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Abstract 

Background:  In upper-extremity stroke rehabilitation applications, the potential use 
of Force Myography (FMG) for detecting grasping is especially relevant, as the presence 
of grasping may be indicative of functional activity, which is a key goal of rehabilitation. 
To date, most FMG research has focused on the classification of the raw FMG signal 
(i.e. instantaneous FMG samples) in order to determine the state of the hand. However, 
given the temporal nature of force generation during grasping, the use of temporal 
feature extraction techniques may yield increased accuracy. In this study, the effective-
ness of classifying temporal features of the FMG signal for the two-class grasp detec-
tion problem of “grasp” versus “no grasp” (i.e. no object in hand) was evaluated with 
ten healthy participants. The experimental protocol comprised grasp and move tasks, 
requiring the use of six different grasp types frequently used in daily living, in conjunc-
tion with arm and hand movements. Data corresponding to arm and hand move-
ments without grasping were also included to evaluate robustness to false positives. 
The temporal features evaluated were mean absolute value (MAV), root mean squared 
(RMS), linear fit (LF), parabolic fit (PF), and autoregressive model (AR). Off-line classifica-
tion performance of the five temporal features, with a 0.5 s extraction window, were 
determined and compared to that of the raw FMG signal using area under the receiver 
operating curve (AUC).

Results:  The raw FMG signal yielded AUC of 0.819 ± 0.098. LF and PF resulted in the 
greatest increases in classification performance, and provided statistically significant 
increases in performance. The largest increase obtained was with PF, yielding AUC 
of 0.869 ± 0.061, corresponding to a 6.1% relative increase over the raw FMG signal. 
Despite the additional fitting term provided by PF, classification performance did not 
significantly improve with PF when compared to LF.

Conclusions:  The results obtained indicate that temporal feature extraction tech-
niques that derive models of the data within the window may yield modest improve-
ments in FMG based grasp detection performance. In future studies, the use of model-
based temporal features should be evaluated with FMG data from individuals with 
stroke, who might ultimately benefit from this technology.
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Background
Force Myography (FMG) involves measuring the outward force, or pressure, of a muscle 
as it changes conformation below the surface of the skin, as a means to characterize the 
state of the underlying musculo-tendinous complex [1]. The use of FMG in conjunction 
with machine learning and pattern recognition techniques is an active area of research 
[1–5]. FMG provides a simple to use, inexpensive, and unobtrusive method for detecting 
the functional state of a limb. Studies have shown that FMG can be used to (i) predict 
grip strength [1], (ii) predict single finger forces [2], (iii) detect hand gestures [3], (iv) 
detect grasp and move actions [4], and (v) detect upper-extremity postures, including 
grasping, elbow flexion, and wrist pronation [5]. Several applications have been pro-
posed for FMG based sensing, including the creation of human machine interfaces to 
control robotic prosthesis [6] and industrial robots [7], as well as the creation of moni-
toring systems that encourage functional use of the limb as part of a stroke rehabilitation 
program [4, 5].

The potential use of FMG for grasp detection is especially relevant in the case of reha-
bilitation in individuals with upper-extremity impairments resulting, for instance, from 
stroke. Research suggests that it is necessary to practice hundreds, if not thousands, of 
grasp and release motions to optimize hand motor recovery after stroke [8, 9]. Accord-
ingly, encouraging the use of the paretic limb to complete functional tasks in daily use 
is a key goal of stroke rehabilitation [10, 11]. In fact, given the wide variety of grasps 
required to complete activities of daily living (ADL) [12], the presence of grasping, 
regardless of the grasp type, may be indicative of functional use of a limb, which may 
contribute to hand motor recovery. The ability to distinguish between grasping, regard-
less of grasp type, versus no grasping (i.e. no object in hand) could allow FMG based 
devices to encourage stroke survivors to use their paretic arm functionally as part of 
daily living, and contribute towards improved rehabilitation outcomes.

Several studies with healthy participants have shown the feasibility of FMG based 
grasp detection [3, 4, 13, 14]. Despite the noted work, the use of FMG for grasp detection 
still presents challenges. In fact, the FMG signal has been shown to be sensitive to joint 
positions, including that of the elbow, forearm, and wrist [5, 15–17]. While the detec-
tion of upper-extremity joint positions may be useful in some applications, the sensitiv-
ity of FMG to joint positions could adversely impact grasp detection as joint positions 
will vary when the user is grasping and moving an object. Variations in joint position 
and movement trajectories, which would be expected as part of daily living, could con-
found the grasp detection classification scheme and reduce accuracy. Thus, further 
research is required to increase the robustness of FMG based grasp detection, such that 
it may be eventually used for grasp detection in unconstrained environments. Addi-
tionally, a majority of FMG classification research has focused on trying to distinguish 
between various types of grasps (i.e. multi-class problem) in the absence of significant 
upper-extremity movement [3, 18, 19]. The ability to distinguish between a discrete set 
of grasp-types is a necessary attribute in human machine interface applications [3, 18]. 
However, the presence of grasping, regardless of the grasp type involved, can be indica-
tive of functional use of a limb, which is a key goal in stroke rehabilitation [11]. In stroke 
rehabilitation applications, FMG-based devices will have to detect and encourage grasp-
ing instead of a lack of grasping, regardless of which of the wide variety of grasp-types 
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necessary to complete ADL [35], was used. To the best of our knowledge, there have 
been no studies that have evaluated the accuracy of FMG, or other upper-extremity 
sensing modalities, when classifying data associated with multiple grasp-types, in the 
presence of significant upper-extremity movements, for the two-class problem of grasp-
ing, regardless of grasp type, versus no grasping (i.e. no object in hand), which may be a 
more clinically relevant scenario.

Contemporary FMG research has focused on classification of the raw FMG signal, in 
the form of instantaneous FMG samples from multiple channels (i.e. sensors), in order 
to detect the grasping of an object [3–5, 13]. However, the grasping of an object is not a 
discrete, instantaneous action. Instead, it is a multi-stage process [20]. The force gener-
ated during grasping will increase as an individual first moves his or her fingers, makes 
contact with the object, forms the grasp, and then proceeds to generate force in order 
to be able to grip the object securely, and lift the object against gravity. Subsequently, 
the releasing process involves a reduction in force and the opening of the hand into a 
neutral hand posture [20]. Given that grasping involves a force profile that changes over 
the various stages of a grasp, we postulate that the temporal sequence of FMG values 
adjacent in time may provide descriptive information on the current grasping state of 
the hand (i.e. that grasp detection with FMG can be represented as a time series prob-
lem). Traditional machine learning methods, such as the support vector machine and 
neural network, use an instance based method for classification. In such methods, the 
instantaneous classifier output is dependent on the instantaneous inputs to the classi-
fier; historical or future inputs do not affect the instantaneous classifier output. The use 
of temporal feature extraction has been shown to increase accuracy in applications that 
involve classifying data that have temporal or sequential dependence, such as the clas-
sification of electromyography (EMG) signals [21]. The temporal feature extraction step 
involves calculating parameters (i.e. features) that represent the time series within a cer-
tain window size of data. The calculated features are then provided to the classifier as 
instantaneous inputs [22].

Based on these considerations, the objective of this study is to evaluate the utility of 
classifying temporal features of the FMG signal for FMG data associated with a variety 
of grasp-types, in the presence of confounding upper-extremity movements, for the two-
class grasp detection problem of grasp, regardless of grasp type, versus no grasp (i.e. no 
object in hand).

Methods
Participants

Healthy volunteers, with full upper-extremity functional ability, were recruited for the 
study. All participants provided informed consent for their participation in the study, 
which was approved by Office of Research Ethics, Simon Fraser University. Potential 
participants with height greater than allowed for by the experimental protocol were 
excluded from the study.

Data collection device

The experimental device consisted of a force sensing band with 16 force sensors and 
an additional external force sensor that was connected by flexible wire to the device’s 
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housing. The force sensing band was 28 cm long and 2 cm wide; the center-to-center 
distance between successive force sensors on the band was 1.7  cm. Figure  1 depicts 
the dimensions of the force sensing band. The additional external force sensor was an 
FSR402 from Interlink electronics [23]. The 16 force sensors in the force sensing band 
were fabricated with a polymer thick film, which exhibits a reduction in resistance as 
force is applied to it. The sensing characteristics of sensors fabricated with this polymer 
thick film are the same as the FSR402 from Interlink electronics [23].

The band was donned on the participant’s wrist, on the distal side of the styloid pro-
cess of the Ulna bone (Fig. 2). In the event that the band was longer than the participant’s 
wrist circumference, the remaining length of the band was taped down to the device 
housing. The additional force sensor was taped to the participant’s thumb (i.e. thumb 
sensor). The thumb sensor, connected to the device housing, is depicted in Fig. 3. The 
signal from the thumb sensor was used to label each datum that corresponded to a grasp 
(i.e. whenever force was observed on the thumb sensor due to the grasping of an object) 
using a threshold crossing that was tuned by the experimenter. Data from the thumb 
sensor served as the true label for training classifiers and evaluating FMG classification 
performance. This method of labeling the data was motivated from previous works pub-
lished by our research group [24] and was selected as all the grasp types used in this 
study involve active opposition of the thumb in order to form the grasp and secure an 
object.

The change in resistance demonstrated by each force sensor in the 16 channel (i.e. sen-
sors) force sensing band, and the thumb sensor was quantified using a voltage divider 
circuit with a 20  kΩ resistor using a 10-bit analog to digital convertor. Data were 

Fig. 1  Internal dimensions of force sensing band

Fig. 2  Device donning position
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sampled at 10 Hz with an AT Mega 328 Microcontroller, located within the device hous-
ing, and wirelessly transmitted to a Personal Computer via Bluetooth. The 10 Hz sam-
pling rate has been shown to be sufficient for FMG based sensing and classification [4, 
6, 25], as it has been shown that most volitional upper-extremity motion occurs below 
4.5 Hz [26, 27]. Custom LabVIEW [28] software was written to collect data from the data 
acquisition device. The software consisted of a communications module that received 
and logged data from the FMG data acquisition device and a graphical user interface 
that allowed the operator to insert a label associated with each round of data collection 
in the experimental protocol.

Experimental protocol

The experimental protocol comprised multiple repetitions of several grasp and move 
tasks. As noted previously, research has shown that the FMG signal is sensitive to joint 
positions of the wrist, forearm and elbow [5, 15], which are expected to vary with the 
varying movement trajectories that are likely to be employed when grasping and mov-
ing objects in daily use. In order to explore the limits of FMG grasp detection, the pro-
tocol was designed to involve movement in the three-dimensional workplace, and the 
use of joint movement (such as wrist flexion and extension, elbow flexion and exten-
sion, and shoulder flexion and extension) for task completion. Additionally, to evaluate 
the classifiers’ robustness to false positives (i.e. incorrectly detecting a grasp when no 
grasp occurred), portions of the protocol required movement without grasping (i.e. with 
a neutral hand posture) in the same three-dimensional workplace.

Three‑dimensional workspace

Figure  4 shows a model of the three-dimensional workspace created for the protocol. 
The workspace consisted of five shelving units placed on top of a U-shaped table. The 
U-shaped table was 80 cm tall. Four shelving units, 64 cm tall, were positioned at the 
four corners of the workspace. The space below the shelving units (i.e. the surface of the 
table) was accessible. Each shelving unit was used to create two target positions: one 

Fig. 3  Thumb sensor for labelling data
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at the top of the shelf (height above table = 64 cm) and one at the bottom of the shelf 
(height above table = 0 cm). This created a total of eight target positions (positions 1–8 
in Fig.  4). The fifth shelving unit was 32  cm tall (half the height of the other shelving 
units) and was placed in the center of the workspace to create the origin position (posi-
tion 0 in Fig. 4). The participant was asked to stand in the center of the U-shaped table, 
directly in front of the origin position, and grasp and move the objects to-and-from the 
various shelving units on the table. The protocol required the top of the target shelves 
(positions 1, 3, 5 and 7 in Fig. 4) to be 5 cm above the height of the participant’s shoulder, 
such that, the participant would be required to forward flex his/her shoulder above the 
horizontal to reach the target positions on top of the shelving unit. In the event that the 
participant was too short for this constraint, an adjustable platform was provided for the 
participant to stand on (Fig. 5). The number of shelves and their position relative to the 
participant was selected to ensure that participants had to move their arms superiorly, 
inferiorly, medially, laterally, proximally, and distally in order to move objects to-and-
from each of the shelves. Figure 6 shows the actual workspace created.

Grasp types

Grasp types that are frequently used in ADL were selected for the protocol. Bullock 
et al. monitored the relative frequency of the different grasp types used by two machin-
ists and two housekeepers as part of their daily activities [12]. We selected seven of the 
most frequently used grasp types for evaluation: (1) medium wrap, (2) precision disk, 
(3) lateral pinch, (4) tripod, (5) lateral tripod, (6) power sphere, and (7) thumb-2 finger. 
Combined, these grasp types account for more than 50% of the grasps that occurred for 
the two machinists and two housekeepers in Bullock et al.’s study [12]. A specific object 
was selected for each of the grasp types. The tripod and lateral tripod grasp types were 
considered identical from the FMG perspective, as they involve identical finger positions 
and are in fact variations of hand orientation in the three-dimensional workspace. It is 
noteworthy that other variants of grasp taxonomy do not distinguish between the tripod 
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Fig. 4  Model of task workspace
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and lateral tripod grasp types [29]. Table 1 lists the objects selected for each grasp type. 
Figures 7, 8, 9, 10, 11 and 12 depict the objects selected for each grasp type.

Instructions to participants

The protocol consisted of three identical rounds of data collection, each of which con-
sisted of grasp and move activity, and movement without grasping (i.e. with a neutral 
hand posture). The number of rounds was selected as a compromise between the goals 
of collecting the maximum amount of data possible, and avoiding muscular and atten-
tion fatigue in participants. Participants were asked to use their dominant hands for all 
activities. Participants started the protocol with their hand in the neutral position (i.e. 
hand by their side). For grasp and move activity, the participant was asked to move his/
her hand to the origin position (position 0 in Fig. 4), grasp and lift an object from the ori-
gin position, move and release the object at one of the target positions (positions 1–8 in 
Fig. 4), and to return his/her hand to the neutral position (by his/her side). Subsequently, 
the participant was asked to move their hand to the previously used target position (posi-
tions 1–8 Fig. 4), grasp and lift the object from the target position (positions 1–8 Fig. 4), 
and to move and release the object at the origin position, before retuning his/her hand to 
the neutral position (by his/her side). The participant was asked to repeat this process for 

Fig. 5  Adjustable platform

Fig. 6  Actual task workspace used for protocol
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each of the target positions starting with position 1 in Fig. 4, and ending with position 8 
in Fig. 4. This resulted in sixteen grasp and move actions for each object. It is noteworthy 
that the movement and placement of the objects at the target locations required the par-
ticipant to move his/her wrist, elbow, and shoulder joints, and involved arm movement in 
all three planes of motion. This allowed for the evaluation of the false negative rate (incor-
rectly predicting a neutral hand posture when a grasp was occurring) of FMG based grasp 
detection while grasping in the presence of upper-extremity movement.

Table 1  Objects used for each grasp type evaluated

Index Grasp type Object

1 Medium wrap Drinking glass

2 Precision disk Quarter bowl

3 Lateral pinch Quarter plate

4 Tripod/lateral tripod Block from box and blocks test [30]

5 Power sphere Tennis ball

6 Thumb-2 finger Pencil

Fig. 7  Drinking glass for medium wrap grasp type

Fig. 8  Quarter bowl for precision disk grasp type
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Data corresponding to movement without grasping were collected in-between the 
grasp and move activity for each object, in order to evaluate the false positive rate of 
FMG based grasp detection in the presence of upper-extremity movement. Examples of 

Fig. 9  Quarter plate for lateral pinch grasp type

Fig. 10  Block for tripod/lateral tripod grasp type

Fig. 11  Tennis ball for power sphere grasp type
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upper-extremity movement without grasping that may be encountered as part of ADL 
include raising and putting an arm through a sleeve while donning a garment, waving 
a hand in greeting, and swinging an arm while walking. Specifically, participants were 
asked to move their hands to the positions that would correspond to the movement 
involved in the grasp and move case, but without grasping any object. The participant 
was asked to move his/her hand from the neutral position, to hover over the origin posi-
tion (position 0 in Fig. 4), and to then move his/her hand to hover over a target position 
(positions 1–8 in Fig. 4), before returning his/her hand to the neutral position. The par-
ticipant was subsequently asked to move his/her hand from the neutral position to the 
previously used target position (positions 1–8 in Fig. 4), and then to move his/her hand 
to hover over the origin position (position 0 in Fig. 4), before returning to the neutral 
position. The sequence was repeated for each target position, resulting in sixteen rounds 
of movement. The above described movement without grasping, and grasp and move, 
actions were repeated for each grasp type and object. The entire sequence was repeated 
three times to form the three rounds of data collection. The instructions used for each 
round of movement without grasping, and each round of grasp and move activity, with 
different objects and grasp types, are summarized in Table 2.

Analysis

Features evaluated

Five basic temporal feature extraction techniques were identified for evaluation: (i) mean 
absolute value (MAV), (ii) root mean squared (RMS), (iii) coefficients of linear fit (LF), 
(iv) coefficients of parabolic fit (PF), and (v) coefficients of autoregressive model (AR). 
These feature extraction techniques derive from two of the several ways in which time 
series can be represented. The MAV and RMS provide a representation of the overall 
magnitude of the data within the feature window. The LF, PF, and AR are all methods 
of modelling trends within the data. While more advanced methods of representing 
time series and extracting temporal features exist, the use of these features allows for 
clear interpretation of the merits of temporal feature extraction for FMG classification 
in this preliminary study. The specific rationale for evaluating each of these features is as 
follows.

Fig. 12  Pen for thumb-2 finger grasp type
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MAV is a representation of the overall FMG activity, for the given channel, within the 
window. The use of an overall representation may lead to a reduction in misclassifica-
tion due to changes in the FMG signal caused by upper-extremity movement and other 
outliers in the data. MAV has been used as a feature in the classification of Mechano 
Myography (MMG) signals [31], and EMG signals [32]. The MAV for each channel can 
be calculated using (1); where i is the sample number from 1 to n, n is the window size, 
and k is the channel number from 1 to 16.

RMS is a representation of the power of the FMG signal for the given channel, within 
the window. RMS may relate to grip strength, which could potentially increase the ease 
of separation of data corresponding to the participant having an object in his/her hand 
and a neutral hand posture. RMS has been shown to be an effective predictor of force 
of contraction in MMG signals [33], and has been used in EMG classification [34]. The 
RMS for each channel can be derived using (2); where i is the sample number from 1 to 
n, n is the window size, and k is the channel number from 1 to 16.

LF models the trend and amplitude of the FMG for the given channel, within the win-
dow. The model may reflect a change in the force exerted by the participant’s musculo-
tendinous complex and may capture the temporal change in force that occurs as the user 
grasps, and releases an object. The LF is part of a wider class of linear model fit features. 
The use of LF for the preliminary evaluation of temporal features for FMG classifica-
tion allows for easier interpretation of the utility of linear models. The LF for each chan-
nel can be calculated by computationally applying an error minimization routine to the 
least-squares residual expression in (3) to solve for fit parameters a and b; where E is the 
residual error term of the fit, i is the sample number from 1 to n, n is the window size, 
a k is the channel number from 1 to 16. In this study, the fitting routine was carried out 
using the polyfit function in MATLAB [35].

(1)MAVk =
1

n

n
∑

i=1

∣

∣FMGk ,i

∣

∣

(2)RMSk =

√

1

n

(

FMG
2
k ,1

+ FMG
2
k ,2

+ · · · + FMG
2
k ,n

)

(3)
Ek =

n
∑

i=1

[

FMGk ,i − (ak + bki)
]2

Table 2  Instructions to  participants for  each round  of movement without  grasping 
and each round of grasp and move activity

Type Instructions to participant

Movement without grasping Move from neutral to origin position, and then to target position before returning 
to neutral. Subsequently move from neutral to target position, and then to 
origin position before returning to neutral. Repeat across eight target locations, 
resulting in sixteen movement actions

Grasp and move Move from neutral to origin position, grasp and pick-up object, move object, 
place and release object at target position, before returning hand to neutral. 
Subsequently move from neutral to previous target position, grasp and pick-up 
object, move object, place and release object at origin position, before return-
ing hand to neutral. Repeat across eight target locations, resulting in sixteen 
grasp and move actions
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PF builds upon the LF and allows for modelling with three degrees of freedom. The 
additional fit term provided by the PF allows for the modeling of non-linear trends in 
the data within the window. The model may reflect a change in the force exerted by the 
participant’s musculo-tendinous complex and may capture the temporal change in force 
that occurs as the user grasps, and releases an object. The PF has been shown to be an 
effective feature in handwritten character recognition [36]. The PF is part of a wider 
class of non-linear model fit features. The use of PF for the preliminary evaluation of 
temporal features for FMG classification allows for the interpretation of the utility of 
non-linear models. The PF for each channel can be calculated by computationally apply-
ing an error minimization routine to the least-squares residual expression in (4) to solve 
for fit parameters a, b, and c; where E is the residual error term of the fit, i is the sample 
number from 1 to n, n is the window size, and k is the channel number from 1 to 16. In 
this study, the fitting routine was carried out using the polyfit function in MATLAB [35].

AR allows for modelling of the linear dependence of a data point on previously occur-
ring data points and a stochastic term. The model may reflect a change in the force 
exerted by the participant’s musculo-tendinous complex and may capture the tempo-
ral change in force that occurs as the user grasps, and releases an object. AR has been 
shown to be effective for MMG [31] and EMG classification [34]. The AR for each chan-
nel can be calculated by computationally solving for the ai terms in the expression in (5); 
where i is the sample number from 1 to n, n is the window size, k is the channel number 
from 1 to 16, and ɛ is the stochastic error term. In this study, the order of the autoregres-
sive model was set to be 1 below the number of samples in the window size. The AR 
parameters were calculated by applying the Yule-Walker method using the aryule func-
tion in MATLAB [37].

Each feature extraction technique was run on the FMG data using a 0.5 s window (5 
samples). In order to evaluate the utility associated with each candidate feature, no addi-
tional processing or filtering was conducted on the FMG data before or after feature 
extraction. The window size was selected based on an empirical analysis of the time-
scale in which a transition between a neutral hand posture and a grasp hand posture 
occurs. In the case of the LF, PF and AR features, the selected window size allows for 
modelling of the temporal trends (such as slope and curvature) of the FMG signal for a 
given channel, within a 0.5 s timespan, which would allow for the capture of information 
on the change in the FMG profile that may occur as the transition to-and-from a grasp 
posture occurs. In all cases, the feature value associated with a single instantaneous 
FMG sample for a given channel was found by transforming data around the given sam-
ple using a symmetrically centered overlapping window (i.e. feature value corresponding 
to the current sample depended on the current sample and two samples before and after 

(4)Ek =

n
∑

i=1

[

FMGk ,i −

(

ak + bki + ck i
2
)]2

(5)FMGk ,n =

n−1
∑

i=1

aiFMGk ,n−i + ε
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it). This resulted in an 80% (four out of five samples) overlap between successive feature 
extraction windows. The feature values were constructed sample-by-sample and chan-
nel-by-channel. The feature extraction scheme is depicted in Fig. 13.

Feature evaluation framework

A feature evaluation framework was developed in MATLAB [38] in order to be able to 
evaluate the off-line classification performance obtained with different features of the 
FMG signal. The framework was based on the wrapper feature evaluation method [39–
41]. In the wrapper method, a classifier is trained and tested using each candidate feature 
in order to understand their individual effectiveness for classification purposes. In this 
study, the wrapper method was used to evaluate off-line classification performance with 
each of the features and the raw FMG signal. While other more computationally efficient 
methods for feature evaluation and selection exist, the wrapper method was chosen as 
it allows for unambiguous understanding of the effectiveness of each feature proposed 
[39]. The effectiveness of each feature was evaluated using the area under the receiver 
operating curve (AUC). Receiver operating curves plot the true positive rate (sensitiv-
ity) against the false positive rate (1-specificity) for a classifier [42]. The ideal classifier 
will have a true positive rate of 1 (i.e. sensitive) and a false positive rate of 0 (i.e. specific), 
yielding an AUC of 1. The classification accuracy (i.e. ratio of the number of correctly 
predicted samples to the total number of samples) was also calculated for each feature, 
but was not used as a primary measure of the effectiveness of candidate features. AUC 
was chosen as the measure of effectiveness as it is insensitive to the relative distribution 
of the classes within the data, and hence, provides a robust method of evaluating classifi-
cation performance when compared to classification accuracy [42].

The feature evaluation framework consisted of two run-time stages, as depicted in 
Fig. 14. In the first stage, features were extracted for all three rounds of data collection 
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Feature Extrac�on Rou�ne

ith Raw FMG Sample, for channel k; where i = [1, N], k = [1,16]

ith set of Feature Extracted Samples for channel k; where i = [1, N-4], k = [1,16]

F(FMG)

Featk,1 Featk,2

F(FMG) 

FMGk,1 FMGk,2 FMGk,3 FMGk,4 FMGk,5 FMGk,6 FMGk,N

Featk,N-4

FMGk,N-1FMGk,N-2

F(FMG) 

FMGk,i

F(FMG)

Featk,i

Fig. 13  Exemplary 5 Sample, Centre Justified Feature Extraction Scheme. For brevity, only the first two, and 
last instances of the feature extraction routine are illustrated. Black dots are used to indicate additional sam-
ples or instances of the feature extraction routine have been omitted from the image. FMGk,i is the ith FMG 
sample from the kth channel, where k = [1, 16], and i = [1, N]. Featk,i is the ith set of feature samples for the 
kth channel, where i = [1, N − 4]



Page 14 of 19Sadarangani and Menon ﻿BioMed Eng OnLine  (2017) 16:59 

for each participant and stored to file for future classification. In the second stage, clas-
sification performance with each of the extracted features was evaluated for each par-
ticipant. A support vector machine (SVM) with a radial basis function kernel (RBF), 
implemented via the LIB-SVM library [43] for MATLAB was used for classification. 
AUC and accuracy were evaluated in a three fold cross-validation scheme. Specifically, 
data from a given round was classified using a classifier that was constructed with data 
from the remaining two rounds for the participant. For each round, a ten fold cross-
validation scheme within the training data was used to determine the optimal cost and 
gamma for the RBF-SVM via a grid search. The average AUC and accuracy obtained 
across three folds for a given feature and participant was calculated, and subsequently 
the average AUCs and accuracies across all participants were calculated for each fea-
ture. Features that resulted in increased AUC when compared to the raw FMG signal 
were identified. A single-tailed, paired samples Student’s t test with alpha of 0.05 was 
used to determine if the increase in AUC seen due to the classification of a particu-
lar feature, in comparison to the classification of the raw FMG signal, was statistically 
significant.

Results
Participant information

Ten healthy participants were recruited for this study. Participant age, gender, and the 
need for the height adjusting step to meet the protocol’s height restriction, are listed in 
Table 3.

Construct Features for Par�cipant

Select Next Par�cipant in List 

All Par�cipants Complete?

Write Feature Data to Par�cipant File

Select Next Par�cipant in List (1-10)

End

Construct Training & Label Data Arrays for Current 
Par�cipant, Feature & Round

Grid Search in Training Data for Cost & Gamma

Construct Classifier for Round

Test Classifier & Store Results

Select Next Round in List (1-3)

All Rounds Complete?

Average Results for Current Par�cipant & Feature Across 
RoundsSelect Next Feature in List (1-5)

All Features Complete?

All Par�cipants Complete?

Average Results for Current Feature Across Par�cipants 

Y Y

Y

Y

N

N

N

Start

N

Fig. 14  Feature evaluation flowchart
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Feature evaluation results

Figure 15 depicts the AUC obtained for each feature evaluated and the raw FMG sig-
nal. Four of the five features evaluated resulted in modest increases in AUC when com-
pared to the raw FMG signal; two features (LF and PF) produced statistically significant 
increases in AUC. The AUC, accuracies, and associated standard deviations for the 
four features that demonstrated increased performance are listed in Table  4. Table  4 
also lists the P values (single-tailed, paired samples Student’s t test) associated with 
the AUC for each feature in relation to the AUC associated with the raw FMG signal. 
The raw FMG signal yielded an AUC of 0.82 ± 0.10 and an accuracy of 88.79 ± 5.18%. 
The largest increase in AUC over the raw FMG signal was obtained using PF, yield-
ing an AUC of 0.869 ± 0.061 and an accuracy of 90.64 ± 4.30%. The increases in AUC 
(P = 0.011 < 0.05) and accuracy (P = 0.031 < 0.05) observed over the raw FMG signal are 
statistically significant for PF.

Discussion
The objective of this study was to explore the utility of classifying temporal features of 
the FMG signal for FMG data associated with a variety of grasp-types, in the presence 
of upper-extremity movements, for the two-class grasp detection problem of grasp, 
regardless of grasp type, versus no grasp (i.e. no object in hand). The MAV, RMS, LF, 
and PF features all yielded modest increases in AUC when compared to the raw FMG. 

Table 3  Participant information

ID Age (years) Gender Height adjusting step required

1 23 Female Yes

2 22 Female No

3 27 Female Yes

4 21 Male No

5 23 Male No

6 23 Male No

7 24 Male No

8 25 Female Yes

9 21 Male No

10 27 Male No

Fig. 15  AUC for all features evaluated
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However, increases seen for the MAV and RMS were not statistically significant (sin-
gle-tailed, paired samples Student’s t test; P =  0.078). In contrast, LF and PF features 
yielded larger and statistically significant increases in performance. A potential explana-
tion for the superior performance of the LF and PF features is the fact that they attempt 
to model the trends within the data window, while the MAV and RMS both calculate 
an estimate of the overall magnitude of the data for the given window. It is possible that 
the capturing of trend information allows for greater ease of separation of FMG data 
when compared to capturing only magnitude information. The capturing of trend infor-
mation may reflect temporal changes in the FMG signal that occur when a transition 
into, or out of a grasp occurs. Furthermore, the trending of FMG data may also provide 
increased robustness to outliers, or noise in the data, as a single transient change in the 
signal will be attenuated by the remaining samples in the feature extraction window. It 
is noteworthy that in order to allow for the evaluation of the utility of the candidate fea-
tures, all analysis steps in this study used the raw FMG data without any filtering. While 
the use of frequency selective filters will not enable the modeling of trend information 
within a window of data, it is possible that filtering the raw FMG signals could also yield 
increased robustness to noise and outliers in the FMG data.

These results suggest that the use of feature extraction techniques that attempt to 
model the FMG data as a linear, or non-linear time series may yield modest increases 
in grasp detection performance, when compared to feature extraction techniques that 
attempt to capture an overview of the FMG data within the window, and when com-
pared to the classification of raw FMG data. It is noteworthy however, that the use of 
model-based features result in additional feature value(s) for each sample of data on 
each FMG channel, which in turn increases the computational cost of classification. For 
instance, the LF feature extraction step produces two feature samples for each window 
of the FMG signal evaluated. The benefits obtained by using this class of features will 
have to be traded off with additional computational time and complexity for the different 
applications of FMG based grasp detection. It may also be possible to reduce the amount 
of overlap between successive feature extraction windows in order to reduce the size of 
data, and associated computational requirements for classification of this class of fea-
tures. The use of an additional fitting term in the PF did not significantly improve clas-
sification performance over the LF despite the additional feature value for each sample 
of data on each FMG channel. This indicates that the use of non-linear models may not 
provide benefit to offset the additional computation cost when compared to linear mod-
els. It is also possible that the PF feature resulted in over fitting of the data as the feature 

Table 4  Features with increased AUC over the raw FMG signal

Feature AUC Accuracy P value

Value σ Value (%) σ (%)

PF 0.869 0.061 90.635 4.298 0.011

LF 0.862 0.065 89.859 4.940 0.017

MAV 0.834 0.076 86.703 6.672 0.152

RMS 0.829 0.075 86.909 6.730 0.253

Raw FMG 0.819 0.098 88.792 5.178 N/A



Page 17 of 19Sadarangani and Menon ﻿BioMed Eng OnLine  (2017) 16:59 

extraction window size was held constant despite the increased fitting term provided by 
the PF. We acknowledge that the use of a fixed, 5-sample window is a limitation of this 
study. To overcome this limitation, future work should explore the effect of varying fea-
ture extraction window sizes, symmetries, and overlaps.

Despite the noted advantages obtained via the LF and PF features, the use of the AR 
feature resulted in poor classification performance. The AR calculation models an invar-
iant mean, stationary process [37]. A potential explanation for this finding is that the 
stationarity assumption may not hold for the FMG data collected in this study. The mean 
value of the FMG signal may drift over time as the band slackens or tightens on the 
user’s musculature. The use of models that account for a shifting mean or baseline such 
as the autoregressive moving average model may provide increased utility in FMG based 
grasp detection applications. It is also possible that orders of the AR model selected for 
the window configuration in this study were inappropriate for the FMG data collected.

Future work
The scope of this study was limited to a preliminary evaluation of the utility of classify-
ing temporal features of the FMG signal for the two-class FMG grasp detection of grasp, 
regardless of grasp type, versus no grasp (i.e. no object in hand). The study focused on 
the evaluation of two types of basic temporal feature extraction methods in healthy 
volunteers. The results indicate that features that model temporal trends within the 
data may increase FMG based grasp detection performance. Based on these promis-
ing results, future work should include a focused evaluation of additional features that 
model temporal trends within the FMG data for grasp classification. Furthermore, the 
effect of varying feature extraction window sizes, symmetries, and overlaps should also 
be evaluated. Finally, the use of model-based temporal features should be evaluated 
with FMG data from individuals with stroke, who might ultimately benefit from this 
technology.

Conclusion
In this study, the utility of classifying temporal features of the FMG signal for the two-
class grasp detection problem of grasp, regardless of grasp type, versus no grasp (i.e. no 
object in hand) was evaluated. An experimental protocol consisting of multiple repeti-
tions of grasp and move tasks that are commonly used in ADL was designed. The pro-
tocol also included movement without grasping in order to evaluate the robustness of 
FMG based grasp detection to false positives. The use of MAV, RMS, LF, and PF features 
yielded modest improvements in grasp detection performance. However, increases in 
classification performance seen for MAV and RMS were not statistically significant. The 
largest increase in classification performance over the raw FMG signal was obtained for 
PF, corresponding to a relative increase in AUC of 6.1%. The LF also provided a statisti-
cally significant increase in classification performance. These results suggest that using 
features that model trends in data may provide increased FMG based grasp detection 
performance when compared to using the raw FMG signal, and when compared to using 
feature extraction techniques that attempt to capture an overview of FMG data within 
the window. The changes in performance between LF and PF were not statistically sig-
nificant, indicating that the use of non-linear models may not provide benefit to offset 
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the additional computation cost when compared to linear models. These results pave 
way for further evaluation of model-based temporal features of the FMG signal with 
varying window configurations, and an evaluation of the utility of classifying features of 
the FMG signal from individuals with stroke, such that FMG may be eventually used for 
grasp detection in stroke rehabilitation applications.

Abbreviations
ADL: activities of daily living; AR: autoregressive model; AUC: area under the receiver operating curve; EMG: electromyo-
graphy; FMG: Force Myography; LF: linear fit; MAV: mean absolute value; MMG: Mechano Myography; PF: parabolic fit; 
RBF: radial basis function; RMS: root mean squared; SVM: support vector machine.

Authors’ contributions
GPS designed the experimental protocol, implemented data collection software, performed experiments, analysed 
experimental results, and participated in manuscript preparation. CM supervised the project, contributed to discussions, 
analysis, and participated in manuscript revisions. Both authors read and approved the final manuscript.

Acknowledgements
Not applicable.

Competing interests
The Principal Investigator, Carlo Menon, and members of his research team have a vested interest in commercializing the 
technology tested in this study, if it is proven to be successful and may benefit financially from its potential commerciali-
zation. The data are readily available upon request.

Availability of data and materials
The datasets generated during and/or analysed during the current study are available from the corresponding author on 
reasonable request.

Ethics approval and consent to participate
The study received ethics approval from the SFU Research Ethics Board. All participants provided informed consent for 
their participation in the study.

Funding
This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Cana-
dian Institutes of Health Research (CIHR), and by the Michael Smith Foundation for Health Research (MSFHR).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 17 October 2016   Accepted: 10 May 2017

References
	1.	 Wininger M, Kim N-H, Craelius W. Pressure signature of forearm as predictor of grip force. J Rehabil Res Dev. 

2008;45(6):883–92.
	2.	 Castellini C, Ravindra V. A wearable low-cost device based upon force-sensing resistors to detect single-finger 

forces. In: 5th IEEE RAS & EMBC international conference on biomedical robotics and biomechatronics, Sao Paulo, 
Brazil. 2014.

	3.	 Dementyev A, Paradiso JA. WristFlex: low-power gesture input with wrist-worn pressure sensors. In: Proceedings of 
the 27th annual ACM symposium on user interface software and technology. 2014. p. 161–6.

	4.	 Sadarangani G, Menon C. A wearable sensor system for rehabilitation applications. In: IEEE international conference 
on rehabilitation robotics, Singapore. 2015.

	5.	 Xiao ZG, Menon C. Towards the development of a wearable feedback system for monitoring the activities of the 
upper-extremities. J Neuroeng Rehabil. 2014;11:2.

	6.	 Cho E, Chen R, Merhi L-K, Xiao Z, Pousett B, Menon C. Force Myography to control robotic upper extremity prosthe-
ses: a feasibility study. Front. Bioeng. Biotechnol. 2016;4:18. doi:10.3389/fbioe.2016.00018.

	7.	 Sakr M, Menon C. On the estimation of isometric wrist/forearm torque about three axes using Force Myography. In: 
IEEE RAS/EMBS international conference on biomedical robotics and biomechatronics, Singapore. 2016.

	8.	 Nudo R, Wise B, SiFuentes F, Milliken G. Neural substrates for the effects of rehabilitative training on motor recovery 
after ischemic infarct. Science. 1996;272(5269):1791–4.

	9.	 Murata Y, Higo N, Oishi T, Yamashita A, Matsuda K, Hayashi M, Yamane S. Effects of motor training on the recovery of 
manual dexterity after primary motor cortex lesion in macaque monkeys. J Neurophysiol. 2008;99(2):773–86.

	10.	 Dobkin BH. Strategies for stroke rehabilitation. Lancet Neurol. 2004;3:528–36.

http://dx.doi.org/10.3389/fbioe.2016.00018


Page 19 of 19Sadarangani and Menon ﻿BioMed Eng OnLine  (2017) 16:59 

	11.	 Gresham GE, Alexander D, Bishop DS, Giuliani C, Goldberg G, Holland A, Kelly-Hayes M, Linn RT, Roth EJ, Stason WB, 
Trombly CA. Rehabilitation. Stroke. 1997;28(7):1522–6.

	12.	 Bullock IM, Zheng JZ, Rosa SDL, Guertler C, Dollar AM. Grasp frequency and usage in daily household and machine 
shop tasks. IEEE Trans Haptics. 2013;6(3):296–308.

	13.	 Yap HK, Mao A, Goh JCH, Yeow C-H. Design of a wearable FMG sensing system for user intent detection during hand 
rehabilitation with a soft robotic glove. In: IEEE international conference on biomedical robotics and biomechatron-
ics, Singapore. 2016.

	14.	 Kadkhodayan A, Jiang X, Menon CJ. Continuous predicting finger movements using Force MyoGraphy. Med. Biol. 
Eng. 2016;36:594. doi:10.1007/s40846-016-0151-y.

	15.	 Ambar RB, Poad HB, Ali AM, Ahmad MS, Jamil MM. Multi-sensor arm rehabilitation monitoring device. In: Interna-
tional conference on biomedical engineering, Penang. 2012.

	16.	 Yungher DA, Wininger MT, Barr JB, Craelius W, Threlkeld AJ. Surface muscle pressure as a measure of active and pas-
sive behavior of muscles during gait. Med Eng Phys. 2011;33:464–71.

	17.	 Natarajan GS, Winninger M, Kim NH, Craelius W. Relating biceps EMG to elbow kinematics during self-paced arm 
flexions. Med Eng Phys. 2012;34(5):617–24.

	18.	 Li N, Yang D, Jiang L, Liu H, Cai H. Combined use of FSR sensor array and SVM classifier for finger motion recognition 
based on pressure distribution map. J Bionic Eng. 2012;9:39–47.

	19.	 Yngher D, Craelius W. Discriminating 6 grasps using Force Myography of the forearm. In: BMES annual fall meeting. 
2006.

	20.	 MacKenzie CL, Iberall T. The grasping hand. Amsterdam: Elsevier; 1994.
	21.	 Zardoshti-Kermani M, Wheeler B, Badier K, Hashemi R. Classification of the myoelectric signal using time-frequency 

based representation. Med Eng. 1995;3(4):324–33.
	22.	 Fulcher BD, Jones NS. Highly comparative feature-based time-series classification. IEEE Trans Knowl Data Eng. 

2014;26(12):3026–37.
	23.	 InterlinkElectronics. FSR® integration guide & evaluation parts catalog with suggested electrical interfaces. 2010.
	24.	 Jiang X, Merhi L-K, Menon C. Force exertion affects grasp classification using Force Myography. IEEE Trans Human-

Machine Syst. 2017;(99):1–8. doi:10.1109/THMS.2017.2693245.
	25.	 Amft O, Junker H, Lukowicz P, Tröster G, Schuster C. Sensing muscle activities with body-worn sensors. In: Interna-

tional workshop on wearable and implantable body sensor networks (BSN’06), Cambridge, MA. 2006.
	26.	 Heldman DA, Jankovic J, Vaillancourt DE, Prodoehl J, Elble RJ, Giuffrida JP. Essential tremor quantification during 

activities of daily living. Parkinsonism Relat Disord. 2011;17:537–42.
	27.	 Xiong Y, Quek F. Hand motion gesture frequency properties and multimodal discourse analysis. Int J Comput Vis. 

2006;39(3):353–71.
	28.	 National Instruments. LabVIEW System Design Software. National Instruments, (Online). http://www.ni.com/lab-

view/. Accessed 19 Jan 2016.
	29.	 Cutkosky MR. On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Trans Robot 

Autom. 1989;5(3):269–79.
	30.	 Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the box and blocks test of manual dexterity. Am J 

Occup Ther. 1985;39:386–91.
	31.	 Alves N, Chau T. Recognition of forearm muscle activity by continuous classification of multi-site mechanomyogram 

signals. In: International conference of the IEEE EMBS, Buenos Aires. 2010.
	32.	 Hudgins B, Parker P, Scott RN. A new strategy for multifunction myoelectric control. IEEE Trans Biomed Eng. 

1993;40(1):82–94.
	33.	 Madeleine P, Bajaj P, Søgaard K, Ardengt-Nielsen L. Mechanomyography and electromyography force relationships 

during concentric isometric eccentric contractions. J Electromyogr Kinesiol. 2001;11(2):113–21.
	34.	 Khokhar ZO, Xiao ZG, Menon C. Surface EMG pattern recognition for real-time control of a wrist exoskeleton. 

Biomed Eng Online. 2010;9(1):41.
	35.	 MathWorks. Polyfit, MathWorks, (Online). http://www.mathworks.com/help/matlab/ref/polyfit.html. Accessed 05 

June 2016.
	36.	 Kumar M, Jundal MK, Sharma RK. Weka-based classification techniques for offline handwritten Gurmukhi character 

recognition. In: International conference on soft computing for problem solving. 2014.
	37.	 MathWorks. aryule, MathWorks, (Online). http://www.mathworks.com/help/signal/ref/aryule.html. Accessed 21 May 

2016.
	38.	 MathWorks. http://www.mathworks.com. MathWorks, (Online). http://www.mathworks.com/products/matlab/. 

Accessed 16 Jan 2016.
	39.	 Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003;3:1157–82.
	40.	 Kohavi R, John GH. Wrappers for feature subset selection. Artif Intell. 1997;97:273–324.
	41.	 Caruana R, Freitag D. Greedy attribute selection. In: International conference on machine learning. 1994. p. 28–36.
	42.	 Bradley AP. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern 

Recogn. 1997;30(7):1145–59.
	43.	 Chang C-C, Lin CJ. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol. 2011;2(3):27.

http://dx.doi.org/10.1007/s40846-016-0151-y
http://dx.doi.org/10.1109/THMS.2017.2693245
http://www.ni.com/labview/
http://www.ni.com/labview/
http://www.mathworks.com/help/matlab/ref/polyfit.html
http://www.mathworks.com/help/signal/ref/aryule.html
http://www.mathworks.com
http://www.mathworks.com/products/matlab/

	A preliminary investigation on the utility of temporal features of Force Myography in the two-class problem of grasp vs. no-grasp in the presence of upper-extremity movements
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods
	Participants
	Data collection device
	Experimental protocol
	Three-dimensional workspace
	Grasp types
	Instructions to participants
	Analysis
	Features evaluated
	Feature evaluation framework


	Results
	Participant information
	Feature evaluation results

	Discussion
	Future work
	Conclusion
	Authors’ contributions
	References




