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Abstract 

Background:  Examination of physiological processes and the influences of the drugs 
on them can be efficiently supported by mathematical modeling. One of the big-
gest problems is related to the exact fitting of the parameters of a model. Conditions 
inside the organism change dynamically, so the rates of processes are very difficult to 
estimate. Perturbations in the model parameters influence the steady state so a desired 
therapeutic goal may not be reached. Here we investigate the effect of parameter 
deviation on the steady state in three simple models of the influence of a therapeutic 
drug on its target protein. Two types of changes in the model parameters are taken 
into account: small perturbations in the system parameter values, and changes in the 
switching time of a specific parameter. Additionally, we examine the systems response 
in case of a drug concentration decreasing with time.

Results:  The models which we analyze are simplified, because we want to avoid influ-
ences of complex dynamics on the results. A system with a negative feedback loop is 
the most robust and the most rapid, so it requires the largest drug dose but the effects 
are observed very quickly. On the other hand a system with positive feedback is very 
sensitive to changes, so small drug doses are sufficient to reach a therapeutic target. 
In systems without feedback or with positive feedback, perturbations in the model 
parameters have a bigger influence on the reachability of the therapeutic target than 
in systems with negative feedback. Drug degradation or inactivation in biological sys-
tems enforces multiple drug applications to maintain the level of a drug’s target under 
the desired threshold. The frequency of drug application should be fitted to the system 
dynamics, because the response velocity is tightly related to the therapeutic effective-
ness and the time for achieving the goal.

Conclusions:  Systems with different types of regulation vary in their dynamics and 
characteristic features. Depending on the feedback loop, different types of therapy may 
be the most appropriate, and deviations in the model parameters have different influ-
ences on the reachability of the therapeutic target.
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Background
Biological switches

A significant part of biological processes proceed in a switch-like manner. A typi-
cal example of such step changes in biological systems is related to application of a 
therapeutic drug; after drug administration, especially through injection, specific pro-
cesses are activated and intracorporeal conditions change in a sudden, step-like man-
ner. When a drug is administered to a patient (orally or by a drip-bag), the number 
of drug molecules in the body increases rapidly and drug-induced processes start sud-
denly. The level of active drug cannot be maintained at a steady level due to processes 
such as transport of drug molecules through the organism, import and export by cells, 
binding to other molecules, and drug degradation or inactivation [1]. Administration 
of a drug is intended to enforce specific processes such as inactivation or degradation 
of a protein target or blockade of inter- or extra-cellular transport [2]. Consequently, 
the activity of a drug should be included in a model in a multiplicative manner: drug 
molecules influence the rate of the processes related to the number of protein or other 
molecular targets. Instead of considering the drug application as an input to the model, 
we propose considering it as an abrupt change of the parameter values; in this case the 
drug accelerates the process of protein degradation. Other examples of biological pro-
cesses which proceed in a switch-like manner are gene activation and deactivation [3] 
and transmembrane transport through (divided by) ion channels [4]. These and many 
other biological processes can be effectively modeled as systems with switches in the 
parameter values.

Parameter changes

The intra- and inter-cellular environments are very complex, containing many dif-
ferent types of molecules both non-organic and organic such as carbohydrates, pro-
teins, lipids, and nucleic acids. Because of intra- and extra-cellular processes such as 
export and import, production and degradation of proteins and their modification 
by phosphorylation, ubiquitylation, or glycosylation, the chemical and physical con-
ditions inside the cell change dynamically [3]. Similarly, cell growth during the cell 
cycle influences the concentrations of all the substances inside the cell and thereby 
the rate of all processes. Consequently, the rates of cellular processes are dynami-
cally changing [5]. The building of mathematical models requires exact determina-
tion of model parameters. The parameters for biological processes are calculated or 
estimated using the results of biological experiments and thus depend highly on the 
biological, chemical and physical conditions in cells. Sensitivity analysis of models is 
usually employed to test their vulnerability to small perturbations of parameters [6], 
but when a change of the parameter values is large the model outputs may be signifi-
cantly different. In systems with switching, the problem of parameter perturbation 
can cause even greater inaccuracy due to cumulation of two effects: first, the initial 
state before the switch can be significantly altered, and second, the parameters in 
the model after a switch are biased. Consequently, the dynamics of such models can 
be significantly different from the real dynamics. This factor plays an essential role, 
especially in situations when therapy with minimized doses of a drug is considered.
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Drug degradation

In our preliminary study we neglect the pharmacodynamics and pharmacokinetics and 
assume that the concentration of a drug in the organism is maintained at a stable level. 
This approach is useful when examining the internal properties of the system, although 
in real-life systems the problem of estimating drug level and its influence on the organ-
ism play an essential role. The problem of drug pharmacodynamics and pharmacoki-
netics has been widely examined and discussed (see e.g. [7–9]). Mechanism-based 
Pharmacokinetic/Pharmacodynamic (PK-PD) models contain expressions to quantita-
tively characterize processes such as drug distribution at the target site and drug binding, 
activation, and inactivation or excretion. Moreover, there are many other factors which 
can influence the therapeutic or toxic activity of a drug such as the problem of drug-drug 
interactions which affect the pharmacokinetics , by influencing gastro-intestinal absorp-
tion, occupying binding sites on a protein, or competing for drug-metabolizing enzyme 
systems are described exhaustively by Kristensen [10]. Nevertheless, an interesting prob-
lem of pharmacokinetics arises in a system with multiple drug dosage. Clinical research 
on drug administration supported by mathematical modeling is useful in determining 
the efficacy and safety of proposed therapies [11]. Model parameters should be fitted for 
a specific drug, as in our previous work where based on the results published by Zhang 
et al. [12] we created model equations describing the active and total concentrations for 
the experimental antitumour drug Nutlin [13]. In the present work we do not consider 
any specific drug, so we use the previously published equations and slightly modify the 
parameters to obtain desirable dynamics. The kinetics of the protein degradation is not 
described by the Michaelis–Menten kinetics, because the number of active molecules 
of a drug is comparable to the number of protein target molecules, so the process of 
increased degradation of a target protein by a drug can be described by the mass-action 
law.

Regulation of protein production

Modeling of biological systems demands a special approach due to their very high com-
plexity. The great majority of these systems are modeled by deterministic algorithms, 
although in some cases a stochastic approach is more suitable especially when a low 
number of reacting molecules is involved such as in gene switching processes. Parameter 
fluctuations may be also considered as stochastic changes of parameter values [14] or 
modeled as a bounded stochastic process [15–17]. However, here we use a deterministic 
approach despite the existence of gene states in our models and we postpone investiga-
tion of stochastic models, since the majority of published models are still deterministic.

The use of a switched system for modeling biological processes is not a new approach, 
although to our knowledge the achievability of a therapeutic target in systems with 
parameter perturbation has not been considered. There have been attempts to use 
piecewise linear systems to model highly non-linear processes, in which the dependen-
cies between molecules are described by the switching rules which enforce changes in 
the model structure or parameter values [18–20]. Similar methods were presented by 
de Jong and co-workers, who proposed qualitative simulation of regulatory networks 
using piecewise linear models [21, 22]. A different application of switched system was 
presented by Parise et al. [23], where a stochastic model of a controlled gene expression 
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system is discussed focussing on the achievability region for the protein produced from 
the gene by solving an optimization problem.

Methods
Proposed models

In this work we investigate the problem of the influence of parameter perturbations on 
a medical therapy designed to decrease the number of active molecules of a target pro-
tein. In the first part of this paper three models are considered which all consist of three 
variables: G—the gene state, R—the number of mRNA molecules transcribed from the 
gene, and A—the number of molecules of the protein A. In the second part the model 
is expanded by two more equations, which describe the total and active drug levels. 
The model without a feedback loop is a well-known model of protein production, and 
the model with a negative feedback loop was published in [24]. Additionally, we cre-
ate a model with a positive feedback loop to compare the influence of different types 
of autoregulation. The parameter values are taken partially from our previous work [24, 
25], where we presented some preliminary results. Here the positive feedback loop is 
created in a different way, and we further examine the case when a drug is degraded 
or inactivated. The number of target protein molecules in the steady state before drug 
application is established arbitrarily at 160,000 molecules and the therapeutic goal is to 
reduce this level to below 70,000 molecules.

The basic system without any feedback loop is described by the following equations:

To decrease the protein level below the required threshold, we apply a drug which 
induces its degradation or inactivation. In the first part of our approach we neglect phar-
macokinetics and pharmacodynamics, so the drug concentration is maintained at a sta-
ble level. The drug application is considered as the parameter switch because it induces 
a step change in the value of the rate of degradation of protein A. The basic therapeutic 
goal is to maintain the level of protein A under the required threshold. After the switch-
ing time ts Eq. (3) changes to the following form:

The structure of this model is presented in Fig.  1a.
Biological processes are usually regulated by a variety of feedback loops, which are 

mainly negative although positive loops are also well known. We propose two additional 
models, the first with a negative feedback loop and the second with a positive feedback 
loop. In the first model protein A acts as a repressor of its own transcription causing it 

(1)
dG

dt
= qa ∗ (NA − G(t))− qd1 ∗ G(t),

(2)
dR

dt
= t1 ∗ G(t)− d1 ∗ R(t),

(3)
dA

dt
= t2 ∗ R(t)− d2 ∗ A(t).

(4)
dA

dt
= t2 ∗ R(t)− (d2 + d3 ∗ DRUG) ∗ A(t).
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to increase the deactivation rate of its gene. The equation which describes the gene state 
has the following form:

The structure of the model with a negative feedback loop is presented in Fig. 1b.

(5)
dG

dt
= qa ∗ (NA − G(t))− qd2 ∗ G(t)− qd2A ∗ G(t) ∗ A(t).

Fig. 1  Schematic diagrams of the models. a Model without feedback loops. b Model with negative feedback 
loop in which protein A represses its own gene. c Model with positive feedback loop in which protein A 
blocks repression of its own gene. The red box contains the step added after switching and related to the 
drug application.
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The model with a positive feedback loop is created by double negation where protein 
A blocks repression of the gene responsible for its production. As a result transcription 
of the gene increases and subsequently the production of mRNA and protein is higher. 
The first equation of this model describes the gene state and its dependency on the num-
ber of protein molecules:

The structure of the model with a positive feedback loop is presented in Fig.  1c. To 
maintain a similar protein level of ∼160,000 molecules in all the models we fitted the 
spontaneous gene deactivation rates (these are noted correspondingly by qd1, qd2 and 
qd3 ). Other parameters are the same in all the models (see Table 1).

Steady states

The steady state equations for all variables in the model without a feedback loop are as 
follows:

For the models with a positive or negative feedback loop the formulas for the steady 
state are much more complicated. Derivation includes solution of the square equations, 
but because one root is positive and the other is always negative there is only one steady 
state. The steady state for the model with a negative feedback loop is described by the 
equations:

(6)
dG

dt
= qa ∗ (NA − GA(t))−

qd3

1+ qd3A ∗ A
∗ G(t).

Gss =
NA ∗ qa

qa + qd1
,

Rss =
t1 ∗ NA ∗ qa

d1 ∗ (qa + qd1)
,

Ass =
t2 ∗ t1 ∗ NA ∗ qa

d2 ∗ d1 ∗ (qa + qd1)
.

Table 1  Values of the model parameters

Parameter Description Value Unit

qa Gene activation 2.78 ∗ 10−4 1/s

qd1 Gene deactivation 2.78 ∗ 10−4 1/s

qd2 Spontaneous gene deactivation (negative feedback) 2.78 ∗ 10−5 1/s

qd2A Protein induced gene deactivation (negative feedback) 1.565 ∗ 10−9 1/s

qd3 Spontaneous gene deactivation (positive feedback) 2.4 ∗ 10−3 1/s

qd3A Protein induced gene activation (positive feedback) 4.8 ∗ 10−5 1/s

t1 mRNA transcription 0.05 Molecules/s

t2 Protein translation 0.1 1/s

d1 mRNA degradation 1.5 ∗ 10−4 1/s

d2 Protein degradation 2.0822 ∗ 10−4 1/s

d3 Protein degradation dependent on drug 3 ∗ 10−9 1/s

DRUG Number of drug molecules 1.4 ∗ 103 Molecules

NA Number of alleles 2 Alleles



Page 7 of 24Ochab et al. BioMed Eng OnLine 2017, 16(Suppl 1):77

For the model with a positive feedback loop the formulas for the steady state are as 
follows:

For the positive feedback loop there exists only one steady state, because the second 
solution of the quadratic equation is always negative. To calculate the steady states after 
drug application the parameter d2 should be replaced by the formula (d2 + d3 ∗ DRUG ). 
Drug application change the values of the variables in the steady states but does not 
affect the stability of the models. The calculated values of the steady states in each case 
are presented in Table 2. In each case we apply the same dose of drug equal to 140,000 
molecules.

Simulations

All the simulations were performed by a deterministic algorithm, specifically a Runge–
Kutta 4th order algorithm. The results obtained cannot be treated as time courses of 
the number of molecules in one cell, because we do not take into account the stochastic 
nature of the processes. However, the deterministic approach enables prediction of the 
mean behavior of cells, which can be considered as the response of a large cell popu-
lation like a whole organism. The simple control objective is to keep the protein level 
A(t) < Th, where Th is the required threshold. To ensure effective therapy, the protein 
level must be maintained under the threshold until the end of the simulation. The time 

Gss =

−(qa + qd2)+
√

(qa + qd2)2 + 4 ∗ NA ∗ qa ∗ qd2A ∗
t2∗t1
d1∗d2

2 ∗
t2∗t1
d1∗d2

∗ qd2A
,

Rss =
t1

d1
∗

−(qa + qd2)+
√

(qa + qd2)2 + 4 ∗ NA ∗ qa ∗ qd2A ∗
t2∗t1
d1∗d2

2 ∗
t2∗t1
d1∗d2

∗ qd2A
,

Ass =
t2 ∗ t1

d2 ∗ d1
∗

−(qa + qd2)+
√

(qa + qd2)2 + 4 ∗ NA ∗ qa ∗ qd2A ∗
t2∗t1
d1∗d2

2 ∗
t2∗t1
d1∗d2

∗ qd2A
.

Gss =
−(qa ∗ NA ∗ qd3A ∗

t1∗t2
d1∗d2

− qa − qd3)

−2 ∗ qa ∗ qd3A ∗
t1∗t2
d1∗d2

−

√

(qa ∗ NA ∗ qd3A ∗
t1∗t2
d1∗d2

− qa − qd3)2 + 4 ∗ q2a ∗ qd3A ∗ NA ∗
t1∗t2
d1∗d2

−2 ∗ qa ∗ qd3A ∗
t1∗t2
d1∗d2

Rss =
−(qa ∗ NA ∗ qd3A ∗

t1∗t2
d1∗d2

− qa − qd3)

−2 ∗ qa ∗ qd3A ∗
t1∗t2
d1∗d2

−

√

(qa ∗ NA ∗ qd3A ∗
t1∗t2
d1∗d2

− qa − qd3)2 + 4 ∗ q2a ∗ qd3A ∗ NA ∗
t1∗t2
d1∗d2

−2 ∗ qa ∗ qd3A ∗
t2
d2

Ass =
−(qa ∗ NA ∗ qd3A ∗

t1∗t2
d1∗d2

− qa − qd3)

−2 ∗ qa ∗ qd3A ∗
t1∗t2
d1∗d2

−

√

(qa ∗ NA ∗ qd3A ∗
t1∗t2
d1∗d2

− qa − qd3)2 + 4 ∗ q2a ∗ qd3A ∗ NA ∗
t1∗t2
d1∗d2

−2 ∗ qa ∗ qd3A
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when this target is achieved (when A goes below Th) is not specified, but a faster thera-
peutic effect is preferable.

We consider the influence of two different types of perturbations: the uncertainty of 
the parameter values, and the inaccuracy in estimation of switching time. In the case of 
deviation of the parameter values we focus on the parameter qa, which represents the 
gene’s activation. This rate is changing dynamically, because the concentration of tran-
scription factors fluctuates continuously. This parameter is very difficult to estimate and 
its value can change during a cell’s life. Further, its value varies from person to person 
and depends on the physiological conditions at the specific moment. As shown in [24], 
gene switching time may be crucial for the success or failure of therapy. Inaccuracy in 
the switching time is the result of delays in drug application and differences in the rate 
time of the drug’s distribution in the organism.

Results
Results for models without drug degradation

First we examine the response of models after application of the same dose of a drug. 
We postulate that the therapeutic target is reached if the level of the target protein is less 
than 70,000 molecules. This target is reached for a drug dose of 140,000 molecules in 
both the system without any feedback loops and in that with positive feedback, but the 
same drug dose results in a much lower level of the target protein in the system with a 
positive feedback loop. The system with a negative feedback loop is less sensitive to the 
drug, which reduces the target protein level under the threshold but then stabilizes it 
above the threshold so that the therapeutic goal is not reached (Fig. 2).

Parameter changes

Due to the potential toxicity of drugs we want to minimize their dose, but on the other 
hand a low drug dose can result in inefficient therapy. Thus determining the optimal 
drug dose is challenging. We found that for simplified models (without considering 
complicated drug pharmacokinetic and pharmacodynamics) the effective drug dose is 
smaller for the model with a positive feedback loop; 40,000 drug molecules are suffi-
cient to decrease the protein level under threshold, whereas 90,000 are needed for the 
model without any feedback. The model with negative feedback is almost not sensi-
tive to changes in drug administration and the effective dose is very high (150,000 drug 

Table 2  Values of the steady states in models with or without drug application (drug dose 
140,000 molecules)

Model Drug G R A
Gene mRNA Protein

Without feedback − 1.0000 333.33 160,087

Without feedback + 1.0000 333.33 53,060

Negative feedback − 0.9996 333.19 160,020

Negative feedback + 1.3346 444.85 70,811

Positive feedback − 1.0053 335.09 160,930

Positive feedback + 0.3656 121.87 19,399
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molecules). To investigate the influence of parameter perturbations on the achievability 
of the therapeutic goal, we altered the rate of gene activation qa to 80, 90, 110, or 120% of 
the original value. These perturbations have a significant influence on the steady states, 
and thus in some cases the therapeutic target is not reached. Change of the qa value 
results in an altered protein level before and after drug application. In all the systems a 
reduction of the level of gene activation results in a decreased protein level, so the thera-
peutic goal is reached. On the contrary, after increasing the value of parameter qa the 
protein level increases, so in some cases the therapy with the defined drug dose cannot 
be efficient (Figs. 3, 4, 5). The steady states of all the models depend on the values of the 
parameter qa, but uncertainty in its value have a different influence for different models. 
In the model with a negative feedback loop deviations of the gene activation rate have 
the smallest influence on the steady state (Fig. 6 (green line)) whereas in the model with 
positive feedback loop the observed perturbations are the greatest (Fig. 6 (blue line)).   

Time of the switch change

The second type of deviation considered here results from inaccuracy in the switching 
time. In this experiment the drug application starts when the number of protein mol-
ecules reaches 150,000. Consequently, the switching time occurs before stabilization of 
the the system in the steady state. Such conditions mimic those in real life where a ther-
apy is initiated when some specified biological indicator exceeds a specified level. The 
differences in dynamics between the created models are presented in Fig. 7. The time to 
reach the therapeutic target differs significantly for different systems. The dynamics of 
the model with a negative feedback loop are the fastest, and in this case the response to 
the drug is much more rapid than in the other cases. The differences in the time to reach 
the therapeutic goal are the cumulative effect of two factors: the variation in the switch-
ing time and the differences in target protein levels at the switching time. The value of 

Fig. 2  Time courses of protein levels in different models. Number of target protein molecules after drug 
application in the model without feedback loop (red line), the model with negative feedback loop (green line), 
and the model with positive feedback loop (blue line)
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the switching time does not affect the target protein numbers in the steady state, but 
only the time at which the goal is reached. In all cases, the sooner the switch occurs 
the sooner the goal is reached. In the model without any feedback the steady state is 
reached 2.3 h after the switching time (Fig. 8). The dynamics in the model with a nega-
tive feedback loop are faster than in the other models and the increase and decrease of 
target protein number is more rapid—the drug application is after 4.5 h of simulation 
and the therapeutic goal is reached less than 1 h later. However, due to overshoot the 
steady state is reached after 10 h of simulation (Fig. 9). The slowest changes are observed 

Fig. 3  Achievability of the target protein level with changes of the gene activation rate (parameter qa) in the 
model without feedback loops

Fig. 4  Achievability of the target protein level with changes of the gene activation rate (parameter qa) in the 
model with negative feedback loop
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in the model with a positive feedback loop, where the goal is reached approximately 13 h 
after drug application (Fig. 10).

Drug degradation and inactivation

In biological systems like human organisms a stable number of drug molecules is impos-
sible to maintain, because a variety of processes influences the number of active drug 
molecules. First, application of a drug is a relatively short process (even in the case 
of intravenous drip it takes no longer than 2  h) and the level of active drug does not 

Fig. 5  Achievability of the target protein level with changes of the gene activation rate (parameter qa) in the 
model with positive feedback loop

Fig. 6  Influences of parameter change on the perturbation of the number of protein molecules in the equi-
librium state compared to the nominal in each model
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increase in a stepwise manner because of the delay in transport to target cells. Moreo-
ver, the number of active molecules in target cells depends on their intracellular import 
and export, and the drug level decreases gradually due to excretion which finally leads 
to complete removal of drug from the body [26]. We took into account all these factors 
by adding two more equations to our model, which describe the total amount of drug 
outside cells and the amount of active drug (not bound to plasma proteins or tissues and 
thus available for target cells). The equation for the total number of drug molecules con-
sists of a term for the drug application and a term for its removal. The drug application 

Fig. 7  Comparison of the results of models results after drug application on the time of reaching 150,000 
protein molecules without perturbation

Fig. 8  Time to reach the target number of protein molecules with changes of switch time. Model without 
feedback loops.
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is described by a very simple formula, so it exhibits simplified and very rapid dynamics, 
while the process of drug removal concerns only molecules not bound to any other par-
ticles or tissues, which are denoted by DRUGN :

(7)
dDRUGtot(t)

dt
= pdrug ∗U(t)− δ ∗ DRUGN (t).

Fig. 9  Time to reach the target number of protein molecules with changes of switch time. Model with nega-
tive feedback loop

Fig. 10  Time to reach the target number of protein molecules with changes of switch time. Model with posi-
tive feedback loop
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where DRUGtot(t) stands for the total drug number of drug molecules in the body and 
U(t) is the drug dose. The number of free drug molecules (DRUGN (t)) is defined by the 
equation:

The above equation is derived from the standard equilibrium equation presented in [13]. 
The parameter Bmax denotes the concentration of total tissue and plasma protein drug-
binding sites and Ka is an equilibrium association constant. The number of active drug 
molecules depends on the number of free molecules in the organism (DRUGN) and their 
transport into and out of the cell. We assume that the dynamics of drug transport are 
very rapid, so we neglect drug degradation inside cells or tissue. The number of drug 
molecules in cells is described by the equation:

The equations describing the pharmacodynamics and pharmacokinetics were published 
in our previous paper [13], where we presented the biological justification for the formu-
las and the parameter values based on the drug Nutlin (Table 3).

When we take into account drug removal, its influence on the level of the target pro-
tein decreases with time. As a result, in all the models the protein level goes over the 
given threshold and therapy fails after some time (Fig. 11). To ensure successful therapy, 
a drug should be applied repeatedly and we consider next therapy with drug admin-
istration at different frequencies. We compare system results for the same drug dose, 
because the nonlinear process of drug removal influences the results in the case of dif-
ferent doses. In reference to real drug application system, we apply the same cumulative 
drug dose in all therapies. In the case of more frequent drug application we use accord-
ingly smaller drug doses (U(t)): for application every 6 h the dose is 70, for every 12 h it 
is 140, and for every 24 h it is 280 arbitrary units. In the model without feedback loops, 
the time to reach the goal depends on the frequency of drug application. The high drug 
dose for application every 24 h is effective right after the first application, so the thera-
peutic goal is reached very fast (Fig. 12). In schedules with a smaller drug dose, a longer 

(8)

DRUGN (t) =
−(1+ Ka ∗ Bmax − Ka ∗ DRUGtot(t))

2 ∗ Ka

+

√

(1+ Ka ∗ Bmax − Ka ∗ DRUGtot(t))2 + 4 ∗ Ka ∗ DRUGtot(t)

2 ∗ Ka
.

(9)
dDRUG(t)

dt
= i ∗ DRUGN (t)− e ∗ DRUG(t).

Table 3  The values of the parameters for model with drug degradation

Parameter Description Value Unit

pdrug Dose conversion factor 7.5 ∗ 10−9 M/(mg/kg)

U Drug dose rate 5 mg/(kg s)

Ka Equilibrium association rate 8.5 ∗ 104 1/M

Bmax Concentration of protein binding sites 1.1 ∗ 10−3 M

δ Drug elimination rate 5.4 ∗ 10−4 1/s

i Drug import to cell 1.27 ∗ 108 molec/(s M)

e Drug export from cell 5 ∗ 10−3 1/s
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time is needed to decrease the target protein level under the threshold (Figs.  13, 14). 
In the model with a negative feedback loop the first application of a drug dose of 280 
is not sufficient, and the target protein level exceeds the desired threshold quite rap-
idly; the second application after 24 h is needed for efficient therapy (Fig. 15). For this 
system, more frequent drug application will be preferable(see Figs. 16 and 17) because 
this allows the therapeutic target to be reached after about 19  h in the case of appli-
cation every 6  h (Fig.  17). Like the experiments without drug degradation, the model 
with a positive feedback loop is the most sensitive for drug activity . The same drug dose 

Fig. 11  Time courses of the protein levels in different models with drug degradation. Note that in all cases 
the therapy fails after some time

Fig. 12  Time course of the level of target protein molecules in the model without a feedback loop with drug 
degradation after application every 24 h
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induces a lower target protein level (Figs. 18, 19, 20) than those in the previous mod-
els. In the model with positive feedback, application every 24 h ensures that the goal is 
reached very rapidly.    

The minimal therapy involves an application of the smallest effective drug dose to 
ensure the least toxic effect for the patient. Inaccuracy in determination of the model 
parameters can result in ineffective therapy, in this case due to an increased rate of gene 
activation. In the schedule with repeated drug application we use the normalized mean 

Fig. 13  Time course of the level of target protein molecules in the model without a feedback loop with drug 
degradation after application every 6 h

Fig. 14  Time course of the level of target protein molecules in the model without a feedback loop with drug 
degradation after application every 12 h
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square error to calculate the discrepancy between the required and the observed protein 
level. The formula for this error is given by:

where A—assumed protein level, Â—observed protein level and N—number of time 
samples.

(10)E =

√

∑

(A/A− Â/A)2

N
,

Fig. 15  Time course of the level of target protein molecules in the model with a negative feedback loop with 
drug degradation after application every 24 h

Fig. 16  Time course of the level of target protein molecules in the model with a negative feedback loop with 
drug degradation after application every 12 h
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The discrepancies are largest in the model with a positive feedback loop, where the 
mean square error is approximately 6 ∗ 10−4 for 80 and 120% parameter perturbations 
(Fig. 21). In the model with negative feedback the mean square error is the smallest, and 
even in the case of 80% perturbation it is smaller than 1.5 ∗ 10−4 (Fig. 22). In the model 
with a positive feedback loop the mean square errors for 80% and 120% perturbation are 
almost the same, but in the two other models the 120% perturbation results in a smaller 
error than the 80% perturbation (compare Fig. 21 with Figs. 22, 23). In the system with-
out feedback and in that system with positive feedback discrepancy does not depend on 

Fig. 17  Time course of the level of target protein molecules in the model with a negative feedback loop with 
drug degradation after application every 6 h

Fig. 18  Time course of the level of target protein molecules in the model with a positive feedback loop with 
drug degradation after application every 24 h
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the frequency of drug application. In the model with negative feedback, less frequent 
drug administration results in a smaller discrepancy.

Discussion
Systems with switching form a quite common and well investigated group of automatic 
control problems [27, 28]. However, application of methods known from control the-
ory to real biological systems with stepwise changes of parameter values is quite a new 
approach. In the present work abrupt changes of parameter values for a target protein 

Fig. 19  Time course of the level of target protein molecules in the model with a positive feedback loop with 
drug degradation after application every 12 h

Fig. 20  Time course of the level of target protein molecules in the model with a positive feedback loop with 
drug degradation after application every 6 h
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are used to model the results of application of a therapeutic drug. In the case of the drug 
degradation multiple drug dosage case can be treated as a multiple switch in the system. 
This property creates a variety of possible applications, for example cell disorders like 
carcinogenesis which induce many different changes in cellular processes can be mod-
eled as switches in the structure of the system. All the models presented in this work, 
even those with feedback, are very simplified, and we do not consider any specific target 
protein. In biological systems, dependencies between proteins and other molecules cre-
ate very complex regulatory networks which can include multiple different feedbacks, 

Fig. 21  Time course of the level of target protein molecules in the model with a positive feedback loop with 
drug degradation. Mean square error for parameter deviations in different types of therapy

Fig. 22  Time course of the level of target protein molecules in the model with a negative feedback loop with 
drug degradation. Mean square error for parameter deviations in different types of therapy
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both positive and negative. Moreover, in more complicated systems we can observe 
delays in signal transduction so that the dynamics can be even more complicated. It 
is even possible that complicated dynamics of a real system will filter out the effect of 
parameter perturbations so that no effect will not be observed at all. Analysis of real sys-
tems can therefore be challenging, but in our opinion it is worth performing. However, 
in this work we neglect the complicated real-life intercellular dynamics to focus on the 
problem of the effects of parameter perturbations in the system. Efficient therapy usually 
requires the application of several drugs. The pharmacodynamics and pharmacokinet-
ics of particular drugs, especially their removal from and inactivation by the organism, 
enforce frequent drug application to maintain the desired effect and due to drug tox-
icity and side effects, the cumulative dose should be minimized. In the case of similar 
target protein levels in the steady state, the internal feedback can result in decreased or 
increased sensitivity to the drug (Fig. 2). The effects observed here emphasize the impor-
tance of careful investigations of the regulatory networks inside the cell. An optimal 
algorithm for drug application is still a problem which has not been fully examined. High 
drug doses can be toxic for patients, and moreover they are very quickly removed from 
the body due to the nonlinear process of drug excretion. Side effects can be minimized 
by application of smaller drug doses with higher frequency, but the dynamics of the pro-
cess is very important. The time to reach the therapeutic goal can be a crucial factor in 
selection of a therapy and in the case of fast and insensitive systems such as those with 
negative feedback studied here, more frequent drug application allows the therapeu-
tic target to be reached much earlier than with a schedule of less frequent applications 
with the same cumulative dose. Inaccuracies in parameter determination and times of 
drug administration could have a significant impact on the results of therapy, and thus 
should be always taken into consideration. Attempts have been made to estimate the 
influence of parameter deviations on the reachability of the therapeutic goal using the 

Fig. 23  Time course of the level of target protein molecules in the model without a feedback loop with drug 
degradation. Mean square error for parameter deviations in different types of therapy
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analytical approach [29]. Parameter perturbation will be especially crucial for systems 
where switching depends on the system’s state. If the switches are used for modeling the 
internal features, for example step-like activation of a protein by other macromolecules, 
perturbations in the model parameters will influence not only the numbers of molecules 
but also the time of the switch, and as a result such models will have significantly differ-
ent dynamics. In such case the problem of parameter perturbation will be even more 
interesting and thus worth focussing on. In this paper, despite the existence of genes in 
our models we have focused only on the deterministic approach. The reason was that 
the majority of published models is still deterministic, and we want to point out some 
possible problems related to the determination of parameter values (and thus their fluc-
tuations) when systems with switchings (such as drug application) are considered. This 
leads us to results which may be considered as the expected values realized in a real 
stochastic system. One should remember, however, that the real response of a single cell 
to a drug may be more strongly affected by the intrinsic noise resulting from stochastic 
gene switching than by parameter deviations, and this possibility will be the subject of 
our future studies. The other interesting phenomena related to stochastic gene switching 
and drug efficiency was pointed out in our previous work [24] where we show that the 
drug dose required to achieve the therapeutic goal may be significantly higher when a 
system is modeled by the stochastic approach than by the deterministic approach. In real 
biological systems, differences in parameter values can be mitigated by the very complex 
dynamics of non-linear systems and the stochasticity of processes such as gene activa-
tion. Nevertheless, numerous models presented in the literature were created as deter-
ministic systems, so the problem discussed in this paper is applicable to them.

Conclusions
Creation of models of biological systems can be very useful and thus becomes a more 
and more popular method for examination of biological processes. One of the biggest 
problems in model development is determination of the parameter values. Some param-
eter values are calculated based on biological experiments, which are often very expen-
sive, time consuming and gives only approximate results. However, the values of many 
biological parameters can not be calculated directly and therefore must be estimated. 
Moreover, the rates of biological processes are dynamically changing due to the physical, 
chemical and biological conditions inside the cell or organism. Taking all these factors 
into account, the problem of perturbations in model parameters is a significant issue. 
In this work we focus on the influence of parameter deviations on the reachability of a 
therapeutic goal in quite simple models of a therapeutic drug targeting a specific protein 
in vivo, and we examine the general properties of these models. Negative feedback in 
the model decreases the sensitivity to a switch (in this case the application of the drug) 
but also decreases the sensitivity to parameter perturbations. This model has very rapid 
dynamics and its response shows overregulation. On the other hand, a model with posi-
tive feedback is characterized by very slow changes. It is very sensitive to the schedule of 
drug application, but perturbations in the model parameters result in significant differ-
ence in the output and, moreover, changes in the parameter values can make the model 
unstable. Considering changes in the level of active drug due to its degradation, multiple 
drug application is optimal. More frequent drug application allows for using a smaller 
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total dose, so that the therapy can be effective and has lower toxicity. A high drug dose 
results in a very large and rapid jump of drug concentration which could cause serious 
damage to the whole body. The frequency of drug application has a significant influence 
on the time to reach the therapeutic target. In our opinion, analysis of dynamics and 
sensitivity for the models of such processes plays a crucial role in their application
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