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Backgound
Most of the current motor rehabilitation interventions are based on highly repetitive 
and task-oriented exercises [1]. Exoskeletons have been developed to assist in deliver-
ing this repetitive and intensive therapy, and thus alleviate the load on physiotherapists. 
Exoskeletons are wearable robots with soft [2], or rigid structures [3, 4] that are directly 
attached to the patient.

Abstract 

Background:  In this paper we propose the use of global Kalman filters (KFs) to 
estimate absolute angles of lower limb segments. Standard approaches adopt KFs to 
improve the performance of inertial sensors based on individual link configurations. In 
consequence, for a multi-body system like a lower limb exoskeleton, the inertial meas-
urements of one link (e.g., the shank) are not taken into account in other link angle 
estimations (e.g., foot). Global KF approaches, on the other hand, correlate the collec-
tive contribution of all signals from lower limb segments observed in the state-space 
model through the filtering process. We present a novel global KF (matricial global 
KF) relying only on inertial sensor data, and validate both this KF and a previously 
presented global KF (Markov Jump Linear Systems, MJLS-based KF), which fuses data 
from inertial sensors and encoders from an exoskeleton. We furthermore compare both 
methods to the commonly used local KF.

Results:  The results indicate that the global KFs performed significantly better than 
the local KF, with an average root mean square error (RMSE) of respectively 0.942° for 
the MJLS-based KF, 1.167° for the matrical global KF, and 1.202° for the local KFs. Includ-
ing the data from the exoskeleton encoders also resulted in a significant increase in 
performance.

Conclusion:  The results indicate that the current practice of using KFs based on local 
models is suboptimal. Both the presented KF based on inertial sensor data, as well our 
previously presented global approach fusing inertial sensor data with data from exo-
skeleton encoders, were superior to local KFs. We therefore recommend to use global 
KFs for gait analysis and exoskeleton control.
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A large number of exoskeleton control strategies rely on a reference trajectory obtained 
from healthy subjects. Based on feedback from relative joint angles and/or absolute seg-
ment angles during gait, the exoskeleton assists the patient in performing this reference 
motion, see Fig. 1. In clinical gait analysis, these angles are used to describe and ana-
lyze the walking abilities of patients and athletes. Obtaining accurate absolute angles is 
thus essential for both exoskeleton control and dynamic gait analysis. However, sensors 
embedded in the exoskeleton, such as encoders and potentiometers, can only provide 
relative angles. The error between these measured relative angles and the anatomical 
joint angles from the patient, strongly depends on the design of the exoskeleton and the 
attachment of the exoskeleton to the patient. In order to obtain the absolute orientation 
of the exoskeleton or to correct the error in the encoder measurements, additional sen-
sors such as inertial sensors are used [5, 6].

Inertial measurement units (IMUs) commonly consist of three dimensional acceler-
ometers and gyroscopes. IMUs, or magnetic and inertial measurement units (MIMUs), 
have demonstrated their effectiveness in clinical practice in applications ranging from 

IMU

BTS

Potentiometer

Fig. 1  Experimental setup of a healthy person wearing the H2 exoskeleton, with passive BTS-markers 
(Optoelectronic system with reflexive markers from BTS Bioengineering, Italy) and inertial sensors. The inertial 
sensors and BTS-markers are attached to the exoskeleton using rigid plates
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instrumented clinical testing [7–9] fall detection and analysis [10], to gait segmentation 
[11] and gait analysis [12].

Absolute orientation estimation (orientation with respect to a global frame) is usu-
ally performed by MIMUs [13, 14]. In MIMUs, 3D orientation with respect to the earth 
frame is computed by integrating the gyroscope signals from a known starting condi-
tion, provided by the accelerometers and magnetometers. Noise in the gyroscope signal 
causes an unbounded error when integrated [15]. Accelerometers and magnetometers 
are therefore used to correct the orientation estimate based on the integrated gyroscope 
signals.

In Kalman filtering, two main approaches are used to update the gyroscope-based ori-
entation estimate using the accelerometer data. The first is a modeling approach, where 
the the acceleration signal is separated into gravitational acceleration and acceleration 
due to motion [16, 17]. Only the modelled gravitational acceleration is subsequently used 
to determine the inclination of the sensor in the KF. The second approach is a threshold-
based method where the accelerometer data is only used to determine inclination in the 
KF when static or quasi-static periods are detected [6, 18]. To facilitate comparison, all 
the methods discussed in this paper use the threshold-based approach.

The most common threshold considers the norm of the measured acceleration [19]. 
When the norm of the measured accelerations of a specific sensor compared with the 
gravitational constant (g = 9.81 m/s2) is smaller than an arbitrary bias, the acceleration 
measurement of that sensor is considered reliable and it is used in the KF. When this 
comparison exceeds the threshold, the measurements are deemed unreliable and there-
fore not used to update the gyroscope-based estimation [6, 19]. Using this approach, 
each sensor’s estimate is only updated with accelerometer data when the criterion is met 
by that sensor, irrespective of what the other sensors are measuring. However, under 
more dynamic conditions the number of instances where the accelerometer measure-
ments are deemed reliable can be severely reduced. This can potentially lead to a lack of 
updates for segments with fewer relative static incidences due to their particular accel-
eration pattern, as is the case of the body.

The aforementioned methods use local models, meaning that they only use infor-
mation from each sensor individually to update the estimates. The authors have pre-
viously presented a global and cooperative approach to address the limitation of local 
KF approaches in [6]. In the global models, measurements of all sensors are assumed 
to be related to each other. The updates of each sensor are thus based on information 
provided by various sensors. In [6], we presented an approach related to MJLS-based 
KF, combining four inertial sensors and three encoders from one exoskeleton’s leg. At 
each time instant, the inertial sensors are evaluated based on the norm of the measured 
acceleration. If one or several sensors meet the criterion, the sensor that best meets the 
criterion is used to update the collective. The update is therefore based on the infor-
mation of the best inertial sensor and three encoders. This cooperative approach, using 
Markovian jumps when switching between IMUs, led to more frequent updates and bet-
ter estimates when compared to local methods. However, the algorithm proposed in [6] 
is only applicable when information from encoders is available, and was only tested on 
simulated data. In [20] we presented results in order to verify the influence of different 
types of inertial sensors calibration to local and global approaches.
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In this paper we present a novel global KF, the matricial global KF, based uniquely on 
inertial sensor data. We furthermore validate the proposed KF presented here, as well as 
the MJLS-based KF presented in [6], using experimental data. We also include a com-
parison between the commonly used local KF and the aforementioned global KFs to 
demonstrate the strength and benefits of global KFs over local KFs. We hypothesize that 
global filters will outperform the local filter models.

Methods
We first provide a brief introduction to matricial local and MJLS-based models. Subse-
quently, we introduce the newly developed matricial global model that is based only on 
inertial sensor data. A more detailed explanation on local and MJLS-based models can 
be found in Additional file 1 or in [6].

Local models

When applied to inertial sensor data, a local KF is a filter that only uses information 
from a specific IMU. In the specific case of gait analysis, the local state-space model to 
estimate absolute segment orientation based on a sensor attached to the lower limb is 
formulated as:

where �θ(t) = θ − θ̂g and �bg(t) are respectively the orientation estimate and offset 
errors of the gyroscope, θ is the absolute angle and θ̂g is the angle estimate calculated 
from the gyroscope, ηg(t) and ηb(t) are the Gaussian white noises of the gyroscope and 
the gyroscope bias, and τg is the Markov process correlation time [6, 18]. Since only the 
orientation estimate is observable, the output equation is given by:

where ηa(t) is the Gaussian white noise of the accelerometer. In the filtering implementa-
tion, we use z = θ̂a − θ̂g, where the orientation estimate from the accelerometer (θ̂a) is 
considered a reliable measurement and replaces the absolute angle (θ).

Once the state-space model and the output equation are defined, KF-based algorithms 
can be used to estimate the state which represents the correction term �θ̂. So the abso-
lute angles can be computed as:

where θ̂g is the absolute angle based only on gyroscope data, and �̂θ the absolute angle 
estimated by KF.

Matricial local model

Consider now the problem of estimating the absolute angles of the lower limbs, specifi-
cally the absolute angles of body, thigh, shank, and foot segments. For sake of simplicity, 

(1)

ẋ = Ax(t)+ Bw(t),
[

�θ̇(t)

�ḃg(t)

]

=

[

0 1

0 − 1
τg

][

�θ(t)
�bg(t)

]

+

[

1 0
0 1

][

ηg(t)
ηb(t)

]

,

(2)z = Cx(t)+ v(t) =
[

1 0
]

[

�θ(t)
�bg(t)

]

+ ηa(t),

(3)θ̂ (t) = θ̂g(t)+�θ̂(t),
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only one leg is considered. We can use one local model for each segment in a matrix 
arrangement. The state-space and output equations can be summarized as:

the state vector is defined as x =
[

xB xT xS xF
]T, with xi =

[

�θi �bi
]

; �θi = θi − θ̂ig , 
are the errors between the absolute angles (θi) and the angle estimates calculated by the 
gyroscopes (θ̂ig); and �bi, are the errors of the bias generated by the gyroscopes for each 
segment, for i = {B,T , S, F}, where B, T, S, and F stand for body/trunk, thigh, shank, and 
foot segments, respectively. The vectors w(t) and v(t) contain the Gaussian white noise of 
the gyroscopes, gyroscope bias, and accelerometer respectively. The output matrix C̄ is 
defined as:

In this local approach, named here matricial local model, the state-space and out-
put equations are both diagonal or block-diagonal. The system can thus be considered 
uncoupled. A complete description of this model and its KF algorithm can be found in 
Additional file 1.

Global models

Global models are composed of matrix arrangements by the same state-space (4) of the 
matricial local model. The difference lies in the choice of the output matrix, and, as con-
sequence, in the update equations of the KF Algorithms.

MJLS‑based model

The Markovian Jump Linear Systems-based model presented in [6] fuses inertial sensors 
with relative joint sensors embedded in the exoskeleton. Only the IMU that best meets 
a given threshold criterion is used. We provide a brief overview of the model below, but 
refer to [6] and Additional file 1 for a more detailed description.

The MJLS-based model for absolute angular estimation of lower limb exoskeletons can 
be described by the following state-space equations:

where �(t) ∈ {B,T , S, F} defines the possible Markovian jumps. The vector of output 
measurements is defined as:

(4)ẋ(t) = Āx(t)+ B̄w(t),

(5)z(t) = C̄(t)x(t)+ v(t),

(6)C̄ =







1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0






.

(7)ẋ(t) = Āx(t)+ B̄w(t),

(8)z(t) = C̄�(t)x(t)+ v(t),

(9)z =
[

�IMU �θh �θk �θa
]T

,
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where �IMU = [θ̂aIMU − θ̂gIMU
] are the errors between the estimates of the absolute 

angles calculated for each segment by the accelerometers (θ̂aIMU) and the estimates calcu-
lated by the gyroscopes (θ̂gIMU

); and �θj = [�θi −�θi+1], for j = {h, k , a}, are the errors 
of the relative angles of the corresponding joints, j, where h, k and a stand for hip, knee, 
and ankle. The output matrix C̄� is defined as:

where Mi, for i = {B,T , S, F}, assumes values of zero or one, according to the angle asso-
ciated with the value of �IMU.

The criteria for reliable accelerometer measurements and the Markovian state in dis-
crete time are defined as:

where �(k) ∈ {B,T , S, F} describe the lower limb or exoskeleton segments, being the 
current Markovian state, and ρ(k) is an index that describes the reliability of the accel-
erometer used at the Markovian state, �(k). The criterion to verify the reliability of the 
current IMU-reading is given by:

where 0 < ζ < 1. For MJLS-based KF Algorithm refer to [6] and Additional file 1.

Matricial global model

In the absence of an exoskeleton, no relative sensor data can be used in the KF. In this 
case, for example in clinical gait analysis, cooperation between IMUs might improve the 
estimated absolute angles compared to local KFs. However, noise could also be intro-
duced when the relation between the information used in the update and the segment’s 
orientation is less clear. It is therefore necessary to find the balance between the quantity 
and the quality of the performed updates. We therefore propose a matricial global KF, 
fusing the information of several IMUs, and evaluate it using four implementations of 
the threshold criterion of (15)–(18).

The threshold criterion (�) differs among four implementations evaluated accord-
ing to the amount of the reliable sensors, �s, s = 1, . . . , 4. �s defined from (15) to 
(18). The minimum quantity of sensors that has to fulfill the threshold based cri-
terion differs from four in (15), to one in (18). For example, if the criterion given for 
(16) is implemented, at least three accelerometers should be reliable to be used in the 
update step. In this case, one possible configuration that this criterion can assume is 
� = ((ρB,k < ζB)AND(ρS,k < ζS)AND(ρF ,k < ζF )), with the accelerometers of the body, 
shank, and foot being reliable. Notice that the number of updates expected in (18) is 

(10)C̄�(t)=







MB(t) 0 MT (t) 0 MS(t) 0 MF (t) 0
1 0 −1 0 0 0 0 0
0 0 1 0 −1 0 0 0
0 0 0 0 1 0 −1 0






,

(11)ρ(k) := min
i

(∣

∣�ai� − g
∣

∣

)

,

(12)�(k) := arg min
i

(∣

∣�ai� − g
∣

∣

)

,

(13)� := ρ(k) ≤ ζ ,



Page 7 of 20Nogueira et al. BioMed Eng OnLine  (2017) 16:58 

greater than in (15). In both filters, matricial local and matricial global, these criteria are 
used.

where a{i,l,m} are the values of each triaxial accelerometer, g is the earth gravity, and 
ρ{i,l,m},k are any reliable sensors at instant k being i, l,m = {B,T , S, F} with i �= l �= m.

The matricial global model for absolute angular estimation of lower limbs segments 
can be described as:

where C̄c(t) is the coupled output matrix that designs the relation between the absolute 
angles of the lower limb segments. The vector of output measurements is defined as:

The matrix C̄c is designed in order to create relations between the four main states (�θB, 
�θT , �θS, and �θF), and consequently the matrix R must be changed. These relations are 
similar to joint encoders, and are presented by Eqs. (23)–(25).

Additional criteria are proposed in order to verify the reliability of the cross relation 
between the states in matricial global approach, as can be seen:

(14)ρ{i,l,m},k :=
(∣

∣�a{i,l,m}� − g
∣

∣

)

,

(15)�4 := (ρB,k < ζB)AND(ρT ,k < ζT )AND(ρS,k < ζS)AND(ρF ,k < ζF ),

(16)�3 := ((ρi,k < ζi)AND(ρl,k < ζl)AND(ρm,k < ζm)),

(17)�2 := ((ρi,k < ζi)AND(ρl,k < ζl)),

(18)�1 := (ρi,k < ζi),

(19)ẋ(t) = Āx(t)+ B̄w(t),

(20)z(t) = C̄c(t)x(t)+ v(t),

(21)z =
[

�θB �θT �θS �θF �θh �θk �θa
]T

.

(22)C̄c=



















1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 0 −1 0 0 0 0 0
0 0 1 0 −1 0 0 0
0 0 0 0 1 0 −1 0



















, R =























σ 2
aB

0 0 0 0 0 0

0 σ 2
aT

0 0 0 0 0

0 0 σ 2
aS

0 0 0 0

0 0 0 σ 2
aF

0 0 0

0 0 0 0 σ 2
aBT

0 0

0 0 0 0 0 σ 2
aTS

0

0 0 0 0 0 0 σ 2
aSF























,

(23)�θh = θah − θgh , θah = θaB − θaT , θgh = θgB − θgT ,

(24)�θk = θak − θgk , θak = θaT − θaS , θgk = θgT − θgS ,

(25)�θa = θaa − θga , θaa = θaS − θaF , θga = θgS − θgF .

(26)ϒh,k :=
((∣

∣�aB� − g
∣

∣

)

< ζB
)

AND
((∣

∣�aT� − g
∣

∣

)

< ζT
)

,
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ϒ criteria are used when two segments related are found. Algorithm 1 represents a dis-
crete KF, with matrices: F̄ = I + ĀT , Ḡ ≃ B̄T 1/2, H̄c = C̄c.

Algorithm 1: Matricial Global KF Algorithm
// Prediction:
x̂k+1|k = F̄ x̂k|k
Pk+1 = F̄ Pk|kF̄

T + ḠQḠT

// Update:
zk+1 = 0
for i ← {B, T, S, F } do

if ((ρi,k < ζi) AND (Ψs)) then
zk+1(i) = θ̂a,k+1(i) − θ̂g,k+1(i)

ze,k+1 = 0
for j ← {h, k, a} do

if ((Υj,k) AND (Ψs)) then
ze,k+1(i) = θ̂a,k+1(j)− θ̂g,k+1(j)

zk+1 = zk+1 ze,k+1
T

Kk+1 = Pk+1H̄
T
c (H̄cPk+1H̄

T
c + R)−1

x̂k+1|k+1 = x̂k+1|k +Kk+1(zk+1 − H̄cx̂k+1|k)
Pk+1|k+1 = (I −Kk+1H̄c)Pk+1

// Output:

x̂k+1|k+1 := ∆θ̂k+1|k+1 ∆b̂k+1|k+1
T

θ̂k+1 = θ̂g,k+1 +∆θ̂k+1|k+1

Comparison of local and global models

Consider the matricial local model and only two segments, body (B) and thigh (T). 
Assume the vectors and discrete matrices in the update equations of Matricial Local KF 
Algorithm (see Additional file 1) to be:

where the weights kj, for j = {1 until 8}. The correction terms at any instant are:

(27)ϒk,k :=
((∣

∣�aT� − g
∣

∣

)

< ζT
)

AND
((∣

∣�aS� − g
∣

∣

)

< ζS
)

,

(28)ϒa,k :=
((∣

∣�aS� − g
∣

∣

)

< ζS
)

AND
((∣

∣�aF� − g
∣

∣

)

< ζF
)

.

H =

[

1 0 0 0
0 0 1 0

]

, x̂k+1|k =
[

�θ̂Bk+1|k
�b̂Bk+1|k

�θ̂Tk+1|k
�b̂Tk+1|k

]T
,

zk+1 =

[

�θ̂Bk+1

�θ̂Tk+1

]

, Kk+1 =

[

k1 k2 k3 k4
k5 k6 k7 k8

]T

,

(29)

x̂k+1|k+1 = x̂k+1|k + Kk+1(zk+1 −Hk+1x̂k+1|k)

=











�θ̂Bk+1|k

�b̂Bk+1|k

�θ̂Tk+1|k

�b̂Tk+1|k











+











k1(�θ̂Bk+1
−�θ̂Bk+1|k

)

k2(�θ̂Bk+1
−�θ̂Bk+1|k

)

k7(�θ̂Tk+1
−�θ̂Tk+1|k

)

k8(�θ̂Tk+1
−�θ̂Tk+1|k

)











+











k5(�θ̂Tk+1
−�θ̂Tk+1|k

)

k6(�θ̂Tk+1
−�θ̂Tk+1|k

)

k3(�θ̂Bk+1
−�θ̂Bk+1|k

)

k4(�θ̂Bk+1
−�θ̂Bk+1|k

)











.
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As it can be seen in (29), the correction terms �θ̂Bk+1|k+1
 and �θ̂Tk+1|k+1

, for the body and 
thigh segments are both connected through the weights kj.

However, for the matricial local model, the state-space and output equations are 
both diagonal or block-diagonal, the system is considered uncoupled which affects the 
Kalman filter gain (Kk+1) from (29). In this case k3, k4, k5 and k6 are zero. The gains Kk+1 
are computed based on P and H-matrices. Since H, P, and R are diagonal, one can say 
that the Kk+1 will be mandatorily diagonal or block diagonal.

Considering the first iteration k = 0 in the Matricial Local KF Algorithm, we have:

In the second iteration, k = 1, we have:

Again, the KF gain Kk+1 is a block diagonal matrix, and by induction it will remain block 
diagonal and the components k2, k3, k4, k5, k6, and k8 will always be zero. So, in the local 
matricial approach the estimated states are not connected through the components of 
the Kalman filter gain.

On the other hand, if there are strong relations between the states (x̂k+1) and they are 
not explicit in the state-space matrix F, the H matrix can be designed such that they are 
related. The MJLS-based and matricial global models provide this connection, and from 
the viewpoint of filtering the system becomes coupled and the gains of the KF will not be 
necessarily zero. Consider for instance the matricial global model with:

where the last line of H relates both segments, body and thigh. In this case, this relation 
can be seen as the encoder angle error. The Gaussian white noise of this relation is added 
to the R matrix being expressed by σ 2

aBT
. Using (29), with the same Pk+1 matrix, in the 

first iteration k = 0 of the Matricial Global KF Algorithm, we have

P1 =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






, R =

�

σ 2
aB

0

0 σ 2
aT

�

,

K1 =









1/
�

σ 2
aB

+ 1
�

0
0 0

0 1/
�

σ 2
aT

+ 1
�

0 0









, P1|1 =











1− 1
σ 2
aB
+1

0 0 0

0 1 0 0

0 0 1− 1
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where k1 =
(

σ 2
aT

+ σ 2
aBT
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σ 2
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/D, k3 = σ 2
aT
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(
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.

The remaining gains are all zero (k2 = k4 = k6 = k8 = k10 = k12 = 0). So, already in 
the first iteration, the gains k3 and k5 directly relate the states (�θB and �θT), and the 
gains k9 and k11 represent the cross relation between them. Moving to the second itera-
tion k = 1, and considering that P was updated, we will have again the same gains Kk+1 
different than zero. In other words, the states will be corrected by a weighting of the cor-
rection terms of both segments in the KF.

Experimental setup

Data from a single trial of a healthy male subject (age: 33; height: 1m75; weight: 82 kg) 
experienced in walking with an exoskeleton are presented. The trial consisted of walk-
ing on a treadmill at 1.5 km/h for one minute. Kinematic data were obtained from three 
independent systems, synchronized using an electronic trigger, see Fig. 1.

An optoelectronic system (BTS Bioengineering) was used to produce the reference 
measurement of absolute segment orientation. Clusters of markers were attached to the 
segments and sampled at 100 Hz. For each segment one cluster of three markers was 
used to compute the orientation of that segment.

Four IMUs were attached to the lateral side of the right shank, thigh and the body, and 
on top of the right foot aligned with the sagittal plane and the longitudinal axis of the 
foot, see Fig. 1. The inertial sensors used are the TechMCS IMUs (Technaid SL, Spain). 
IMU data were acquired in digital format at 50 Hz, and transformed offline to physical 
format. Both the markers and the inertial sensors are attached to the same rigid plate, 
and aligned to both the exoskeleton and the subject in the sagittal plane.

The exoskeleton used is the H2 [21], a bilateral exoskeleton with six actuated degrees 
of freedom at the hip, knee, and ankle sagittal plane joints of both legs. Relative joint 
angles are measured by the H2 using precision industrial potentiometers with a linearity 
of 0.25% [21]. Potentiometer data were acquired at 1 kHz.

All data were resampled at 50 Hz. The first and last 10 s of the trial were discarded. The 
remaining 40 seconds were divided into two blocks. The first 20 s were used for optimi-
zation of the filter parameters. The remaining 20 s were used for validation of the esti-
mated absolute angles. As the KFs convergence has been demonstrated to be sensitive to 
the starting point, fifty different starting points were used both in the optimization and 
validation stage, [22]. The first and last intervals of the validation stage are indicated by 
horizontal lines in Fig. 2. Filter parameters were optimized using a genetic algorithm [18].

Data analysis

To assess the effects of the filter used on the estimates of the absolute angle of each seg-
ment, a four-way analysis of variance (ANOVA) with significance level at 5% was per-
formed with the root mean square error (RMSE) as dependent variable,
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The four factors were: filter, segment, start point, and samples. A post-hoc Tukey’s Least 
Significant Difference (LSD) testing was performed when needed. All the data process-
ing and statistical analysis were done using custom scripts in Matlab (The Mathworks, 
USA).

Results
Table  1 summarizes the RMSE between the absolute angles obtained from the optic 
system and each filter, as well as the amount of time (expressed in percentage of total 
trial duration) the accelerometer data are used to update the filter. Since all but the least 
stringent matricial (local/global) KFs performed similarly, see Table 2, we only use the 
matricial KFs based on the criterion (17), in which two or more IMUs have to be reli-
able in order to be used in the update. As can be seen from Table 1, the global KF solu-
tions achieved a higher accuracy than the local KF, with an average accuracy of 1.202° 
for the local KF, 0.942 for the MJLS-based KF, and 1.167 for the matricial global KF. The 
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√
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√
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Fig. 2  Pos-hoc LSD test, comparing the main effect of filters proposed

Table 1  Performance index (RMSE) for the filters

Filters type

Segm. Matricial local MJLS-based Matricial global

Body 1.923 0.775 1.964

Thigh 0.772 0.779 0.664

Shank 0.660 0.768 0.568

Foot 1.453 1.447 1.470

Average 1.202 0.942 1.167

Acc.Rel. 36.1% 21.7% 22.2%
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matricial global performs best for the shank and thigh segments, but offers little to no 
improvement on the body when compared to the local solution. The MJLS-based KF 
performs similarly to the matricial global on all segments but the body, where vastly out-
performs the other solutions on the body, resulting in an overall best performance for 
the MJLS-based.

The statistical analysis shows that there are significant differences in the filters 
(F = 404.78 and p = 0.0000) and segments (F = 2480.84 and p = 0.0000) dimensions. 
The Post-hoc Tukey’s LSD demonstrated that, in the filters dimension, the MJLS-based 
performed better than the other filters, see Fig.  3 and Table  1. Repeating the statisti-
cal analysis for the matricial global/local approaches, it shows significant differences 
between these filters (F = 21.89 and p = 0.0000). The LSD demonstrated that the matri-
cial global performed better than matricial local, see Fig. 4. Furthermore, in segments 
dimension, the LSD has shown that the body and foot have the worst performance, and 
no big difference was observed between the thigh and shank, see Fig. 5.

Table 2  Performance index for the matricial global (γC) and local (γUC) filters, with γ vary-
ing between 1 and 4 reliable accelerometers, in which, each of the criteria [� in (15)–(18), 
and ϒ in (26)–(28)] are applied in the matricial filters algorithms

The accelerometer reliability (AR) and accelerometer global reliability (AGR) are also shown

Segments Filters criteria

4C 4UC 3C 3UC 2C 2UC 1C 1UC

Body 1.649 1.684 1.980 2.063 1.964 1.923 2.191 2.335

Thigh 0.926 0.937 0.652 0.702 0.664 0.772 0.815 0.810

Shank 0.783 0.818 0.858 0.956 0.568 0.660 0.606 1.656

Foot 1.456 1.439 1.618 1.586 1.470 1.453 1.359 1.316

Average 1.204 1.220 1.277 1.327 1.167 1.202 1.243 1.529

AR (%) 2.4 2.4 11.3 14.3 22.2 36.1 29.2 64

AGR (%) 2.4 – 9.4 – 15 – 15 –

Matricial Local Matricial Global
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Fig. 3  Pos-hoc LSD test, comparing the main effect of Matricial Local and Matricial Global filters
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Figure  6a breaks down how the information is used by each segment in the matri-
cial global filter. For example, in the first bar, representing the body, the information 
obtained directly from the IMU attached to the body makes up 38% (light blue section), 
the information obtained directly from the IMUs attached to the other segments rep-
resents around 20% (orange, grey and yellow sections combined), the remaining 42% is 
obtained from the relation between the segments. This is not measured directly but rep-
resented mathematically through the weights given to the residual error of the relative 
angle between segments. In the example of the body (first bar of Fig.  6a) the relative 
angle that contributes most is the hip (dark blue, around 37%). In Fig. 6b, the body seg-
ment is estimated by the MJLS-based KF based on information from the IMU (brown 
section) and the relation between the segments, provided by the encoder data. In the 
MJLS-based KF this relation is represented by the mechanical structure of the exoskel-
eton and captured directly by the encoders. In the matricial global this relation is math-
ematical and derived indirectly by computing the angle between segments. The stronger 
relation in the MJLS-based KF appears to be particularly helpful for the estimation of 
the the hip joint movement. In Fig. 6c the local case is shown where no information is 
shared between the segments.

Body Thigh Shank Foot

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

R
M
S
E
(°
)

Fig. 4  Pos-hoc LSD test, comparing the main effect of the filters through the limb segments dimension
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In the MJLS-based model, the Markovian jumps are used to decide which IMU is used 
to complement the encoder information. Despite all IMUs being eligible for use in a fil-
ter update, the IMU attached to the body is never used by the MJLS-based KF.

In contrast to the matricial local KF, both global KFs show a better spread of acceler-
ometer based updates, see Figs.  7 and 8.The local KF does update more often (higher 
total number of updates) than any of the global solutions presented.

Table 2 summarizes the RMSE for the matricial filters (global and local). The acceler-
ometer reliability indicates the percentage of the trial duration when the accelerometers 
are used to update the estimated absolute angles. A more rigorous criterion resulted in 
fewer updates and lower accelerometer reliability, see Figs. 2 and 9. Interestingly, with 
this implementation the updates are fewer and only occur around the stance phase. This 
criterion results in the use of accelerometers data for only 2.4% of the trial duration, for 
both matricial filters. On the other hand, the most lenient criterion, (18), updates the 
estimate in 29.7 and 65.3% for global and local matricial filters respectively. Accelerome-
ter coupled reliabilities, ϒ in (26)–(28), indicate the percentage of the trial duration with 
coupled accelerometers used together to update the estimated absolute angles, Table 2.

Despite the global filter updating on fewer moments than the local filter, it produces 
better results in most cases. For example, with the criterion (18), in Table 2 one can see 
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that the matricial global filter shows an error of 1.243◦, using accelerometer data for 
29.2% of the trial, and the accelerometer coupled reliability being 15% of the trial. We 
can also appreciate that matricial local filter shows an error of 1.529◦, using accelerom-
eter data during 64% of the trial. This suggests the ability of the global filters to take 
advantage of the relationships between the states expressed in the global model.

The RMSE values in Table 2 shows that all but the most lenient implementation result 
in a similar performance. Statistical analysis revealed that, for the local filter, the usage 
of the criteria (16) and (18), differed significantly from the other two matricial KF imple-
mentations (F = 194.15 and p = 0.0000). No significant differences were found among 
the other implementations, Fig. 10 enhances these, where the confidence intervals for 
each implementation is shown in blue. The same analysis, for the global filter, revealed 
that the criterion (17) differed significantly from the other three matricial global KF 
implementations (F = 18.58 and p = 0.0000), despite the matricial global KFs perfor-
mance appear to be less sensitive to the criterion used. No significant differences were 
found among the other implementations criteria, see Fig. 10.

Figures 2 and 9 shows the corresponding absolute angle of the body, for both local and 
global matricial filters. For the most stringent criterion the estimate is in better agree-
ment with the reference. These results suggest that the quality of the update is more 
important than the quantity. This is also shown in Figs. 2c and 9c where, despite the fre-
quent updates, the least stringent implementation is unable to converge to the reference 
at a faster rate than the other implementations.

The results for the thigh and shank are better than those for the body and foot, with 
RMSE values most of time smaller than 1 for all but the least strict implementation. 
Nonetheless, a trend towards better performance can also be observed as the crite-
rion becomes more stringent. Fig. 10 reports the results of the difference matricial KF 
implementations for each segment are included in the online appendix (see Additional 
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file 2). The statistical analysis shows that the performance of the matricial filters, local 
and global, are strongly dependent on the segment (F = 3726.16 and p = 0.0000) and 
(F = 4317.77 and p = 0.0000).

Discussion
The body is the only segment that was not used in the MJLS-based KF updates, since 
it never achieves the criteria performance Eqs. (12) and (13). This means that in MJLS-
based KF the residual error used to estimate the absolute angles for each segment does 
not include the residual angle error of the body segment. However, the segment with 
the best improvement by the MJLS-based KF was the body segment, which demonstrate 
the strong influence of the this global approach. The MJLS-based appears to achieve this 
better performance through a high number of updates with only the best inertial sensor 
signal at each instant.

The matricial global KF proposed and validated in this paper, as well as the MJLS-
based KF proposed in [6], outperformed the local KF (Table 1). Mean RMSE dropped 
from 1.202 for the local KF to 1.167 for the matricial global KF, and 0.942 for the MJLS-
based KF. It is thus beneficial to take advantage of the information present in other seg-
ments and the relation between segments. Fig. 6 clarifies just how big the contribution of 
this indirect information is. This is also the only difference between the matricial global 
and the matricial local filters.

In the MJLS-based KF this relation is more explicit and measured directly by the 
potentiometers embedded in the exoskeleton. Surprisingly, no real differences in terms 
of the RMSE at the level of the thigh and shank were found between the MJLS-based and 
the matricial global KFs. The MJLS-based KF did vastly outperform the matricial global 
KF for the absolute orientation of the body.

The relative joint angle is a main contributor to determine body orientation (Fig. 6a, b. 
Likely the potentiometer data is of higher quality, partly explaining why the MJLS-based 
KF performed much better at the body level.

The best combination of sensors based on the criteria � and ϒ used in the KF updates 
likely depends on the task. In this paper, data from a gait trial were analyzed. Results in 
terms of RMSE and the statistical analysis were similar across the diverse implementa-
tions of the matricial global KFs tested in this work. This might be due to the rather 
slow walking speed, 1.5 m/s, and the cyclic nature of gait. For other tasks a clearer dif-
ference might exist. The matricial global and MJLS-based KFs differ in the information 
that is fused in their models. The matricial global KF only relies on IMU data, and can 
thus also be applied to clinical gait analysis or gait monitoring. The MJLS-based relies on 
the information from the potentiometers embedded in the exoskeleton, and is therefore 
suited to be embedded in the control algorithm.

The information from the potentiometer data, the joint angles, thus proved to be more 
useful than the additional information from the remaining IMUs. In the matricial global 
KF, the relation between the IMUs is incorporated in the model through the output 
matrices. The better performance of the MJLS-based compared to the matricial global 
KF might be due to the more reliable relation between segments when using the rela-
tive angles from the potentiometers, compared to the relative angles obtained through 
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IMUs. Additionally, the fact that in the MJLS-based only the most reliable acceler-
ometer is used to estimate the absolute angles may have contributed to the observed 
improvement.

In the Fig. 6 was shown the strong influence of the KF gain in global models, where 
in most cases of Fig. 6a more than 50% of the information originates from the relation 
between segments. In Fig. 6b with exception from the foot, the encoder data is the domi-
nant information to determine segment orientation.

In the MJLS-based the foot segment was the only segment with RMSE greater than 1°, 
Table 1. This might have been due to a less optimal fit between the subject’s foot and the 
exoskeleton, as well as the fitting of the sagittal plane exoskeleton to the ankle. Unlike 
the knee, the ankle has substantial movement and range of movement outside of the 
sagittal plane.

The hinge joint of the exoskeleton used and most widely available exoskeleton restrict-
ing motion with a functional advantage in many cases, but the method is still valid. 
The body or pelvis is currently the most common location to place an inertial sensor to 
obtain absolute orientation of an exoskeleton. Our results indicate that the best options 
would be the thigh or shank segments, since they have more instants in which the accel-
erometers are reliable (Fig. 11), and the accuracy achieved in matricial local KF is greater 
for these segments (Table 2). The effect of this is also present in the matricial global KF. 
These results thus indicate that if the only goal of the sensor is to obtain absolute orien-
tation of the exoskeleton, that it is best to not place it at the body.

Future work should consider exoskeletons with a more physiological ankle joint for the 
MJLS-based. The performance of the presented filters was segment dependent, a hybrid 
approach should therefore be considered with a different solution for the end-segments 
of the exoskeleton’s chain (body and foot). Furthermore, additional trials should be done 
on pathological gait and over a more extensive dataset.

Conclusion
We presented and validated a novel global KF, and validated the MJLS-based KF [6] 
previously presented by the authors. Both global filters outperformed the commonly 
used local KF. Our results thus suggest that global KF solutions are superior to local KF 
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criterion �, the blue circles are the summary of all Markovian states with reliable data



Page 19 of 20Nogueira et al. BioMed Eng OnLine  (2017) 16:58 

solutions for gait analysis. The MJLS-based KF performed best, in particular due to a 
better performance at the body level. In the MJLS-based KF a direct measurement of 
relative angles between segments is available and exploited. In the presented matricial 
global KF only an indirect measurement, based on the absolute angle of each segment 
can be used. This paper has shown that even when only this indirect measurement is 
available, significant improvements in accuracy are obtained by filtering globally com-
pared to using local filter models. We verified the influence of the criterion used to deter-
mine the accelerometer updates and found that the presented global filter performed 
similarly, although slightly better with more stringent criteria applied. The local KF per-
formance varied greatly depending on the criteria used,but overall improved when the 
criteria became more stringent. In all cases the global solution performed better, further 
underlining the importance of the information present in the other segments and in the 
relation between those segments. We therefore recommend the use of global KFs for the 
analysis of lower limb motion, in particular for gait analysis and control.
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