
being employed in generating a patient related model for the image-guided minimally 
invasive abdominal surgery.
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