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Background
Coronary artery imaging is valuable for the diagnosis of coronary artery disease. Inva-
sive and non-invasive imaging techniques, such as coronary X-ray angiography (CAG), 
computed tomography (CT), magnetic resonance imaging (MRI), optical coherence 

Abstract 

Background:  Hemodynamic simulation for quantifying fractional flow reserve (FFR) 
is often performed in a patient-specific geometry of coronary arteries reconstructed 
from the images from various imaging modalities. Because optical coherence tomog‑
raphy (OCT) images can provide more precise vascular lumen geometry, regardless of 
stenotic severity, hemodynamic simulation based on OCT images may be effective. The 
aim of this study is to perform OCT–FFR simulations by coupling a 3D CFD model from 
geometrically correct OCT images with a LPM based on vessel lengths extracted from 
CAG data with clinical validations for the present method.

Methods:  To simulate coronary hemodynamics, we developed a fast and accurate 
method that combined a computational fluid dynamics (CFD) model of an OCT-
based region of interest (ROI) with a lumped parameter model (LPM) of the coronary 
microvasculature and veins. Here, the LPM was based on vessel lengths extracted from 
coronary X-ray angiography (CAG) images. Based on a vessel length-based approach, 
we describe a theoretical formulation for the total resistance of the LPM from a three-
dimensional (3D) CFD model of the ROI.

Results:  To show the utility of this method, we present calculated examples of FFR 
from OCT images. To validate the OCT-based FFR calculation (OCT–FFR) clinically, we 
compared the computed OCT–FFR values for 17 vessels of 13 patients with clinically 
measured FFR (M-FFR) values.

Conclusion:  A novel formulation for the total resistance of LPM is introduced to 
accurately simulate a 3D CFD model of the ROI. The simulated FFR values compared 
well with clinically measured ones, showing the accuracy of the method. Moreover, the 
present method is fast in terms of computational time, enabling clinicians to provide 
solutions handled within the hospital.
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tomography (OCT), and intravascular ultrasound (IVUS), enable the visualization of the 
arterial lumen, plaque, and vascular wall structures [1].

Anatomical data extracted with such imaging techniques have been used for computer 
simulations to assess the physiological or functional severity of coronary stenotic lesions. 
As an example, Kim et al. [2] proposed a simulation method to compute the fractional 
flow reserve (FFR) of the coronary arteries using CT images from patients [2]. In their 
study, a computational fluid dynamics (CFD) technique was used to simulate the blood 
flow in the three-dimensional (3D) geometry of the coronary arteries. To specify the 
outlet boundary conditions for the CFD model, they used a lumped parameter model 
(LPM) to reflect the influence of the coronary microvasculature and venous system. It is 
important to estimate the resistance values in the LPM. For this purpose, they measured 
the muscle mass quantity, fed by a specific coronary artery, from which the resting blood 
flow in the artery was estimated, based on a scaling law [3–5]. Then, the resistance value 
of the artery can be computed from the resting flow. For this reason, the 3D muscle mass 
of the left ventricle must be determined to use this method, limiting its application to 
CT imaging.

Recently, high-resolution OCT imaging has been used to calculate coronary hemo-
dynamics in image-based simulation models [6–10]. In these studies, the local region 
of interest (ROI) of the coronary artery, scanned using OCT, was merged into a rough 
3D coronary arterial model reconstructed from biplane CAG images [10–14]. Then, 
CFD simulation was used with the combined model to calculate the FFR, wall shear 
rate, and wall shear stress [6–10]. However, these studies have a limitation. Unlike CT 
image-based FFR simulations [2–5], the muscle mass to specify the resistance values of 
the LPM could not be determined from the OCT and CAG images, and thus the stud-
ies could not construct the LPM. Thus, the flow behavior in these OCT-based models 
was simply simulated using a fully developed flow condition in the outlet, without con-
sidering the effects of microvascular and venous hemodynamics [6–10]. The purpose of 
this study is to present an efficient and accurate method for performance of OCT–FFR 
simulations by coupling a 3D CFD model from geometrically correct OCT images with a 
LPM based on vessel lengths extracted from CAG data.

To simulate the coronary FFR distribution, we describe here a new method that cou-
ples a geometrically correct 3D CFD model, reconstructed from OCT images, with a 
LPM to reflect coronary microvascular and venous hemodynamics. The resistance of the 
LPM was estimated using a simplified formulation based on the vessel lengths of the 
coronary arterial tree in CAG images. To demonstrate the validity of the method, we 
performed an OCT image-based FFR simulation (OCT-FFR simulation) for 17 vessels 
from 13 patients and compared the results with clinically measured FFR data (M-FFR), 
according to the protocol in Fig. 1.

Methods
Clinical measurement and geometric model

We simulated the coronary hemodynamics of 17 vessels from 13 patients who under-
went CAG, OCT, and FFR measurement at Ulsan University Hospital (Ulsan, Republic 
of Korea) between August 2015 and June 2015. The CAG, OCT, and FFR examinations 
followed the current guidelines [15–17]. The target ROI of a coronary vessel was scanned 
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by OCT after administration of 200  μg intracoronary nitroglycerine. Images were 
acquired using a commercially available frequency-domain OCT system and optical 
catheter (C7-XR imaging system and Dragon Fly catheter; Lightlab Imaging/St. Jude 
Medical, Westford, MA, USA; Fig. 2). FFR was measured in a hyperemic state after the 
administration of an adenosine stimulus [16]. Figure 2 shows the distal start and proxi-
mal end points of the OCT pullback to scan the ROI of the coronary artery.

For construction of the 3D CFD model, OCT image slices were segmented in a semi-
automated method using open-source software (ITK-snap; ver. 2.4). Then, we integrated 

Fig. 1  Flowchart of study design. FFR, fractional flow reserve; M-FFR, clinically measured FFR; OCT–FFR, frac‑
tional flow reserve calculated from OCT; CAG, coronary X-ray angiography; LPM, lumped parameter model; 
and CFD, computational fluid dynamics

Fig. 2  Regions of interest (ROI) in target vessels were scanned by OCT during pullback from B to A
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the segmented slices for the 3D volume construction of the target ROI. A 3D tetrahedral 
volume mesh was generated using Delaunay’s triangulation algorithm and a triangular 
prismatic mesh layer was inserted into the boundary of the target ROI.

Computational method

In the present scheme, the LPM, reflecting coronary microvascular and venous hemody-
namics, was connected to the outlet boundary of the 3D CFD model of the target ROI. 
Estimation of the LPM parameters was based on the vessel length-based method pro-
posed in our previous paper [18], but we applied the method to the model with the short 
3D vessel geometry of the target ROI.

Similar to our previous report [18], we first calculated the resistance values of the 
right coronary artery (RCA), left anterior descending artery (LAD), and left circumflex 
artery (LCX) from the vessel lengths of the vascular tree, the centerlines of which were 
extracted from CAG images. Figure 3 shows an example of the estimated vessel lengths 
extracted from a CAG image; using the CAG image, we first identified the vessel seg-
ment lengths where the diameter exceeded 1  mm (Fig.  3a, b). To calculate the vessel 
length of the LAD, we summed the lengths of the LAD sub-vessels, the diameters of 
which were greater than a specific cut-off value (here, 1 mm; Fig. 3c). In our experience, 
1 mm is a suitable value for the diameter cut-off; however, this can be changed depend-
ing on the quality of the CAG images. After identification of the vessel lengths of LAD, 
LCX, and RCA (lLAD, lLCX, and lRCA), the flow division ratio to the branches can be speci-
fied as follows [18]:

where Q is the flow rate, lLAD and lLCX are the vessel lengths of the LAD and LCX, 
(lRCA)RV  and (lRCA)LV  are the vessel lengths of the RCA feeding the right ventricle (RV) 
and left ventricle (LV), respectively, and α is the volume ratio of LV to RV. As described 
in our previous paper [18], Eq. (1) has two noteworthy points. First, a longer vessel feeds 

(1)QLAD:QLCX :QRCA = lLAD:lLCX :1/
{

α/(lRCA)RV + 1/(lRCA)LV
}

,

Fig. 3  Length of the vessels (lLAD , lLCX , lRCA) was measured by CAG. The lengths of LAD, LCX, and RCA are 
indicated in red, green, and blue, respectively. The cut-off diameter was 1 mm. LAD, left anterior descending 
artery; LCX, left circumflex artery; RCA, right coronary artery. a Arterial trees on coronary X-ray angiography 
(CAG). b The cut-off diameter of vessel-length measurement for OCT-FFR simulation. c The lengths of LAD, 
LCX, and RCA
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more muscle mass, inducing more blood flow and thus less flow resistance. Second, RCA 
vessels feed not only RV muscle but also LV muscle. However, the RV muscle layer is 
much thinner than that of the LV, so the lengthwise contribution of RV feeding vessels 
to RCA blood flow induction is less than that of the LV feeding ones. This was the reason 
we introduced the volume ratio of LV to RV, α. We assumed the value of α to be 3.46, a 
typical value observed in clinical trials [19]. If we assume the total coronary flow is 4% of 
cardiac output and the pressure difference of the whole coronary circulation is �P, then 
the resting flow rates to LAD, LCX, and RCA can be obtained and thus the resistance val-
ues exerted in LAD, LCX, and RCA (RLAD, RLCX, and RRCA, respectively) can be calculated 
sequentially. Here, �P can be obtained if the aortic pressure and right atrium pressure are 
specified. In this study, the aortic pressure was estimated from the brachial pressure of a 
patient and the right atrium pressure was set at 5 mmHg, as in a previous report [20].

For the given values of the resistances RLAD, RLCX, and RRCA, we can determine the 
resistance value of the microvasculature and veins after the outlet of the 3D ROI recon-
structed from OCT images. Figure 4 shows a schematic diagram of a coronary vascular 
tree and ROI. If we assume that a parent vessel is divided into N sub-tree vessels and 
the vessel of the ROI, the following equation can be derived from the flow conservation 
principle:

Here, QP is flow in the parent vessel, meaning the total blood flow through one of the 
main coronary branches, such as RCA, LAD, and LCX. Qdi is the flow of the ith vessel 
branch among the daughter vessels; the subscript “i” ranges from 1 to N, the total num-
ber of daughter branches before the ROI. QROI is the flow through the 3D ROI. A scaling 
relationship between lumen radius and blood flow rate is valid in each branch [21, 22].

(2)QP = Qd1 + · · · + QdN + QROI

(3)Q = m · rk ,

Fig. 4  Schematic diagram of the present method. The OCT-derived three-dimensional (3D) ROI model was 
coupled with a length-based LPM from CAG. Here, Q, flow rate; P, pressure; R, resistance; C, capacitance; r, 
radius of the vessel segment. Subscripts, ao, aorta; a, large artery; coa, coronary arterioles; coc, coronary capil‑
laries; cov, coronary veins; imp, intra-myocardium; coll, collateral; ra, right atrium
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where r, m, and k are the radius of a vessel segment, a proportionality constant, and 
the exponent, depending on flow conditions, respectively. The generally used value of 
k is ~2–3 [4]. In this study, we used k = 2 to reflect the dependency of flow rate on vas-
cular cross-sectional area [20, 23]. Inserting the flow–radius relationship of Eq. (3) into 
Eq. (2), we derive the following equations:

Here, �P is the pressure difference between the inlet of the ROI and the end of coro-
nary circulation, right atrium. We also used the following equation:

If we insert this expression for m into Eq.  (5) and consider the relationship between 
flow and pressure, we derive the final form of RROI:

In Eq. (7), Rp is one of the resistances, RLAD, RLCX, or RRCA. AMPR indicates the ampli-
fication factor of the resistance and is determined from rp and rdi (i = 1,…,N) that are 
estimated from the analysis of CAG images. Then, we can calculate the resistance of the 
microvasculature and veins after the ROI (RROI) vessel.

In the present study, the LPM model comprises a resistor, a capacitor, and the intra-
myocardial pressure (Fig. 4) [23, 24]. R is the resistance (blood flow resistance), P is the 
pressure, and C is the capacitance (vessel compliance). The subscripts indicate the circula-
tion component: ao, aorta; coa, coronary arteries; coc, coronary capillaries; cov, coronary 
veins; ra, right atrium; imp, intra-myocardium; and coll, collateral effects. To consider the 
influences of compression of the left ventricular muscle around the intramuscular ves-
sels, we assumed Pimp = γ · PLV , where PLV  is the left ventricle pressure, with γ = 0.75 
[23]. The capacitance values used in the LPM were those suggested in a previous paper 
[25], and the total resistance value of the ROI, RROI, was distributed among coronary sub-
compartments, such as the coronary arteries, coronary capillaries, and coronary veins, 
as suggested previously [23]. The collateral influence was included using the switching 
system in Fig. 4. The on–off switch remains open when coronary arterial pressure Pcoa is 
beyond a specific level [26, 27]. However, when severe stenosis causes too large a pressure 
drop and thus Pcoa decreases to the specific level, the switch is closed, inducing collateral 
flow. This collateral flow is regulated by the collateral resistance, Rcoll (Fig. 4) [26].

To couple the LPM of the coronary circulation with the OCT-based CFD model, we 
used an iterative method in each time step, in which the computed flow rate in the outlet 

(4)QROI = Qp −m

N
∑

i=1

rkdi = �P/RROI ,

(5)RROI = �P

/(

Qp −m
∑N

i=1
rkdi

)

.

(6)Qp = mrkp → m = Qp/r
k
p .

(7)

RROI = �P × rkp

/

Qp

(

rkp −
∑N

i=1
rkdi

)

=

(

rkp × Rp

)

/(

rkp −
∑N

i=1
rkdi

)

= Rp/

{

1−
∑N

i=1

(

rdi/rp
)k
}

= Rp/AMPR (0 ≤ AMPR ≤ 1)
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of the CFD model was transferred to the LPM. Then, we calculated the pressure and 
flow rates in the LPM by solving the ordinary differential equations. The computed value 
of the coronary arterial pressure in the LPM was used for the CFD model as the out-
let boundary conditions of the CFD model. Namely, the established LPM model was 
then coupled with a 3D CFD coronary model by iteratively updating pressure and flow 
rate until interfacial boundary consistency. Then, computed FFR distributions can be 
obtained in the 3D ROI of the coronary arterial model. A more detailed description of 
the coupling method is found in our previous paper [23].

To simulate hyperemic flow condition in the model, we reduced the coronary resist-
ance value to 25% of normal, based on an adenosine infusion experiment [28]. The time 
varying component of arterial resistance was not considered in the present method 
because it is minimized at hyperemic state.

Flow conditions and governing equations

Blood was assumed to be a laminar, viscous, and Newtonian fluid. Turbulence influences 
when Re ≥  3000 were neglected because blood flow in coronary arteries was laminar 
with Re ≤ 2000 [29–31]. The patient-specific viscosity was calculated using the Einstein 
model with a patient-specific hematocrit (HCT) (Table 1) [23].

In the CFD model, the flow behavior of incompressible blood flow is governed by the 
Navier–Stokes equations, as in Eqs. (8) and (9):

Here, u, t, ρ, µ are the velocity vector, time, fluid density, and viscosity, respectively. 
These equations can be solved using a segregated finite-element method as described 
previously [23].

Results
To validate the method described, we simulated 17 vessels of 13 patients who under-
went CAG, invasive FFR, and OCT. The length-based flow distributions in the coronary 
arteries of the 13 patients are shown in Table 2. The mean flow distributions in the LAD, 
LCX, and RCA were 33, 30, and 37%, respectively, for the 17 vessels of the 13 patients. 
As shown in Fig. 5, the present OCT-FFR simulation consisted of five steps and the total 

(8)∇ · u = 0

(9)∂u/∂t + u · ∇u = −∇p/ρ + µ/ρ ∇
2
u

Table 1  Patient clinical data

Number of patients, n = 13, number of ROI, n = 17. Data are provided as median values (interquartile range)

Parameter Clinical data

Age (years) 57.5 (51.75–63.5)

Weight (kg) 70.5 (61.5–73.5)

Systolic blood pressure (mmHg) 140 (122–150)

Diastolic blood pressure (mmHg) 81 (66–91)

Heart rate (bpm) 67 (56–71)

Stroke volume (mL) 65 (56–74.6)

Hematocrit (%) 40.2 (38.1–46)
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computational time for a case was ~29 min on a typical personal computer, enabling cli-
nicians to make on-site decisions for patients.

We compared the computed OCT–FFR values with M-FFR data measured with a pres-
sure sensor during invasive pressure wire insertion for the 17 vessels of the 13 patients. 
Representative examples are shown for comparison; three cases of the LCX from three 
patients among the 17 vessels were chosen (Fig.  6). Figure  6 shows the OCT-scanned 
ROI region in the red box, M-FFR values with the measured locations using a white 
arrow on the angiographic images (left panel of Fig.  6), and the computed OCT–FFR 
contours (right panel of Fig. 6). In these examples, the differences between OCT–FFR 
and M-FFR were relatively small.

Table 2  Estimates of  flow distributions in  LAD, LCX, and  RCA by  a length-based method 
using X-ray angiography (CAG)

QLAD (%) QLCX (%) QRCA (%)

Case 1 30 30 41

Case 2 35 30 35

Case 3 19 26 55

Case 4 34 31 35

Case 5 19 36 46

Case 6 35 31 34

Case 7 36 31 33

Case 8 25 36 39

Case 9 44 25 31

Case 10 40 23 36

Case 11 34 33 33

Case 12 34 37 38

Case 13 38 26 36

Mean 33 30 37

Fig. 5  Computational procedure of the present OCT–FFR simulation and time consumed in each step
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Figure  7a shows a Bland–Altman plot between the clinically measured M-FFRs and 
the OCT–FFR values at identical locations; a mean difference of 0.00 and a 95% limit 
of agreement ranging from −0.07 to 0.08 (n = 17, standard deviation, SD = 0.04) was 
observed, indicating good agreement between M-FFR and OCT–FFR values. Figure 7b 
shows linear correlation with a coefficient of determination (R2) of 0.66; the OCT–FFR 
correlated strongly with clinically measured M-FFR, with a Pearson’s correlation coeffi-
cient (ρp) of 0.82 and a Spearman’s correlation coefficient (ρs) of 0.80 (n = 17; P < 0.001). 
Applying the cut-off level of M-FFR = 0.8 to the OCT-FFR resulted in three true posi-
tives, 13 true negatives, no false positives, and one false negative.

Discussion
In this paper, we present an efficient and accurate method to perform OCT–FFR simula-
tions by coupling a 3D CFD model from geometrically correct OCT images with a LPM 
based on vessel lengths extracted from CAG data. Simulated OCT–FFR values were 
compared to M-FFR values to validate the present method.

Fig. 6  Examples showing comparisons between the measured FFR values (left panel), and the computed 
FFR ones, and OCT images from proximal to distal OCT images (right panel) for three patients with relatively 
severe stenosis (a), almost no stenosis (b), and relatively mild stenosis (c)
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There were four main findings in this study. First, we proposed an efficient simula-
tion method to solve coronary hemodynamics based on OCT images. OCT as an imag-
ing modality can accurately generate lumen geometry of coronary arteries, and so has 
a strong potential for use in coronary hemodynamics simulation. Although there have 
been several computational methods of coronary arterial hemodynamics for patient-
specific model reconstructed from CT images [2–4, 32–34], their methods were not 
extended to OCT–FFR simulation. Recently, Wang et  al. [32] proposed a patient-spe-
cific model of coronary hemodynamics by coupling CFD with LPM. This method was 
applied to coronary hemodynamic simulations having bypass graft between coronary 
arteries [33, 34]. The computational method used in these studies is based on muscle 
mass method to estimate LPM parameter. On the other hand, we employed another 
novel method to estimate the resistance of LPM by measuring vessel length [25, 27, 28], 
because ventricular muscle mass cannot be determined from OCT images. The absence 
of LPM model causes a significant limitation for accurate hemodynamic computations. 
As discussed in Taylor et al. [4], assignment of unique resistance and capacitance values 
of the LPM for each outlet boundary is a key issue to compute more accurate coronary 
hemodynamic solutions. In this sense, the present method based on vessel length pro-
vided a useful approach to set the outlet boundary condition of the CFD model recon-
structed from OCT images.

Second, the total resistance after the local vessel geometry of the OCT-derived ROI 
is introduced in Eq. (7). According to this equation, the resistance depends on the total 
resistance after the parent vessel and the resistance amplification factor. Here, the total 
resistance after the parent vessel can be obtained from the vessel length, as shown in 
Fig. 5c. In Eq.  (7), the branched vessels before the ROI affect the resistance amplifica-
tion factor, indicating that more vessel branching before the ROI increases the resistance 
amplification factor and eventually results in an increase in vessel resistance (Fig.  4). 
To our knowledge, there is no reported formulation or estimation method for the flow 
resistance after a local and small vascular region. Application of this method is not lim-
ited to the simulation of an OCT-derived model. Using this method for CT image-based 
FFR simulation, we can simulate only a small ROI model of coronary arteries extracted 
from CT images.

Fig. 7  a Bland–Altman plot between clinically measured FFR (M-FFR) and OCT–FFR at the same location and 
b linear relationship between the M-FFR and the OCT–FFR with a coefficient of determination (R2) of 0.66, 
Pearson’s correlation coefficient (ρp) of 0.82, and Spearman’s correlation coefficient (ρs) of 0.80
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Third, although there were few clinically validated cases, comparisons between the 
simulated OCT–FFR values and clinically measured M-FFRs (Figs. 6, 7) showed that the 
present method can produce more accurate solutions than other studies. In the most 
recent clinical validation study, reported by Liu et al. [9], using a combination of OCT 
images and biplane CAG, the correlation coefficient and the SD of the Bland–Altman 
plot were 0.71 and 0.09, respectively. The study of OCT–FFR simulation by Tu et al. [6] 
resulted in a correlation coefficient of 0.8 and a SD of 0.06. Compared with these reports, 
the present study provided more accurate solutions, producing a correlation coefficient 
of 0.82 and a SD of 0.04 (Fig. 7). It is true that the degrees of stenosis in the simulated 
cases in this study were not severe. However, accurate simulated solutions would be 
expected even in cases with severe stenosis, because OCT images can provide very accu-
rate lumen geometries, regardless of stenotic severity in the vessel ROI.

Fourth, the current OCT–FFR simulation is fast in terms of simulation time (Fig. 5). Seg-
mentation of the entire coronary arterial tree is costly in most previous studies [2–5, 9, 23, 
24], whereas segmentation of the small ROI from OCT images is all that is required in the 
present study. Thus, we were able to markedly reduce the image segmentation time that 
represents a large proportion of the total simulation time for the patient-specific hemody-
namic model. Furthermore, the solving time for the 3D CFD model is also short because 
the small ROI reduces the number of mesh points required. A major benefit of this fast 
simulation is obtaining on-site solutions for coronary hemodynamics by clinicians.

The present study still has some limitations. First, the present method was validated 
only with 17 vessels. Here, only single stenosis cases were studied. A technique to estab-
lish LPM for serial multiple stenoses should be investigated for further study. Thus, more 
cases should be investigated to further validate the present OCT–FFR simulation. Sec-
ond, a lack of correct curvature information was inevitable during OCT image process-
ing and thus the curvature effect was not considered in the 3D CFD model. Third, the 
present method was only a fluid dynamics simulation assuming fixed wall boundaries of 
the CFD model, excluding the effects of vessel wall contraction or dilation. Fourth, the 
division ratio α in Eq. 1 was simply assumed in the present method. We considered RCA 
supplies blood to the muscles of LV as well as right ventricle (RV) and divided the RCA 
vessel length into two parts, the coronary vessels feeding RV and LV muscles. The divi-
sion ratio α, the volume ratio of LV to RV, was assumed to be 3.46 as observed in clini-
cal observation [19]. In a previous clinical study, the variation of α had a different range 
(P < 0.01) between males and females (3.64 ± 0.72 for males, 3.17 ± 0.43 for females, and 
3.46 ± 0.66 for the composite group in 75 subjects) [19]. In all the cases, the variation 
of α was within ±30% of 3.46. In this study, we conducted a sensitivity analysis for 10 
cases with the ±30% variation of α (2.42 ≤ α ≤ 4.5) by decreasing and increasing by 10, 
20 and 30% of the standard α value, 3.46. The sensitivity analysis showed that FFR value 
changes due to the ±30% variation of α value were negligible (within ±0.006). However, 
this standard value of α could be incorrect in advanced heart disease, or heart failure. To 
determine a more accurate patient-specific value of α, clinical validations by using further 
sensitivity analysis should be performed. Besides, we only considered a general physiolog-
ical observation that longer vessel feeds more muscle mass and thus has less flow resist-
ance. But in rare cases, the resistance in long winding artery may be high. However, we 
believe that these limitations do not greatly affect the major findings of the study.
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Conclusions
OCT-FFR simulation was performed by coupling a geometrically correct OCT images-
based 3D CFD and a CAG-based LPM model. The present study provided a novel for-
mulation for the total resistance of LPM that is introduced to simulate a 3D CFD model 
of the ROI accurately. The calculated FFR values were compared with clinical measure-
ment, showing a good agreement between them. Accurate simulated solutions could be 
obtained even in the cases with severe stenosis or calcified vessel, because OCT images 
can provide very precise lumen geometries, regardless of stenotic severity and vascular 
calcifications in the vessel ROI. Especially, the application of this method is not limited 
to the simulation of an OCT-derived model but can be extended to any clinical image-
derived models e.g. commonly used CT image-based FFR simulation in a small ROI 
model. Moreover, the present method is fast regarding computational time, enabling cli-
nicians to obtain solutions directly handled within the hospital.
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pressure; DBP: diastolic blood pressure; HR: heart rate; SV: stroke volume; HCT: hematocrit.
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