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Background
Breast cancer is the second leading cancer in the female population. According to the US 
breast cancer statistics, 1 in 8 women (over 12%) will develop breast cancer during their 
lifetime [1].

Detecting breast cancer at earlier stages will increase survival time (defined as the time 
between the date of diagnosis and the date of death)—unless survival time is shortened 
by (aggressive) treatment [1–4]. At present, there are many imaging techniques avail-
able for the detection of breast tumors, including magnetic resonance imaging (MRI), 
X-ray, positron emission tomography (PET), and mammography. A distinctive similarity 
among all these imaging methods is that they are either invasive or associated with ion-
izing radiation. Unlike the aforementioned approaches, infrared (IR) thermography can 
be used as a non-ionizing, non-contact, and safe method for detecting the location, size, 
and different thermal parameters of a tumor at early stages [3, 4].
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Currently, infrared imaging being used in medicine for various applications that such 
as evaluation of allergic tests, morphea, basal cell carcinoma, chilblains, melanocytic 
naevi, melanoma extensivity, deep vein thrombosis, burn depth, Raynaud’s phenome-
non, thyroid gland changes, pneumonia development, arthropathy and many other path-
ological conditions [3, 5]. Infrared imaging provides information about the temperature 
by measuring the radiation emitted from the skin surface. This technique was not well 
accepted in the past due to its high cost and the low sensitivity of IR cameras. However, 
advances in IR technology have promoted its application in medicine as a low-cost, non-
invasive, and non-ionizing technique [3, 4].

Skin surface temperature can be affected by several parameters such as the blood per-
fusion rate underneath the skin, metabolism rate, and the heat exchange rate between 
the body surface and the surrounding environment. Any change in such parameters can 
change the body surface temperature, as well as heat flux on the skin surface [6–8]. Can-
cerous tissues frequently produce more heat than normal tissues due to their high vascu-
lature (which may result in an altered localized thermal gradient due to heat conduction 
to neighbouring cooler surrounding) in addition to a higher metabolic rate (with rapidly 
dividing malignant cells). Therefore, the skin above such tissues will have a higher local 
temperature by several degrees. This abnormality in skin temperature can be utilized 
for detection of tumor parameters and evaluating the tumor at different stages of treat-
ment [2–4, 6, 9–11]. With most of the present scanning techniques, an aggressive tumor 
which is <2 mm in width may remain undetected. Such small undetected tumors will 
grow, making the treatment more difficult and reducing the chance of survival [12–16].

Surface temperature for tumor detection was first employed by Lawson in 1959 [17]. 
In 1969, Draper and Jones used IR scans to examine the relationship between the body 
temperature and different diseases [18]. In 1971, Feasy et al. used point heat sources to 
investigate the effects of natural and forced cooling on tumors’ thermographic patterns 
[19]. The findings of this study suggest that tumor depth alone affects temperature distri-
bution. Hence, surface cooling will not affect the temperature distribution [9, 19]. Also, 
in 1972, Davison et al. suggested that there exists a “linear relation between the depth of 
tumor and the width at half height of the resultant skin temperature distribution”, which 
is independent of the tumor radius [20]. During past decades, however, more studies 
have been conducted on this subject, among which was thermographing breast tumors 
in 5800 patients in order to measure the tumor temperature [9, 21].

A further aspect of IR imaging techniques and detection methods of breast cancer 
from IR images are described in detail by Ng in [22]. According to this paper, several 
conditions such as environmental temperature, temperature reference, and patient and 
camera positions should be taken into consideration before conducting the thermal 
imaging. Additionally, image capture protocol is considered to be the major source of 
error due to the camera focus distance and its viewing angles [22].

In this work, given the complexity of the human body and tumors, an algorithm has 
been developed under certain assumptions to estimate the location and depth of the 
tumor. Afterward, the results were optimized using an artificial neural network (ANN), 
an information processing algorithm that behaves similarly to the biological nervous 
system for processing information [2, 3, 23]. An ANN algorithm is composed of many 
interconnecting processing elements or neurons. In addition, it is employed for solving 
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problems such as data processing and pattern recognition. The ANN learns by example 
and the initial parameters [23].

In the present study, the heat source problem was analyzed using two different 
approaches. First, the effects of the intensity, depth, and radius of the heat source on the 
skin surface temperature were analyzed. Afterward, the values of the parameters were 
optimized for a more accurate localization.

In the second part, the sensitivity of each parameter was studied. Moreover, an equa-
tion was derived which utilizes only the maximum temperature, and the local tempera-
ture (at any distance from the maximum temperature) on the skin surface in order to 
calculate the depth, and hence the radius, of the heat source without the need for meas-
uring the heat source intensity.

Methods
Measurement estimation

As stated earlier, infrared thermography can be used for measurement of the skin surface 
temperature. The bioheat model was used in this study. To calculate tumor parameters 
from the obtained thermogram, it is essential to solve for the inverse bioheat equation 
[24, 25]. This model was developed by solving the inverse heat conduction problem 
(IHCP) based on Penne’s bioheat transfer equation [10, 26]:

In this equation, ρc
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 is the heat conduction equivalent. 
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 is the metabolic heat rate [10, 26].
For a feasible solution for the IHCP, several assumptions have been made [10].

1.	 Solving the equation for breast tissue, which is mainly composed of adipose tissue.
2.	 Imaging the surface temperature of the model using an IR camera. The generated 

bioheat model is assumed to be static, and hence time has no effect on the model.
3.	 The model is homogeneous and isotropic with constant ρ, c, and k.
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 are considered to be a constant heat source 
embedded in breast tissue. The heat generated by the tumor is assumed as an addi-
tional heat source. These two were addressed by solving for an “equivalent point 
source” problem.

Hence, Eq. (1) can be rewritten as:

with ∂T/∂t = 0 since the model is static.
By further reducing Eq. (2), we obtain [10]:
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where ∇2 = (∂2/∂x2) + (∂2/∂y2) + (∂2/∂z2) is the Laplace term.
At the tissue surface, heat transfer is mainly a convection mechanism [10].
In order to solve for a three-dimensional model, a spherical coordinate was developed 

with the point heat source at the origin with body temperature as a function of r, φ, and 
θ. Also, there exists a spherical symmetry with ∂T

∂θ
= 0 and ∂T

∂ϕ
= 0 [1, 2, 9].

This problem is solved in two different steps (as illustrated in Fig.  1, next page) by 
assuming [9]:

1.	 r ≠ 0
2.	 r = 0

For the first assumption, Eq. (5) transforms into [9, 10]:

with a general equation form of T = (−c/r) + D with a constant c and D (for environ-
ment temperature).

In addition, for the latter assumption, r = 0, the volume integral is used to solve for 
the problem, with r being the radius of the sphere (a positive number ε) and v being the 
sphere itself. Therefore, Eq. (6) becomes [10]:

According to the Gaussian theorem:
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Fig. 1  Depth, intensity, and radius measurement model [2, 3]
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Then function Eq. (5) becomes:

To find C we can take the limit of Eq. (9):

Also, assuming the environmental temperature to be T0:

Equation  (12) is the mathematical representation of environment temperature. It 
describes the fact that environment temperature stays constant and does not depend to 
the size of tumor.

Finally, the temperature distribution of the tissue in three-dimensional coordinates 
can be expressed as [10]:

Equation (13) is the three-dimensional representation of temperature distribution. As 
it is mentioned earlier in this paper there exists a spherical symmetry with ∂T

∂θ
= 0 and 

∂T
∂ϕ

= 0, therefore, the temperature is only distributing as a function of the radius of the 
tumor. Hence 1
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∂
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A cancerous tissue can be modeled with intensity Q, radius R, and depth d in spheri-
cal coordinates. Considering an ideal condition in which the heat radiating from a heat 
source is completely exchanged with the surrounding environment [2, 3]:

Combining Eqs. (13) and (14), we obtain [2]:

Hence [2]:

where h0 is the heat exchange coefficient, T(a) is the temperature at the surface, and Te is 
the environment temperature [3].

The heat source parameters such as depth, radius, and heat intensity of the proposed 
model are calculated through the following equations [3]:
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where Qm is the metabolic heat generation (W/m3), and At is the volume of a single cell 
as 1 μm [2, 3].

The heat source parameters are illustrated in Fig. 1.
Since the thermal emissivity of the skin surface varies with the angle at which it is 

viewed, for more accurate reading, the tissue is viewed from the top.

Results and application
Equation (16) was used to assess the effects of the d, Q, and R parameters on the model.

The values of the thermal and physical properties of sound breast tissue are listed in 
Table 1 [4].

Effect of the heat source parameters on surface temperature

To assess the effect of the heat source parameters on the proposed model, a parametric 
study was performed by varying one parameter at a time while keeping the other two 
constant. The analytic method was developed using MATLAB R_2015b through out this 
research.

First, the model was simulated by applying a constant heat source intensity of 0.1 W 
and changing the depth of the heater embedded in the model. The heat source was 
assumed as a point, hence R = 0.

The depth of the heat source affects the maximum temperature (Tmax) as shown in 
Fig. 2. However, the area of temperature elevation is not affected by varying the depth. 
It can also be observed that the temperature rises significantly when the heat source is 
located (depth) around ±0.037 m.

Next, the model was used by positioning the heat source at the depth of d = 0.014 m 
and varying the intensity. The radius was zero.

(18)Q = 4πh0
(T (a)− Te)(Tmax − Te)

Tmax − T (a)
a2

(19)R = 3

√

Q

QmAt

Table 1  Thermal and biological parameters

Parameter Symbol Value Unit

Thermal conductivity k 0.52 W/(m K)

Heat exchange coefficient ha 8.77 W/(m2 K)

Specific heat (blood) cb 4186 J/(kg K)

Density (blood) ρb 1000 kg/m3

Metabolic heat generation (breast) qm 700 W/m3

Metabolic heat generation of tumor Qt 25,000–90,000 W/m3

Perfusion rate ωb 0.00052 1/s

Arterial blood temperature Ta 310.15 K

Environmental temperature Te 300.15 K
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Variation in the intensity affects both the maximum temperature and the area over 
which the temperature rises, as illustrated in Fig. 3.

In addition, a condition in which the heat source is not a point, i.e. R ≠ 0, was assumed. 
In Fig. 4, the heat source radius and intensity were assumed to be 0.005 m and 0.3 W, 

Fig. 2  Fixed intensity and varying depth: surface temperature directly depends on the depth at which the 
heat source is located

Fig. 3  Fixed heat source depth and varying intensity: variation in intensity affects the area over which tem‑
perature rises
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respectively. In Fig.  5, however, the heat source depth was fixed at d =  0.02  m, while 
R = 0.005.

It can be seen that a model with a spherical heat source of radius R has similar effects 
on the surface temperature to the point heat source with R = 0 (R is a very small number 

Fig. 4  Fixed intensity and varying depth for a spherical object with R = 0.005: temperature on the model 
surface directly depends on the depth at which the heat source is located

Fig. 5  Fixed heat source depth and varying intensity for a spherical object with R = 0.005: variation in inten‑
sity affects the area over which temperature rises
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in this case so it is possible to ignore its value). As illustrated in Fig. 4, variation in the 
depth affects Tmax. Also, the area over which the temperature changes is affected by var-
ying intensity, as can be seen in Fig. 5.

Figure 6 shows the effect of radius variation (R) on the surface temperature, for the 
depth of heat source and intensity of d =  0.02  m and Q =  0.3  W, respectively. It can 
be observed that as the radius increases, the maximum temperature increases as well. 
Furthermore, the area over which the temperature rises is unchanged. However, by com-
paring Fig. 6 with Figs. 4 and 5, we can conclude that in comparison with changes in the 
depth and intensity, changes in the radius do not have a significant effect on the surface 
temperature.

ANN model

The depth, radius, and intensity of the model, found through the model above, were 
optimized by training the artificial neural network via (ANN) toolbox of MATLAB. A 
3-layer feed-forward ANN with back propagation learning was developed to represent 
the surface temperature. The model was simulated using various parameters and the 
results were used for training the ANN. The algorithm was developed to have 3 inputs, 
and 10 hidden layers.

The ANN was trained for two sets of data. The first dataset was obtained assuming the 
ideal (noiseless) situation. Using Eqs.  (18) and (19), the parameters of the model were 
found to be Q = 0.35 W, d = 2 cm, and R = 5 mm. Also, the initial values were assumed 
to be Q = 0.356 W, d = 2.02 cm, and R = 5 mm. Using the initial values to train the 
ANN, these parameters were optimized to Q = 0.3559 W, d = 2.03 cm, R = 4.5 mm. 
Comparing the maximum temperature of the model with the maximum temperature 
obtained from ANN, it could be seen that there is 0.01  °C difference (Fig.  7). How-
ever, the difference is negligible due to the low intensity of the tumor. As the intensity 

Fig. 6  Fixed heat source depth and fix intensity for spherical objects with varying Rs
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increases, the difference between the two maximum temperatures increases too. Assum-
ing Q =  5  W, d =  1  cm, and R =  5  mm and training the ANN with initial values of 
Q = 5.5 W, d = 3 cm, and R = 0 mm, the new optimized values for these parameters will 
be Q = 5.5276 W, d = 1.62 cm, and.

R =  4.1  mm with the maximum temperature difference of 0.3611  °C. Based on our 
previous observations (see Figs. 3, 5), these results were expected.

For the second dataset, a random noise of 10% was added to the model. This noise 
could be in form of ambient temperature, Therefore, the parameter values were changed 
to Q = 0.05 W, with d = 1 cm, and R = 0.09 mm. By simulating and training the ANN, 
the optimized values of Q = 0.0478 W, d = 0.0296 m, and R = 0.1 mm were obtained. In 
this case, the maximum temperature difference was 0.03 °C.

As Figs. 7 and 8 show, there is only a maximum of 1.66 and 4.4% error in the value of Q 
for datasets I and II, respectively. Figure 9 compares the optimized parameters with the 
non-optimized ones. Using the parameters before optimization, the size and location of 
the tumor is much smaller that running the simulation with optimized values. 

Table 2 illustrates the error analysis for the noisy and no noise conditions. As it could 
be concluded, the higher the intensity, the higher the error in parameter estimation. This 
error would be reflected as temperature difference on the skin surface for various ranges 
and would affect the correct estimation of tumor location. Therefore, its critical to use 
the optimized model for research and clinical perpuses.

Sensitivity of the data analysis

Parameter sensitivity

To analyze the sensitivity of each parameter, a model was developed with the following 
parameters: Q = 0.045 W, d = 1.05 cm, and R = 5 mm. Subsequently, these parameters 

Fig. 7  Heat source model and ANN simulated model
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were changed by ±20%. In the first step, all parameters were kept constant, and only 
the intensity was adjusted to Q = 0.036 W. As shown in Fig. 10a there was only a small 
difference of 0.3 °C between the initial Q and Q measured with 20% error. However, the 

Fig. 8  Noisy model of analytical solution with and without ANN simulation. Maximum temperature increases 
after optimization process to a more accurate temperature

Fig. 9  A comparison between the optimized and non-optimized parameters (depth and radius) assuming 
a spherical breast of diameter 10 cm. The larger sphere illustrates the optimized location of the tumor within 
the breast tissue. The hemisphere outside the red box represents the breast tissue
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difference increased to about 1.5003 °C as the depth of the heat source was increased by 
20% (Fig. 10b). Additionally, changing R by 20% was accompanied by a temperature dif-
ference of 0.24 °C (Fig. 10c). Therefore, it could be concluded that these parameters are 

Table 2  Error analysis for optimization of the two cases

Parameter Original value Optimized value Error (%)

Data set (I): A condition with no noise and low intensity of tumor

 Depth (d) 2 cm 2.03 cm 1.5

 Raduse (R) 5 mm 4.5 mm 10

 Intensity (Q) 0.37 W 0.3559 W 3.81

Data set (I): A condition with no noise and higher intensity of tumor

 Depth (d) 1 cm 1.62 cm 62

 Raduse (R) 5 mm 4.1 mm 18

 Intensity (Q) 5 W 5.5276 W 10.55

Data set (II): A condition with 10% noise

 Depth (d) 1 cm 2.96 cm 66.2

 Raduse (R) 0.09 mm 0.1 mm 11.11

 Intensity (Q) 0.05 W 0.0478 W 4.4

Fig. 10  Sensitivity studies with 20% change in data. a illustrationg difference of 0.3 °C between the initial Q 
and Q measured. b illustrating 1.5003 °C as the depth of the heat source was increased by 20%. c changing R 
by 20% was accompanied by a temperature difference of 0.24 °C
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mostly sensitive to changes in depth, since a small change in depth resulted in over 1 °C 
change in temperature difference.

Considering a case with a heat source of higher Q, R, and D and applying the same 
±20%, the generated graphs would follow the same trend, as illustrated in Fig. 10.

Additionally, we have allowed Q =  0.025  W and Q =  0.09  W. Adding 20% error to 
both we would have Q = 0.03 W and Q = 0.108 W. This eventually would result in tem-
perature difference of 0.41 and 1.49 °C respectively.

Temperature sensitivity

A temperature sensitivity study was performed by assuming that there only exists infor-
mation about the maximum temperature and two local temperatures, as shown in Fig. 1. 
Using geometric rules, the depth of the heat source was found. Subsequently, it was 
possible to find the heat source radius and precise location. The following equation was 
derived based on the bioheat model, showing the relationship between the depth of the 
heat source and its radius.

Using this equation, it is possible to find the radius of the heat source without using 
the intensity. Equation (20) was obtained by solving the bioheat model. Values for h0 and 
qm for breast tissue are listed in Table 1.

It would be more efficient to use Eq. (20) during biological and clinical testing, where 
the local and maximum temperatures are measured using an IR camera, rather than 
using the analytical solution, where the parameters of the tumor are found by solving 
analytical governing equations.

The temperature sensitivity was studied assuming two conditions. The first condition 
was implemented by adding a random error of ±5% to the temperature at various loca-
tions. There is approximately 1.41 °C difference between the maximum temperatures, as 
shown in Fig. 11.

In the second condition, the difference between the two temperatures decreases. 
Under this condition, the maximum and minimum temperatures were found to be 
28.2996 and 26.6399  °C, respectively. Subtracting the two, there is 1.6597  °C tempera-
ture difference between the two extreme points. This difference was used to find the new 
value of temperature at each location, with a random ±5% error. Figure  12 illustrates 
the difference between the two maximum temperatures. This difference was around 
0.0504 °C.

Comparing Figs.  11 and 12, it can be concluded that the surface temperature is 
extremely sensitive to any source of error. Therefore, it is vital to use a well calibrated 
camera in biological and clinical testings. This could be done by measuring the tempera-
ture of the object using a thermocouple and comparing it to the temperature obtained 
by the camera. It is recommended that in analytical research where an IR camera is not 
used, the heat intensity generated by the tumor should be measured first, and all other 
parameters should be calculated based on the intensity.

(20)R3 = (Ta − Te)
(

a2 + d2
)

4πh0

qm × 10−6
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Image resolution

During image acquisition, the important factor is the focus of the camera. Given the 
camera is not in focus, the obtained temperature will be lower than the actual tempera-
ture of the surface causing a great error in tumor localization.

Fig. 11  Sensitivity models with ±5% change in surface temperature. There is about 1.41 °C difference 
between maximum temperatures

Fig. 12  Sensitivity models with ±5% (of maximum and minimum points) change in surface temperature
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Application
To apply this method, there is a need for three parameters namely room temperature, 
patient body surface temperature, as well as maximum temperature of any point on the 
breast. Room temperature can be measured by any digital thermometer. Maximum and 
body temperature can be measured via IR camera.

We have taken the Fig. 13 from clinicalthermography.com in order to carry out analy-
sis using the proposed algorithm. Thermo graphic examinations were performed in a 
controlled 20 °C ambient temperature with normal skin temperature of 30 °C according 
to [21].

Additionally, according to [21], “Clinical experiments by Draper, indicate that only 
heat brought to within 6 mm (~¼′′) of the surface of the dermis is emitted.” Therefore, 
we ran the algorithm for tumors of 6 mm to 1 cm depth. We have used Eqs. (15) and (16) 
assuming the tumor has almost negligible radius (0.001 m).

Equation (15) was used to find Q using the parameters that were given (Ta = 33.4–
35.1 °C and Tmax = 35.2 °C according to Fig. 13). This equation provides us with a range 
for intensity, depending on the location the tumor that is found under the skin. We ran 
the algorithm multiple times and took the average of the results. This led to an intensity 
of 0.083204 W. Afterwards, we utilized Eq. (16) to find the surface temperature range, 
where Te = 20 °C, R = 0.001, a = −0.1:0.0005:0.1 m (from each side of the maximum 
temperature location), and Tmax = 35.2 °C (according to Fig. 13).

By using these parameters in the proposed algorithm, the local temperature (T) on the 
skin around the tumor were obtained as shown in Fig. 14.

As it can be seen from Fig. 14 the maximum temperature obtained by the algorithm is 
in good agreement with the one provided by Fig. 13.

Conclusion
A methodology has been developed for the estimation of the thermo-physio-biological 
parameters of tumors using the temperature profile over the skin surface that has been 
obtained by solving bio-thermal problems on the proposed breast model. The proposed 
methodology was based on solving bio-thermal problems in the presence of a tumor. An 

Fig. 13  Thermal image of breast with an abnormal mass in the right breast
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artificial neural network (ANN) was used to optimize the tumor parameters that may be 
obtained by an infrared (IR) camera. As a non-invasive method, the IR camera is a supe-
rior asset for the presented tumor detection method. Using a simple heat source model 
in training the ANN allows the system to measure a 0.01 °C temperature difference in an 
ideal condition and 0.03 °C temperature difference under a 10% noise condition.

The sensitivity of the parameter was studied along with the surface temperature sensi-
tivity. According to the obtained results, the skin surface temperature is the most sensi-
tive among all the parameters studied (i.e. depth, and intensity). Also, since the method 
measures a very low-temperature difference, it requires a highly sensitive and accurately 
calibrated IR camera system. Using such a camera system, an efficient way of finding 
tumor parameters was developed which relies only on the maximum temperature and 
the local temperature (the temperature at any location from the maximum temperature) 
on the skin surface. It is feasible to use this method since, in living systems we are deal-
ing with maximum temperature.

According to the results, the methodology can help locate a tumor region on an exter-
nal body part, which could be useful and important in studying tumor evolution after a 
treatment procedure.

The proposed methodology is able to detecte tumors that are located superficially. In 
case of abnormal and non symmetrical temperature detection, it is possible to combin 
the proposed method with other active tomography, to diagnose deep-seated tumors in 
case of temperature.

As this study was not validated with clinical data or biopsy results, the method could 
not be applied as a diagnostic tool. One of the future works includes animal and clinical 
tastings. In order to validate the proposed methodology, the ongoing research in Elec-
tro-thermal laboratory at Ryerson University is trying to build collaboration with Cana-
dian Breast Cancer Society to collect the surgical data and true thermogram.

Fig. 14  Maximum temperature provided by the algorithm
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Abbreviation
ANN: artificial neural network.
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