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Background
Acute respiratory distress syndrome (ARDS) requires mechanical ventilation (MV) 
in the intensive care unit (ICU). ARDS can involve elements of inflammation in the 
lungs and fluid accumulation in airways, and has a mortality rate of 46% [1]. Positive 
end-expiratory pressure (PEEP) is an important ventilator setting used to prevent de-
recruitment of lung units at the end of expiration [2, 3]. However, when PEEP levels are 
too high, over distension of alveoli may cause ventilator induced lung injury (VILI) [4]. 

Abstract 

Background:  For mechanically ventilated patients with acute respiratory distress 
syndrome (ARDS), suboptimal PEEP levels can cause ventilator induced lung injury 
(VILI). In particular, high PEEP and high peak inspiratory pressures (PIP) can cause over 
distension of alveoli that is associated with VILI. However, PEEP must also be sufficient 
to maintain recruitment in ARDS lungs. A lung model that accurately and precisely pre-
dicts the outcome of an increase in PEEP may allow dangerous high PIP to be avoided, 
and reduce the incidence of VILI.

Methods and results:  Sixteen pressure-flow data sets were collected from nine 
mechanically ventilated ARDs patients that underwent one or more recruitment 
manoeuvres. A nonlinear autoregressive (NARX) model was identified on one or 
more adjacent PEEP steps, and extrapolated to predict PIP at 2, 4, and 6 cmH2O PEEP 
horizons. The analysis considered whether the predicted and measured PIP exceeded 
a threshold of 40 cmH2O. A direct comparison of the method was made using the first 
order model of pulmonary mechanics (FOM(I)). Additionally, a further, more clinically 
appropriate method for the FOM was tested, in which the FOM was trained on a single 
PEEP prior to prediction (FOM(II)). The NARX model exhibited very high sensitivity 
(> 0.96) in all cases, and a high specificity (> 0.88). While both FOM methods had a high 
specificity (> 0.96), the sensitivity was much lower, with a mean of 0.68 for FOM(I), and 
0.82 for FOM(II).

Conclusions:  Clinically, false negatives are more harmful than false positives, as a high 
PIP may result in distension and VILI. Thus, the NARX model may be more effective 
than the FOM in allowing clinicians to reduce the risk of applying a PEEP that results in 
dangerously high airway pressures.
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Whenever damage is caused to the lung tissue, there is a release of biological mediators, 
which can lead to organ failure and increased mortality [5]. Hence, setting PEEP levels to 
maintain recruited alveoli, while avoiding distension, is necessary to minimise VILI and 
improve outcomes [6–9].

Physiological modelling can capture patient-specific pulmonary mechanics and aid 
determination of optimal ventilator settings for each patient [10–14]. We have previ-
ously proposed a nonlinear autoregressive (NARX) model of respiratory mechanics [15, 
16]. The model uses basis functions to capture pulmonary elastance as a function of air-
way pressure, and multiple time-dependent resistance coefficients to capture impedance 
and viscoelastic effects. The NARX model has successfully captured airway pressure 
waveforms in ARDS patients during recruitment manoeuvres (RM) [15], and success-
fully predicted airway pressure at higher PEEP [16].

High airway pressure (> 40 cmH2O) due to excessive PEEP can contribute to over-dis-
tension and VILI [17–20]. Thus, limited pressure, as well as low tidal volume and other 
parameters, is considered lung protective [21]. Using prediction to avoid PEEP levels 
that induce high PIP may reduce the incidence of VILI, and the associated mortality and 
morbidity. Such prediction would provide clinicians with an indication of the risk asso-
ciated with an increase in PEEP and a further metric to aid decision support. The aim 
of this work is to assess the ability of the NARX model to predict the high pressure that 
may cause pulmonary distension in ARDS patients, where the prediction horizon is a 
PEEP step increase of 2, 4, or 6 cmH2O. A comparison is made with the well-known and 
frequently used first order model (FOM) [6], which, in contrast with the NARX model, 
uses a single elastance term.

Methods
Data

This analysis uses data from a pilot Clinical Utilisation of Respiratory Elastance (CURE) 
software trial [22]. Airway pressure and flow data were collected from 10 fully sedated 
ARDS patients, of which seven were ventilated in pressure controlled mode, and three in 
volume controlled mode. Ethics approval for this study and subsequent use of collected 
data was granted by the New Zealand South Regional Ethics Committee. Informed 
consent was obtained from the patients. Patient age ranged from 18 to 88, with a mean 
of 55 years. The mean breathing rate was approximately 18 breaths/min, with no end-
inspiratory pause. Pressure and flow were recorded from a Puritan Bennett 840 ventila-
tor at a sampling rate of 50 Hz. Volume was calculated from continuous integration of 
the flow, with compensation for volume drift to maintain a volume of 0 mL at PEEP.

Patients underwent one or more RMs with initial PEEP =  8–16  cmH2O. PEEP was 
then increased in steps of 2 cmH2O after approximately 10 breaths at each PEEP level. 
The RMs used differing numbers of PEEP steps, and reached different PIP levels. 
The data sets contained a range of 5–9  PEEP steps. It is also important to note these 
patients were in the middle of care and PEEP = 16 cmH2O is not unreasonable for some 
patients. If the patient is not responding at this level a RM is an acceptable course of 
action, leading to the wider range of PEEP at RM commencement in this data. One of 
the ten patients was excluded as they were not ventilated to a PIP of 40 cmH2O. Of the 
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nine remaining patients, three underwent multiple RMs during the trial. In total, there 
were 16 data sets available for analysis.

Respiratory models

The first order model (FOM) of pulmonary mechanics forms the basis of the NARX 
model. The FOM contains single resistive and elastic components:

where P is the measured airway pressure (cmH2O), t is time (s), R is the airway resist-
ance (cmH2O s/L), V̇  is the airway flow rate (L/s), E is the elastance of the lung tissue and 
chest wall (cmH2O/L), V is the air volume in the lung above volume at PEEP (L), and P0 
is the offset pressure (cmH2O).

The NARX model builds upon the FOM by incorporating pressure dependent basis 
functions to describe elastance, and multiple time dependent terms that represent the 
effect of airway resistance to flow and changes in flow. The NARX model is defined [15]:

where φi(P(t)) is the particular basis function value for a given pressure measurement 
(dimensionless); Ei is the elastance coefficient for a given basis function (cmH2O/L), M 
is the number of basis functions used, Rj is a series of terms that capture resistance and 
inertance of the flow (cmH2O s/L); L is the number of resistive terms. The subscript − j 
in the second term refers to the previous time samples. Thus, each P(t) is calculated from 
information from the previous 170 data points. The sum of the basis functions multi-
plied by their Ei coefficients represent elastance as a function of pressure. The FOM can 
be replicated with M = L = 1, and zero order basis functions.

Figure  1 shows the four basis functions used to describe elastance. These functions 
were selected previously [16] as a linear combination of these shapes were able to cap-
ture the range of elastance profiles observed in a larger patient cohort:

(1)P(t) = RV̇ (t)+ EV (t)+ P0(t)

(2)P(t) =

M=4
∑

i=1

Eiφi(P(t))V (t)+

L=170
∑

j=0

RjV̇
(

t−j

)

+ P0(t)

Fig. 1  Constant, exponential, linear, and sigmoidal basis functions
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To identify patient-specific models, the non-linear elastance terms are decomposed 
into linear terms using Eqs. 3a, 3b, 3c, 3d and a linear system is evaluated across certain 
subsets of the full data range (t0 − tN, where N < ND and ND is the length of the full data 
set). This subset of data is the ‘training set’.

where:

The linear system can be evaluated via matrix psuedo inverse to provide x.

Analysis

This analysis compares NARX and FOM predictions for the occurrence of PIP  >  40 
cmH2O at PEEP levels higher than the training set. This pressure threshold was arbitrar-
ily chosen, but is generally considered an upper bound to acceptable ventilation pres-
sures for critically ill ARDS patients. True positive, true negative, false positive, and false 
negative results were recorded for both models. The sensitivity and specificity were cal-
culated. Receiver operating characteristic (ROC) curves were generated by varying the 
discrimination threshold.

For each RM, the NARX model was first trained on the lowest PEEP level (PEEPmin) 
in the data. The basis functions that formed the patient model were extrapolated 
to predict the PIP at PEEPmin +  {2, 4, 6}  cmH2O, respectively. The predicted PIP was 
compared with the measured PIP at these higher PEEP levels. Then the PEEPmin and 
PEEPmin  +  2  cmH2O levels were used as the training set, and PIP was predicted at 

(3a)φ1 = 1

(3b)φ2 =
P

50

(3c)φ3 = e−0.04P

(3d)φ4 =
1

1+ e−0.25(P−28)

(4)Ax = b
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PEEPmin +  {4, 6, 8} cmH2O. The training set was enlarged to incorporate more PEEP 
levels until there was only a single PEEP step left for prediction.

The predictive ability of the FOM was used as a comparator for the NARX. The FOM 
is generally considered to be most relevant over small pressure ranges. FOM(I), uses the 
same training set as the NARX model, FOM(II) uses the elastance determined from a 
single PEEP level to predict PIP at one to three PEEP steps above that level. FOM(I) 
allows a direct comparison with the NARX model method, and FOM(II) allows the 
FOM to operate in a scenario more suited to its strengths. Figure 2 shows one patient’s 
identified and extrapolated elastance for the NARX and FOM methods.

Results
Figure  3 shows prediction results for one RM. In this particular case, the NARX and 
FOM(I) models were identified on six PEEP steps and extrapolated to the seventh PEEP 
step. The NARX model provided an accurate prediction of the pressure waveform and 
correctly determined that peak pressure at the seventh PEEP step would be greater than 
40 cmH2O. The FOM(I) prediction was substantially lower than the true peak pressure 
at the seventh PEEP step and gave a false negative result. FOM(II) was able to correctly 
predict that peak pressure would exceed 40 cmH2O at the seventh PEEP step. However, 
the predicted waveform had larger residuals compared to the NARX model.

Table 1 shows the confusion matrices for the NARX model, FOM(I), and FOM(II) at 
each prediction horizon. The NARX model sensitivity was substantially better than the 
FOM(I) or FOM(II) in all cases. As expected, FOM(II) was more sensitive than FOM(I). 
The specificity of the NARX model was lower than FOM(I) and FOM(II). Note that there 
is a general, but imperfect, trend for the prediction metric scores to be poorer as the pre-
diction PEEP moves further from the training PEEP.

The relationship between measured and predicted peak pressures across the cohort 
is given in Fig. 4, for the prediction a single PEEP step up from the training data. The 
three cases of false positive detection by the NARX model occurred when the meas-
ured PIP was very close to 40  cmH2O. In all three of these cases, measured PIP 
was ≥ 38.6 cmH2O, indicating the NARX model prediction was very close to the clinical 

Fig. 2  Identified elastance and predicted elastance for a particular ARDS patient
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outcome. In the Bland–Altman plots, dotted lines give the 25th, 50th, and 75th percen-
tiles of the difference in measured and predicted PIP. There is a slight bias in the NARX 
model for predictions to be higher than measured. FOM(I) has a relatively large bias 
towards low predictions, and FOM(II) is also slightly biased low.

The ROC curves in Fig. 5, for a single PEEP step prediction, plot the true positive rate 
against the false positive rate as the discrimination threshold was varied (Fig. 5). While 
all models performed significantly better than a random classifier, the area under the 
curve was clearly greatest for the NARX model, indicating the best overall performance. 

Fig. 3  Prediction and training data. Bottom figures are zoomed into the corresponding box shown in the top 
figures

Table 1  Prediction results

Brackets denote the classifications for the 2, 4, and 6 cmH2O prediction horizons

Predicted
P > 40 cmH2O

Predicted
P < 40 cmH2O

NARX Measured
P > 40 cmH2O

TP
[45, 43, 42]

FN
[0, 2, 1]

Sensitivity
[1.00, 0.96, 0.98]

Measured
P < 40 cmH2O

FP
[3, 3, 5]

TN
[54, 36, 24]

Specificity
[0.95, 0.88, 0.89]

FOM(I) Measured
P > 40 cmH2O

TP
[31, 30, 29]

FN
[14, 14, 15]

Sensitivity
[0.69, 0.67, 0.67]

Measured
P < 40 cmH2O

FP
[0, 0, 1]

TN
[57, 41, 26]

Specificity
[1.00, 1.00, 0.96]

FOM(II) Measured
P > 40 cmH2O

TP
[39, 38, 32]

FN
[6, 7, 11]

Sensitivity
[0.87, 0.84, 0.74]

Measured
P < 40 cmH2O

FP
[0, 0, 1]

TN
[57, 41, 26]

Specificity
[1.00, 1.00, 0.96]
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The optimal threshold was 40.3 cmH2O for the NARX model, 37.8 cmH2O for FOM(I), 
and 39.3 cmH2O for FOM(II). The optimal threshold was calculated as the point on the 
ROC curve closest to (0, 1). Calculating the Youden index yielded the same results.

Discussion
Clinically, false negatives are much more harmful to patients than false positives. In the 
context of pulmonary distension, a false negative may result in higher ventilation pres-
sures that lead to distension and VILI. In contrast, a false positive result may mean clini-
cians do not increase PEEP, and miss out on the potential for improved recruitment at 
the higher PEEP level. Hence, the comparative impact of a false negative is stronger than 
the impact of a false positive, and thus, a high sensitivity should be favoured when pre-
dicting the outcomes of potential treatment methods.

Fig. 4  Relationship between measured and predicted peak pressures for the models analysed. Top—correla-
tions; bottom—Bland–Altman

0 0.1 0.2 0.3
1-specificity

0.7

0.8

0.9

1

se
ns

iti
vi
ty

NARX

0 0.1 0.2 0.3
1-specificity

0.7

0.8

0.9

1

se
ns

iti
vi
ty

FOM(I)

0 0.1 0.2 0.3
1-specificity

0.7

0.8

0.9

1

se
ns

iti
vi
ty

FOM(II)

Fig. 5  ROC curves for each model
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Elastance captures the static tidal pressure required for a given volume of inspired 
air. While PEEP is the model input that allows the model to fit to the pressure troughs 
in each breath, an accurate elastance allows an accurate model fit to PIP. If predicted 
elastance is too high, a predicted breath will have a PIP that is higher than the true PIP. 
Similarly, if predicted elastance is too low, the predicted PIP will be lower than the true 
PIP.

VILI often occurs at the alveoli, due to mechanical strain caused by high alveolar pres-
sure [23]. Due to low flowrates in the lower bronchiole close to the alveoli and the com-
pliance of the bronchial path, the PIP measured at the airway is generally higher than the 
pressure experienced at the alveoli. Since airway resistance reduces at high pressures, 
higher than expected PIP levels are more likely due to increases in elastance at high pres-
sure. Such an outcome is indicative of alveolar distension. Although this clinical protocol 
did not utilise the end-inspiratory pause needed to approximate alveolar pressure, it uti-
lised a proxy metric (PIP) that is easily available in typical clinical practice.

In this analysis, there were no false negative and only three false positive predictions 
from the NARX model over a prediction horizon of one PEEP step. In the three false 
positive cases, the mean difference between measured and predicted peak pressures was 
only 1.5 cmH2O. For the NARX false positives that occurred at prediction horizons of 
two and three PEEP steps, the mean difference between measured and predicted PIP 
was 2.4 cmH2O in both cases. Thus, the false positives did not actually represent poor 
prediction. However, the incidence of these false positives may imply that the basis func-
tion shapes slightly overestimate the onset of distension.

FOM(I) and FOM(II) were unable to always predict when measured PIP was likely 
to be greater than 40 cmH2O (Table 1). The FOM assumes a constant elastance (Eq. 1). 
In reality, elastance changes during inflation according to recruitment and distension 
effects [24, 25]. In general, distension effects mean that elastance is likely to be higher at 
pressure close to 40 cmH2O than at lower pressures, as most of the possible recruitment 
has already been achieved. Thus, in a situation with increasing elastance with PEEP, the 
single elastance term identified in the FOM will lead to underestimated PIP. This led to 
the high rate of false negatives given by FOM(I) and FOM(II). In contrast, the extrapola-
tion of the NARX elastance shape to higher pressures enables the prediction of a higher 
elastance at higher PEEP, and thus very few false negatives occurred.

FOM(II) uses identification data from only one PEEP step previous to the prediction 
PEEP. This method better represented the clinical use of the FOM. While less data was 
used for parameter identification in comparison to FOM(I), FOM(II) was more suc-
cessful at predicting PIP. Compared to FOM(I) the sensitivity of FOM(II) increased by 
an average of 0.14 percentage points for the three prediction horizons. This occurred 
because the single elastance of FOM(II) did not need to partially represent the lower 
elastance of the lower pressure ranges (Fig. 2). However, the predicted peak pressures of 
FOM(II) tended to be lower than the NARX prediction and had higher residuals (Fig. 3).

The FOM(I) and FOM(II) specificities were higher than the NARX model specificities 
for each prediction horizon. This was an expected result, as a FOM false positive would 
only occur if elastance was decreasing when PIP was near 40 cmH2O. When peak pres-
sure is close to 40 cmH2O, elastance is very unlikely to decrease as all recruitable lung 
volumes are likely to be recruited at lower pressures. Alternatively, FOM false positives 
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would be likely to occur in a decreasing PEEP scenario. A single elastance identified 
from high pressure data is likely to be too high for an accurate prediction when PEEP 
is decreased. In this scenario, the NARX would be expected to perform better than the 
FOM, due to the ability to easily extrapolate a continuous elastance to lower pressures.

The ROC curve analysis (Fig.  5) shows the possible diagnostic equivalence of the 
models as their diagnostic thresholds are varied. The area under the ROC curve for 
the NARX model was the largest and yielded a peak sensitivity and specificity of 0.98 
and 1.00 when a threshold of 40.3 cmH2O is used. Since the optimum threshold of the 
NARX is very close to 40 cmH2O, the NARX predicted pressures were very precise in 
the region of clinical interest. The FOM(I) yielded a maximum diagnostic equivalence 
at 37.8 cmH2O and had a sensitivity of 0.96 and specificity of 0.93 at this point. The 
FOM(II) optima occurred at 39.3 cmH2O and had a sensitivity of 0.98 and a specificity 
of 0.96 at this point. While the NARX precision and accuracy exceeded the performance 
of the FOM, it should be noted that the performance of all models would be acceptable 
within the variance expected in clinical practice.

Clinically, once a dangerous PIP has been recorded, PEEP would not be increased 
further as the risk of distension and VILI would be high. Thus, outside of an initial 
recruitment manoeuvre, PEEP might not be increased to allow peak pressures beyond 
the clinician’s chosen threshold. In this analysis, we included all available data from the 
recruitment manoeuvres and thus contradicted the clinical process. However, this was 
necessary to establish that the models did not erroneously predict a low PIP at high 
PEEP. Furthermore, ceasing the evaluation at the first instance of PIP > 40 cmH2O would 
generate an incorrect low true positive rate, and thus the sensitivity calculation would be 
negatively affected.

In this analysis we used data from seven patients on pressure controlled ventilation 
and three patients on volume controlled ventilation. In pressure controlled data, the PIP 
is a setting defined by the clinician, and thus it may seem strange to analyse the ability 
of the model to predict PIP in pressure controlled mode. However, none of the model-
ling approaches used in this analysis incorporated a priori information on the applied 
ventilator settings. In contrast, the modelling approaches provide a transfer function 
between pressure and flow. Thus the ability to predict pressure from flow data remains 
scientifically valid, even in pressure controlled mode, when the model does not use the 
ventilator settings as an input. Furthermore, parameterisation must be considered when 
model residuals are used to assess model performance [26]. In particular, in such cases 
extraneous parameters could enable improved fitting, but they could also confound the 
precise identification of physiologically meaningful parameters and thus limit the appli-
cability of the model for prediction or extrapolation of behaviour. However, the level of 
model parameterisation is insignificant when the ability to precisely extrapolate beyond 
the identification domain is used to assess model suitability.

This model was designed specifically to capture non-linear elastance effects and uses 
pressure dependent elastance terms. However, we note that this formulation, like all 
models has limitations in certain behaviours. In particular, the model may well not per-
form well in some clinical cases, such as atelectasis or high auto-PEEP. However, the pri-
mary goal of this research was determine the model’s ability to predict the likelihood 
of exceeding a particular PIP threshold. Hence, it was critical to be able to extrapolate 
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elastance beyond the pressure in the identification sets. Pressure and volume depend-
ent elastance formulation are mathematically equivalent due to the generally monotonic 
behaviour of pressure and volume. However, integration of flow signals yields drift in 
volume values that can confound PIP prediction. Pressure signals can be more effectively 
calibrated across PEEP steps and are thus a much more stable parameter to extrapolate 
elastance.

While the cohort is representative of modern ICU patients, the sample size of nine 
patients and 16 RMs is relatively small. The method should be tested on a larger cohort 
under varying disease states and ventilation modes to confirm the results. Additionally, 
the threshold pressure of 40 cmH2O was somewhat arbitrarily chosen. While this pres-
sure would normally be considered high, it may not necessarily cause over-distension in 
all patients. However, the findings of this analysis imply that the NARX model’s variable 
elastance can enable accurate and precise PIP predictions at any pressures thresholds 
that are chosen with the intention to limit distension.

The NARX model predicted high peak pressures more accurately than the FOM, and 
importantly, had very low instances of false negatives. Zero false negatives occurred at 
the prediction horizon of one PEEP step. The NARX model may aid clinicians in decid-
ing whether to raise the PEEP setting for individual patients, and avoid dangerous PEEP 
levels that may cause distension and VILI.

Conclusions
The NARX model was more successful than the FOM at predicting high airway pres-
sure (Fig. 4). The NARX model had very few instances of false negative results, while the 
FOM frequently failed to predict when PIP would exceed 40 cmH2O (Table 1). While 
FOM(II) improved the FOM sensitivity over FOM(I), it was still less successful than the 
NARX model. In contrast, the NARX model yielded a limited number of false positive 
predictions, though the specificity of the NARX model remained relatively high at 0.95, 
0.88, and 0.89 for the 2, 4, and 6 cmH2O prediction horizons, respectively. The error in 
the NARX false positive predictions was small, and the consequences of false positives 
are far less severe than the potential VILI that may result from false negative predic-
tions. Thus, the NARX model predictive capability has the potential to reduce the risk of 
patients being ventilated at dangerously high PEEP levels.

Abbreviations
ARDS: acute respiratory distress syndrome; FOM: first order model; ICU: intensive care unit; MV: mechanical ventilation; 
NARX: nonlinear autoregressive; PEEP: positive end expiratory pressure; PIP: peak inspiratory pressure; RM: recruitment 
manoeuvre; VILI: ventilator induced lung injury.

Authors’ contributions
The modelling was undertaken by RL and PDD. Analysis was undertaken by RL, PDD, CS, and JGC. The manuscript was 
drafted by RL, and edited by PDD, CS, and JGC. All authors read and approved the final manuscript.

Author details
1 Department of Mechanical Engineering, University of Canterbury, Private bag 4800, Christchurch 8140, New Zealand. 
2 Hamilton Medical, Via Crusch 8, 7402 Bonaduz, Switzerland. 

Acknowledgements
Not applicable.

Competing interests
The authors declare that they have no competing interests.



Page 11 of 12Langdon et al. BioMed Eng OnLine  (2017) 16:126 

Availability of data and supporting materials
The datasets analysed in this study are available from the corresponding author on reasonable request.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Ethics approval to collect, audit, and present these data was obtained from the South Island Regional Ethics Committee, 
New Zealand. Informed consent was obtained from the patients.

Funding
RL was supported by a University of Canterbury, College of Engineering PhD scholarship while undertaking this research.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 21 April 2017   Accepted: 25 October 2017

References
	1.	 Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory 

distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788–800.
	2.	 Amato MBP, Barbas CSV, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz 

C, Oliveira R, Takagaki TY, Carvalho CRR. Effect of a protective-ventilation strategy on mortality in the acute respira-
tory distress syndrome. N Engl J Med. 1998;338:347–54.

	3.	 Halter JM, Steinberg JM, Schiller HJ, DaSilva M, Gatto LA, Landas S, Nieman GF. Positive end-expiratory pressure after 
a recruitment maneuver prevents both alveolar collapse and recruitment/derecruitment. Am J Respir Crit Care Med. 
2003;167:1620–6.

	4.	 Dreyfuss D, Saumon G. Ventilator-induced lung injury. Lessons from experimental studies. Am J Respir Crit Care Med. 
1998;157:294–323.

	5.	 Lionetti V, Recchia FA, Ranieri VM. Overview of ventilator-induced lung injury mechanisms. Curr Opin Crit Care. 
2005;11:82–6.

	6.	 Bates JHT. Lung mechanics: an inverse modeling approach. New York: Cambridge University Press; 2009.
	7.	 Girard TD, Bernard GR. Mechanical ventilation in ARDS: a state-of-the-art review. Chest. 2007;131:921–9.
	8.	 Fan E, Villar J, Slutsky AS. Novel approaches to minimize ventilator-induced lung injury. BMC Med. 2013;11:85.
	9.	 Fenstermacher D, Hong D. Mechanical ventilation: what have we learned? Crit Care Nurs Q. 2004;27:258–94.
	10.	 Sundaresan A, Yuta T, Hann CE, Chase JG, Shaw GM. A minimal model of lung mechanics and model-based markers 

for optimizing ventilator treatment in ARDS patients. Comput Methods Programs Biomed. 2009;95:166–80.
	11.	 Lozano S, Moller K, Brendle A, Gottlieb D, Schumann S, Stahl CA, Guttmann J. AUTOPILOT-BT: a system for knowl-

edge and model based mechanical ventilation. Technol Health Care. 2008;16:1–11.
	12.	 Chiew YS, Chase JG, Shaw G, Sundaresan A, Desaive T. Model-based PEEP optimisation in mechanical ventilation. 

Biomed Eng Online. 2011;10:111.
	13.	 Chiew YS, Chase JG, Lambermont B, Janssen N, Schranz C, Moeller K, Shaw G, Desaive T. Physiological relevance and 

performance of a minimal lung model—an experimental study in healthy and acute respiratory distress syndrome 
model piglets. BMC Pulm Med. 2012;12:59.

	14.	 van Drunen E, Chiew YS, Pretty C, Shaw G, Lambermont B, Janssen N, Chase J, Desaive T. Visualisation of time-vary-
ing respiratory system elastance in experimental ARDS animal models. BMC Pulm Med. 2014;14:33.

	15.	 Langdon R, Docherty PD, Chiew YS, Möller K, Chase JG. Use of basis functions within a non-linear autoregressive 
model of pulmonary mechanics. Biomed Signal Process Control. 2016;27:44–50.

	16.	 Langdon R, Docherty PD, Chiew YS, Chase JG. Extrapolation of a non-linear autoregressive model of pulmonary 
mechanics. Math Biosci. 2016;284(2):32–39.

	17.	 Petersen GW, Baier H. Incidence of pulmonary barotrauma in a medical ICU. Crit Care Med. 1983;11:67–9.
	18.	 Schranz C, Docherty PD, Chiew YS, Chase JG, Moller K. Structural identifiability and practical applicability of an alveo-

lar recruitment model for ARDS patients. IEEE Trans Biomed Eng. 2012;59:3396–404.
	19.	 Docherty PD, Schranz C, Chiew YS, Möller K, Chase JG. Reformulation of the pressure-dependent recruitment model 

(PRM) of respiratory mechanics. Biomed Signal Process Control. 2014;12:47–53.
	20.	 Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, Schoenfeld D, Thompson BT. Higher 

versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J 
Med. 2004;351:327–36.

	21.	 Gattinoni L, Carlesso E, Brazzi L, Caironi P. Positive end-expiratory pressure. Curr Opin Crit Care. 2010;16:39–44.
	22.	 Szlavecz A, Chiew YS, Redmond D, Beatson A, Glassenbury D, Corbett S, Major V, Pretty C, Shaw G, Benyo B, Desaive 

T, Chase J. The clinical utilisation of respiratory elastance software (CURE Soft): a bedside software for real-time 
respiratory mechanics monitoring and mechanical ventilation management. Biomed Eng Online. 2014;13:140–53.

	23.	 Roan E, Waters CM. What do we know about mechanical strain in lung alveoli? Am J Physiol Lung Cell Mol Physiol. 
2011;301:L625–35.



Page 12 of 12Langdon et al. BioMed Eng OnLine  (2017) 16:126 

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

	24.	 Hickling KG. The pressure–volume curve is greatly modified by recruitment. a mathematical model of ARDS lungs. 
Am J Respir Crit Care Med. 1998;158:194–202.

	25.	 Venegas JG, Harris RS, Simon BA. A comprehensive equation for the pulmonary pressure-volume curve. J Appl 
Physiol. 1998;84:389–95.

	26.	 Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. 
New York: Springer; 2002.


	Prediction of high airway pressure using a non-linear autoregressive model of pulmonary mechanics
	Abstract 
	Background: 
	Methods and results: 
	Conclusions: 

	Background
	Methods
	Data
	Respiratory models
	Analysis

	Results
	Discussion
	Conclusions
	Authors’ contributions
	References




