
Automatic QRS complex detection using 
two‑level convolutional neural network
Yande Xiang1, Zhitao Lin2 and Jianyi Meng3*

Background
Electrocardiogram (ECG) is a graphical representation of the electric activity of the heart 
and has been commonly used for cardiovascular disease diagnosis. A typical ECG-based 
heartbeat mainly consists of three waves including P-wave, QRS complex, and T-wave. 
The QRS complex is the most prominent feature and it can be used to obtain additional 
useful clinical information from ECG signals, such as RR interval, QT interval, and PR 
interval, etc. Thus, QRS detection is critical for ECG-based health evaluation.

The methods of QRS complex detection proposed in the past decades mainly consist 
of the preprocessing stage and the decision-making stage.
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cally. All the extracted morphological features are used by multi-layer perceptron (MLP) 
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which only contains difference operation in temporal domain is adopted.
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The preprocessing stage comprising nonlinear and/or linear filtering aims at reducing 
noise and facilitating lexical analysis afterwards. The preprocessing approaches in many 
previous studies mainly adopt linear filtering and wavelet transform for noise removal 
in ECG [1–5]. After filtering, the signals are further processed through numerous tech-
niques, such as moving average filter [1, 6], squaring function [7], and Hilbert transform 
[8].

The preprocessing stage is followed by decision stage where the envelope of a signal 
is extracted and the final QRS complex location is decided. The decision-making stage 
usually adopts heuristic methods to detect the real QRS complex location. A number 
of algorithms based on derivative [8, 9], digital filters [10], and wavelet transform [11] 
have frequently been used for QRS detection. With the improvement of hardware envi-
ronment, much more methods adopt wavelet transforms. In wavelet-based techniques, 
the efficiency of wavelet transform strongly depends on the choice of the mother wave-
lets. Other detection algorithms proposed in the literatures including mathematical 
morphology [12], hidden Markov model [13], S-transform [14], Hilbert transform [2], 
regular grammar [15], quadratic filter [16], multiresolution entropy [17], sparse repre-
sentation [18], and singular value decomposition (SVD) [19]. Although the above detec-
tion methods present high accuracy with their experimental datasets, their performance 
largely depends on selected mother wavelets in wavelet transform as well as knowledge-
based and fixed parameters in other methods. Therefore, in case of ECG patterns, which 
are physiological variations due to times, individuals, or circumstances, the choice of 
appropriate mother wavelets and parameters becomes difficult. In addition, extracting 
hand-crafted features manually for QRS complex detection may introduce significant 
computational complexity of overall process, especially in the transform domains.

To adapt with various morphologies of ECG signals, some algorithms adopt adap-
tive threshold which is a very important parameter in QRS complex detection. There 
are two categories of adaptive threshold, including single level [20–23] and multiple 
levels [24, 25]. However the adaptive threshold helps to improve detection accuracy at 
the expense of computational complexity, which makes it difficult for real-time QRS 
detection. Artificial neural network (ANN) based approaches have been proposed for 
real-time detection [26, 27]. Based on ECG signals in the CSE Data Set-3 library [28], 
Vijaya et  al. [26] employs ANN for R-wave detection. Only 1491 QRS complexes are 
used for performance evaluation, which makes it difficult to prove the robustness of the 
method. Arbateni et al. [27] utilizes ANN-based whitening filter, matched filter, squaring 
and moving average filter for ECG preprocessing. Then the position of QRS complex is 
located by decision logic. Although the algorithm achieves an average detection error 
rate of 0.28%, it introduces much computational complexity for processing ECG signals. 
This may hinder the detection method from the usage in the light-weight healthcare 
devices.

In order to solve the drawbacks mentioned above, an attention-based two-level 1-D 
convolutional neural network (CNN) is proposed for extracting morphological fea-
tures of QRS complex automatically. CNNs have achieved the state-of-the-art perfor-
mance in deep learning tasks [29, 30]. It is also worth noting that visual attention models 
have been applied in computer vision problems for fine-grained object detection [31] 
and fine-grained categorization [32]. The attention model is able to process candidate 
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regions for classification with different resolution and reduce processing cost by focus-
ing on a restricted set of regions. With the help of the attention model, discriminatory 
power could be focused on the specific parts of the input pattern, which helps to classify 
the pattern accurately [33].

For reducing computational cost, adapting with variations of ECG signals, discarding 
hand-crafted features, and improving accuracy of QRS detection, an accurate method 
for QRS detection based on CNN is proposed. In our context, two-level CNN comprised 
of object-level and part-level CNNs is adopted to extract ECG morphological features 
for QRS complex detection. To our knowledge, this is the first study where the two-level 
1-D CNN is used for ECG-based QRS complex detection. In addition, only difference 
and averaging operations are applied for ECG signal preprocessing.

Materials and overview
ECG samples

The ECG signals in the MIT-BIH arrhythmia (MIT-BIH-AR) database and the St. Peters-
burg Institute of Cardiological Technics 12-lead Arrhythmia (INCART) database are 
used in this study. We divide the signals of the MIT-BIH-AR database into training part 
and testing part, and adopt the signals of the INCART database to estimate the robust-
ness of the proposed detection method.

The MIT-BIH-AR database contains 48 ECG recordings from 47 subjects, and each 
recording is sampled at 360 Hz for 30 min with 11-bit resolution over a 10 mV range. 
Each recording comprises two ECG leads, one lead is modified-lead II (MLII) and the 
other lead is mainly lead V1, sometimes V2, V4 or V5, which are summarized in Table 1. 
In this study, only MLII is used, and therefore record 102 and record 104 are not taken 
into consideration. The database consists of annotations for both heartbeat class infor-
mation and R-wave position information verified by two or more expert cardiologists. 
All beats of the database are assigned corresponding labels by using a 17-label set. The 
INCART database contains 75 annotated recordings of 12-lead ECG signals. Each of 
them is 30 min long, sampled at 257 Hz, and gained varying from 250 to 1100 analog-
to-digital converter (ADC) units per 1 mV. To match with the MIT-BIH-AR database, 
each recording of the INCART database should be resampled at 360 Hz. This database 
contains over 175,000 annotated beats.

Table 1  Summary of the channel distribution of the records in the MIT-BIH-AR database

Channel 1 Channel 2 Record

MLII V1 101 105 106 107 108 109 111 112

113 115 116 118 119 121 122 200

201 202 203 205 207 208 209 210

212 213 214 215 217 219 220 221

222 223 228 230 231 232 233 234

MLII V2 103 117

MLII V4 124

MLII V5 100 123

V5 MLII 114

V5 V2 102 104
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Overview of the proposed method

The proposed method consists of three steps, including signal preprocessing, feature 
extraction, and QRS complex location decision. The overview diagram is shown in Fig. 1. 
First, difference operation and averaging operation are used to process raw ECG signals. 
The outputs of this step are sent to two-level 1-D CNN for feature extraction. The two-
level CNN is applied to focus on different parts of the ECG signals and extract differ-
ent grained morphological features. The CNN adopts hierarchical architecture, and each 
layer consists of 1-D convolution and 1-D subsampling. The coarse-grained features are 
extracted by object-level CNN and the fine-grained features are extracted by part-level 
CNN. All the extracted features are fed into MLP for QRS complex location decision.

Methods
Preprocessing

The raw ECG signal sr(n) is differentiated to accentuate the QRS complex which is char-
acterized by a high slope. The difference ECG signal is obtained by making subtraction 
between adjacent samples, which is shown as follows:

(1)sd[n] = sr[n] − sr[n− 1]

Difference

CNNCNN

Part level Object levelLayer 1
1-D Convolution
& Subsampling

Layer n
1-D Convolution 
& Subsampling

MLP

QRS decision

Averaging
Raw ECG

Fig. 1  Overview of the proposed QRS complex detection method
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where sr[n] is the raw ECG signal data at time n, and sd[n] is the difference data at time 
n. The two signals are illustrated in Fig. 2a, b. It is not necessary to normalize ECG signal 
as other methods do [34–36]. Then, the difference signal are sent to part-level CNN for 
fine-grained feature extraction.

In addition, the raw ECG signal sr(n) is averaged per several adjacent samples, which 
is followed by difference operation. Then, the difference signal is fed into object-level 
CNN for coarse-grained feature extraction. The averaging and difference operations are 
represented as follows:

(2)sa[n] =
1

Ni

Ni
∑

i=1

sr[n ∗ Ni + i]
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Fig. 2  Outputs obtained at preprocessing stage of the proposed method. a Raw ECG signal from record 200 
in the MIT-BIH-AR database; b signal obtained by difference operation; c signal obtained by averaging opera-
tion; d signal obtained by averaging operation followed by difference operation
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where sa(n) represents the average ECG signal shown in Fig. 2c, and sad(n) represents 
the average difference signal shown in Fig. 2d. The number of samples in sr(n) is Ni times 
more than that in sa(n).

ECG signal segmentation

A heartbeat is commonly composed of P-wave, QRS complex, and T-wave. Therefore, 
we choose segment length of 56 sampling points from difference and average difference 
ECG signal respectively, which is shown in Fig. 3. 22 sampling points before the current 
detection point and 33 sampling points after it. Given the raw ECG signal in the MIT-
BIH-AR database sampled at 360 Hz, all of the 56 samples equivalent to 0.78 s in average 
difference signal and 0.16 s in difference signal. In this way, it can cover a whole heart-
beat cycle as well as QRS complex when the current detection point is R-peak.

Attention‑based two‑level feature extraction and QRS detection

To extract different grained morphological features from difference ECG signal as well 
as average difference ECG signal, an attention-based automatic feature extraction sys-
tem comprised of object-level 1-D CNN and part-level 1-D CNN is proposed, which 
is shown in Fig.  4. The object-level CNN is applied to extract coarse-grained features 
corresponding to object-level segment. The segmented ECG signal is preprocessed by 
averaging and difference operations. The part-level CNN is used to extract fine-grained 
features by focusing attention on part-level segment. The ECG signal of this segment is 
preprocessed by difference operation only. The two levels of the system are combined 
for training with back-propagation (BP) scheme. The two-level CNN adopts hierarchi-
cal structure, in which different abstract features are extracted from different layers. 
In the low-level layer, low-level features are extracted. Then, the extracted features are 
propagated to the next hidden layer for extracting higher-level features. Each layer of 
the two-level CNN consists of convolution stage and subsampling stage. Convolution 
stage applies convolution operation to the input, and then output the result to the next 
stage. Weights are shared and several feature maps can be computed at the stage. Sub-
sampling stage combines the outputs of clustered neurons at convolution stage into one. 
There are mainly two kinds of subsampling operations including max-subsampling and 
mean-subsampling. Max-subsampling outputs the maximum value of clustered neu-
rons. Mean-subsampling outputs the average value of clustered neurons. In this study, 
mean-subsampling operation is adopted. In order to extract different grained features 
corresponding to different-level segmentation, the number of layers between part-level 
and object-level CNNs can be implementation defined. All of the features extracted by 
the two-level CNN are concatenated and sent to MLP for final QRS complex detection.

The QRS detection process is composed of two steps including training and decision. 
The training process is utilized for optimizing weights and biases, and then the neural 
network configured with the trained weights and biases are used to detect QRS com-
plexes. The relationships among CNN and MLP layers are presented in Fig. 5.

(3)sad[n] = sa[n] − sa[n− 1]
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The intermediate value as well as final output of the kth neuron at CNN layer l are 
computed as Eqs. 4 and 5 respectively, and the output of the jth neuron at MLP layer m 
is computed as Eq. 6.

(4)alk = f





Nl−1
�

i=1

1Dconv(wl−1

ki , sl−1
i )+ blk





(5)slk = 1Dsubs(alk)

Fig. 3  Segment method used for ECG signal
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where wl−1

ki  is 1-D weight kernel between kth neuron at layer l and ith neuron at layer 
l − 1. sl−1

i  is the output of ith neuron at layer l − 1. alk is the intermediate activation value 
of kth neuron at layer l. blk is the bias value of kth neuron at layer l. 1Dconv and 1Dsubs 
represent 1-D convolution and 1-D subsampling respectively. f(.) represents activation 
function. In this study, the rectified linear unit (Relu) activation function is adopted in 
CNN layers as well as MLP hidden layers, and Softmax activation function is used in 

(6)smj = f





Nl
�

k=1

wl
jk s

l
k + bmj





Fig. 4  Structure of attention-based two-level 1-D CNN
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MLP output layer for final QRS complex location decision. The goal of training is to 
minimize objective function E by adjusting the kernel weights and biases:

where N is the total neuron number of output layer. For a given input vector v, 
[t1, t2, . . . , tN ] and [y1, y2, . . . , yN ] are the corresponding target output vector and pre-
dicted output vector respectively. The weights and the biases are updated with the learn-
ing rate η as represented in Eqs. 8 and 9. In this study, we set the initial learning rate as 
η = 0.005, and slightly decrease it by 0.0001% during each learning iteration.

After the two-level CNN as well as the MLP are trained, both a given difference ECG 
signal and its corresponding average difference ECG signal are sent to the neural net-
work system for QRS position decision.

(7)E = E(y1, y2, ..., yN ) =

N
∑

j=1

(

tj − yj
)2

(8)wl
ki(t) = wl

ki(t − 1)− η
∂E

∂wl
ki(t − 1)

(9)blk(t) = blk(t − 1)− η
∂E

∂blk(t − 1)

Fig. 5  1-D CNN structure in the proposed detection system
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Results
As mentioned above, for the two-level CNN, it is feasible to adopt different depths for 
focusing on different-level segmentations. Two CNN layers are used for object-level fea-
ture extraction, and one CNN layer is used for part-level feature extraction. The detail 
configuration of the two-level CNN is described in Table 2. The outputs of the two levels 
are concentrated and sent into two-layer MLP for QRS location decision. The first MLP 
layer contains 20 neurons which are fully connected with neuron of the following layer. 
In this study, we find that the accuracy of QRS detection is not improved while the num-
ber of neurons in the first MLP layer exceeds 20. The second MLP layer contains four 
neuron used for QRS detection. The four neurons are adopted to detect Q wave, R wave, 
S wave and non-QRS segment respectively.

The preprocessing and segmentation are processed by Matlab, and the neural network 
is trained by using high-level Python library Keras [37]. Keras allows for easy and fast 
prototyping of the neural networks.

For training the proposed two-level CNN, 400 representative QRS complexes, along 
with their associated non-QRS segments are selected from the MIT-BIH-AR database. 
The ECG signals for testing contain 46 ECG records from the MIT-BIH-AR database 
as well as all ECG records from the INCART database. Only MLII of the MIT-BIH-AR 
database and lead II of the INCART database are used. The measured metrics adopted 
for evaluating detection performance are sensitivity (Sen), positive predictivity rate 
(PPR), detection error rate (DER), and accuracy (Acc), which are calculated by:

(10)Sen (%) =
TP

TP + FN
∗ 100

(11)PPR (%) =
TP

TP + FP
∗ 100

(12)DER (%) =
FN + FP

TP + FN
∗ 100

(13)Acc (%) =
TP

TP + FP + FN
∗ 100

Table 2  Detail description of the proposed attention-based two-level 1-D CNN configura-
tion

Object-level CNN Part-level CNN

CNN layer 1

 1-D convolution kernel length 5 5

 1-D subsampling factor 2 2

 Number of neurons 5 5

CNN layer 2

 1-D convolution kernel length 5 None

 1-D subsampling factor 2 None

 Number of neurons 5 None
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The above four metrics are computed by the quantity of true positive (TP), false positive 
(FP), and false negative (FN). TP is number of correct QRS prediction. FP is number of 
incorrect QRS prediction. FN is number of incorrectly rejected QRS.

The QRS complex detection performance achieved by using the 46 ECG records in the 
MIT-BIH-AR database is shown in Table 3. As the table shows, the overall Sen = 99.77%, 
PPR = 99.91%, and DER = 0.32%. All the Sen and PPR values are higher than 99%. For 
20 cases of detection in the MIT-BIH-AR database, Sen values are 100.00%. For 23 cases 
of detection in the database, PPR values are 100.00%. In addition, only 4 cases have error 
values greater than 1%. These records are 106, 223, 228, and 233. The number of unde-
tected and false positive QRS complexes results in the consequence. Records where the 
error values exceed 1% are mainly due to two reasons: the morphology of Q-wave is 
much like the R-wave in some segmentations or in other cases the slope of QRS complex 
is quite gentle.

The performance comparison between the proposed method and other eight state-
of-the-art approaches is shown in Table  4. The DER value reflects the general perfor-
mance of these approaches, and thus the order of each algorithm is sorted based on this 
index. As presented in the table, for the MIT-BIH-AR database, the performance of our 
proposed method is comparable to other state-of-the-art algorithms. The maximal and 
minimal average DER values are 0.51 and 0.25% respectively.

The representative examples of incorrect detection performed by the proposed detec-
tion method are shown in Fig. 6. The record 203 in the MIT-BIH-AR database contains 
much noise and irregular heartbeats in the aspect of morphology, which leads to a con-
siderable number of FNs and FPs.

Table  5 shows comparison result of the DER values by evaluating records 105, 108, 
121, 200, 202, and 217 from the MIT-BIH-AR database. The best result for each record 
is emphasized by italicface. The DER values of records 108, 121, and 202 from the pro-
posed algorithm are minimal at 0.00%. In addition, to assess the robustness of the pro-
posed detection method to noise, we add Gaussian noise with 9 different signal-to-noise 
ratio (SNR) values to the raw ECG signals including records 105, 108, 121, 200, 202, and 
217, and the corresponding detection results are presented in Table 6. As to SNR value 
greater than 30 dB, the proposed detection method provides high Sen values which 
exceed 99%. As to SNR value greater than 20 dB, the method provides high PPR values 
which exceed 99%. Fig. 7 presents the variation of Sen, PPR, and DER values depending 
on different SNR values. Compared with detection performance using noise-free ECG 
signals, both the Sen and PPR values are close to the values without noise when the SNR 
value is larger than 10 dB. The reasons behind the robustness to noise mainly focus on 
two reasons. One is that the proposed signal preprocessing approach can eliminate noise 
to some extent. The other is that the ECG signals used at the training stage are also com-
bined with noise, so that the proposed method can extract features of ECG signals and 
detect QRS complexes with noise.

In this study, more than 170,000 beats of the INCART database are also used to esti-
mate the capability of the proposed QRS detection method. As presented in Table  7, 
based on the database, the proposed technique achieves Sen = 99.86%, PPR = 99.89%, 
DER = 0.25%, and Acc = 99.75%.
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Table 3  Performance evaluation of the proposed method using the MIT-BIH-AR database

Record Total beats TP FP FN Sen (%) PPR (%) DER (%) Acc (%)

100 2273 2273 0 0 100.00 100.00 0.00 100.00

101 1865 1865 0 0 100.00 100.00 0.00 100.00

103 2084 2084 0 0 100.00 100.00 0.00 100.00

105 2572 2560 0 12 99.53 100.00 0.47 99.53

106 2027 2010 8 17 99.16 99.60 1.23 98.77

107 2137 2137 0 0 100.00 100.00 0.00 100.00

108 1763 1763 0 0 100.00 100.00 0.00 100.00

109 2532 2523 7 9 99.64 99.72 0.63 99.37

111 2124 2124 0 0 100.00 100.00 0.00 100.00

112 2539 2539 0 0 100.00 100.00 0.00 100.00

113 1795 1795 0 0 100.00 100.00 0.00 100.00

114 1879 1872 5 7 99.63 99.73 0.64 99.36

115 1953 1953 0 0 100.00 100.00 0.00 100.00

116 2412 2398 6 14 99.42 99.75 0.83 99.17

117 1535 1535 0 0 100.00 100.00 0.00 100.00

118 2278 2277 1 1 99.96 99.96 0.09 99.91

119 1987 1976 8 11 99.45 99.60 0.96 99.05

121 1863 1863 0 0 100.00 100.00 0.00 100.00

122 2476 2476 0 0 100.00 100.00 0.00 100.00

123 1518 1517 2 1 99.93 99.87 0.20 99.80

124 1619 1617 5 2 99.88 99.69 0.43 99.57

200 2601 2596 1 5 99.81 99.96 0.23 99.77

201 1963 1962 0 1 99.95 100.00 0.05 99.95

202 2136 2136 0 0 100.00 100.00 0.00 100.00

203 2980 2960 5 20 99.33 99.83 0.84 99.16

205 2656 2656 0 0 100.00 100.00 0.00 100.00

207 1860 1856 0 4 99.78 100.00 0.22 99.78

208 2955 2948 2 7 99.76 99.93 0.30 99.70

209 3005 3002 2 3 99.90 99.93 0.17 99.83

210 2650 2634 3 16 99.40 99.89 0.72 99.28

212 2748 2748 0 0 100.00 100.00 0.00 100.00

213 3251 3242 2 9 99.72 99.94 0.34 99.66

214 2262 2256 1 6 99.73 99.96 0.31 99.69

215 3363 3357 3 6 99.82 99.91 0.27 99.73

217 2208 2200 5 8 99.64 99.77 0.59 99.41

219 2154 2150 1 4 99.81 99.95 0.23 99.77

220 2048 2048 0 0 100.00 100.00 0.00 100.00

221 2427 2413 9 14 99.42 99.63 0.95 99.06

222 2483 2483 0 0 100.00 100.00 0.00 100.00

223 2605 2587 9 18 99.31 99.65 1.04 98.97

228 2053 2034 6 19 99.07 99.71 1.22 98.79

230 2256 2256 0 0 100.00 100.00 0.00 100.00

231 1571 1571 0 0 100.00 100.00 0.00 100.00

232 1780 1780 1 0 100.00 99.94 0.06 99.94

233 3079 3053 7 26 99.16 99.77 1.07 98.93

234 2753 2752 0 1 99.96 100.00 0.04 99.96

Overall 105,078 104,837 99 241 99.77 99.91 0.32 99.68
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Table 4  Comparison of performance of several QRS detection methods using the MIT-BIH-
AR database

Method TP FP FN Sen (%) PPR (%) DER (%)

Zidelmal et al. [14] 108,323 97 171 99.84 99.91 0.25

Arbateni and Bennia [27] 109,273 109 210 99.82 99.91 0.29

Kholkhal and Reguig [23] 106,310 48 259 99.76 99.95 0.29

This work 104,837 99 241 99.77 99.91 0.32

Zhou et al. [18] 109,224 139 213 99.81 99.87 0.32

Bouaziz et al. [4] 109,354 232 140 99.87 99.79 0.34

Phukpattaranont [16] 109,281 210 202 99.82 99.81 0.38

Farashi [17] 109,692 163 273 99.75 99.85 0.39

Hamdi et al. [15] 73,278 92 284 99.74 99.86 0.51
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Fig. 6  Examples of incorrect detection in record 203

Table 5  Comparison of DER values on 105, 108, 121, 200, 202, and 217 records of the MIT-
BIH-AR database

Best results are italicized

Method 105 108 121 200 202 217

This work 0.47 0.00 0.00 0.23 0.00 0.59

Zidelmal et al. [14] 1.24 2.44 0.16 0.23 0.09 0.23

Arbateni and Bennia [27] 0.23 0.51 0.16 0.31 0.33 0.64

Kholkhal and Reguig [23] 0.37 0.53 0.11 0.37 0.05 0.14

Zhou et al. [18] 1.48 2.72 0.05 0.66 0.28 0.09

Bouaziz et al. [4] 0.81 8.40 0.10 0.30 0.09 0.23

Phukpattaranont [16] 1.59 4.08 0.00 0.19 0.00 0.27

Farashi [17] 2.60 2.95 0.16 0.81 1.17 0.27

Hamdi et al. [15] 0.04 0.11 0.27 0.00 1.17 0.09
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The proposed detection method is also evaluated in the aspect of computational com-
plexity. A computer with Intel Core i3 CPU 3.5 GHz is used for evaluation. For example, 
the time consumed for the QRS detection on 30-min ECG record 100 (2273 beats) of the 
MIT-BIH-AR database is 14.53 s, which is faster than other state-of-the-art approaches 
[5, 23]. The method presented by Karimipour [5] takes more than 8 ms to detect one 
QRS complex and Mourad [23] takes 141 s for QRS detection for the same record. The 
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Fig. 7  Sen variation according to different SNR values based on 105, 108, 121, 200, 202, and 217 ECG records

Table 6  Detection performance with noise added and without noise

Record Index Without
noise

SNR in noise added (dB)

90 80 70 60 50 40 30 20 10

105 Sen (%) 99.53 99.53 99.53 99.53 99.53 99.42 99.22 99.11 98.73 96.71

PPR (%) 100.00 100.00 100.00 100.00 100.00 99.84 99.65 99.57 99.07 97.52

DER (%) 0.47 0.47 0.47 0.47 0.47 0.74 1.12 1.32 2.20 5.74

108 Sen (%) 100.00 100.00 100.00 100.00 100.00 99.94 99.77 99.77 99.27 97.51

PPR (%) 100.00 100.00 100.00 100.00 100.00 99.83 99.66 99.60 99.21 96.97

DER (%) 0.00 0.00 0.00 0.00 0.00 0.23 0.57 0.62 1.52 5.53

121 Sen (%) 100.00 100.00 100.00 100.00 100.00 99.89 99.84 99.84 99.15 97.13

PPR (%) 100.00 100.00 100.00 100.00 100.00 99.95 99.79 99.79 99.47 97.59

DER (%) 0.00 0.00 0.00 0.00 0.00 0.16 0.38 0.38 1.38 5.27

200 Sen (%) 99.81 99.81 99.81 99.81 99.81 99.73 99.58 99.43 99.35 97.08

PPR (%) 99.96 99.96 99.96 99.96 99.96 99.85 99.65 99.62 99.46 97.59

DER (%) 0.23 0.23 0.23 0.23 0.23 0.42 0.77 0.96 1.19 5.31

202 Sen (%) 100.00 100.00 100.00 100.00 100.00 99.86 99.58 99.53 99.40 96.09

PPR (%) 100.00 100.00 100.00 100.00 100.00 99.81 99.58 99.58 99.44 97.80

DER (%) 0.00 0.00 0.00 0.00 0.00 0.33 0.84 0.89 1.16 6.07

217 Sen (%) 99.64 99.64 99.64 99.64 99.64 99.59 99.50 99.50 99.10 95.69

PPR (%) 99.77 99.77 99.77 99.77 99.77 99.73 99.64 99.59 99.32 96.62

DER (%) 0.59 0.59 0.59 0.59 0.59 0.68 0.86 0.90 1.58 7.66

Table 7  Performance evaluation of the proposed method using the INCART database

Total beats TP FP FN Sen (%) PPR (%) DER (%) Acc (%)

175,914 175,660 189 254 99.86 99.89 0.25 99.75
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outperformance is due to the proposed simple signal preprocessing technique and light-
weight CNN.

Discussion
QRS complex is the most protruding feature in the ECG with R-peak as the most signifi-
cant wave. With the help of QRS detection, other components in the ECG signals can be 
found, such as P wave, T wave, RR interval and PR interval, etc. [11]. Also, QRS detection 
can provide useful information for biological signal processing, such as heartbeat classifi-
cation [38], the heart rate computation [39], ECG compression [40], biometrics [41], etc. 
Although QRS detection is important, the diagnoses of some abnormalities do not have 
to detect QRS. In the study of Acharya et al. [34, 35], CNN is used for automatic arrhyth-
mia and coronary artery disease detection. All the raw ECG signals are downsampled and 
removed noise at first. Then, the ECG signals are separated into two different durations of 
segments and sent to corresponding CNNs for final arrhythmia classification.

The detection for QRS complex as well as many abnormalities in the ECG is compli-
cated at the presence of noise. However, the noise can be used to improve the detection 
robustness to noise. One of the reasons behind the robustness to noise of the proposed 
method is that the ECG signals used at the training stage are combined with noise. Simi-
larly, in the study of Acharya et al. [36], both the noisy and the denoised ECG signals are 
segmented using the detected R-peaks and then sent to CNN for training. Although the 
noise reduces the overall performance, the trained CNN can be implemented for detec-
tion of abnormalities with and without noise.

In order to facilitate feature extraction and reduce computational complexity, only dif-
ference and averaging operations are applied for preprocessing in the proposed method. 
Then, the two-level 1-D CNN is used for automatic extracting different grained mor-
phological features which are sent to MLP for final QRS detection. The performance of 
our proposed method is comparable to the performances showed in Tables 4 and 5. The 
robustness to noise of the proposed method is also assessed and shown in Table 6.

The advantages of our proposed method are summarized below:

(1)	 Both the feature extraction and final QRS detection are automatic by using two-
level CNN and MLP.

(2)	 The computation cost of the proposed QRS detection method is low.
(3)	 The proposed detection method is robust to noise.

The shortages of our proposed method are as follows:

(1)	 The training of the proposed method is a time-consuming process.
(2)	 The length of input ECG signal is fixed once the structures of the CNN and the 

MLP are determined.

Conclusion
In this paper, an automatic QRS complex detection method is proposed, which adopts 
morphological features of ECG signals. The coarse-grained and fine-grained morpho-
logical features are extracted using attention-based two-level 1-D CNN, negating the 
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necessity to extract features manually. In order to facilitate feature extraction men-
tioned above, a simple preprocessing technique is also adopted. The experimental results 
obtained by using the MIT-BIH-AR database and the INCART database show that 
the proposed QRS detection method provides robustness to noise and high detection 
performance.

Based on the identified QRS complex, the rest of the ECG waves can be detected. The 
work assists medical diagnoses and serves as an entry point to almost all automated 
ECG analysis. In future work, we will combine ECG signals and other biomedical sig-
nals to improve the accuracy and the robustness to noise of QRS complex detection. In 
addition, the detected waves will be used for heartbeat classification which is crucial in 
cardiovascular disease diagnosis.
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