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Introduction
Medical image segmentation is a prerequisite for various clinical applications, such as 
medical diagnosis, treatment planning and image-guided surgery. In the last few dec-
ades, numerous medical image segmentation methods have been proposed [1]. Among 
all these proposed methods, active shape model (ASM) method [2] has achieved state-
of-the-art segmentation accuracy [3]. ASM uses principal component analysis (PCA) [4] 
based statistical shape models (SSMs) to incorporate high-level a priori shape knowl-
edge of the structure to be segmented to achieve robustness. SSMs can capture the range 
of shape variability for the structure to be segmented based on a set of training samples. 
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A crucial component of building SSMs is to establish shape correspondence between 
all training shapes, which is a very challenging task, especially in three dimensions. 
Also, this component to a great extent determines the final performance of the learned 
shape prior models. Various methods for establishing shape correspondence have been 
proposed in the literature, and these methods can be roughly divided into five major 
categories [3]: mesh-to-mesh registration [5, 6], mesh-to-volume registration [11], vol-
ume-to-volume registration [7], parameterization-to-parameterization registration [8], 
and population-based optimization [9]. Alternatively, these methods can be classified 
as pairwise correspondence methods [10] and groupwise methods [11]. In particular, 
Gollmer et al. [12] presented a thorough evaluation of different groupwise correspond-
ence methods, including their objective functions, re-parameterization schemes, and 
optimization strategies. However, a major limitation of current shape correspondence 
establishment methods, such as the spherical harmonics (SPHARM) method [8], is that 
they are very computationally intensive and the structure to be modeled has to be of the 
same topology as the sphere (i.e., of zero genus).

Deformable models [13] have been quite popular in medical image analysis, particu-
larly in image segmentation [14]. Deformable models are contours or meshes that evolve 
under the constraints of both internal and external energy to segment the object of inter-
est. In this paper, to overcome the above-mentioned limitations of current shape corre-
spondence establishment methods, we propose an automatic deformable surface model 
based shape correspondence establishment method to improve the accuracy and reduce 
the computational cost. Specifically, we develop a greedy algorithm based deformable 
simplex mesh that uses vector field convolution (VFC) as the external energy. Simplex 
meshes [15] are efficient and versatile surface representation for physics-based deform-
able models. These models are formulated based on the concept of force equilibrium, 
which includes internal and external forces, rather than the original energy minimization 
framework [13]. The greedy algorithm that minimizes a variational energy functional 
was introduced in [16] as an alternative to the physics-based method for deformable 
model evolution. It has been shown that the greedy algorithm outperformed physics-
based method both in computation cost and segmentation accuracy [17]. Therefore, we 
adapt the greedy algorithm to perform the evolution of the deformable simplex meshes. 
VFC field [18] is a widely used static external force for physics-based deformable models 
that can guide the active contour into long and thin boundary. Furthermore, in com-
parison with the classical gradient vector flow (GVF) external force [19–21], VFC force 
shows superior robustness to noise and initialization, much less computational cost 
(3–10 times less), and changing flexibility [18]. Also, GVF force in homogeneous regions 
of the image has demonstrated to be a special case of VFC force under certain condition 
[18]. In order to overcome the main issues of traditional external energy (i.e., sensitivity 
to shape initialization and poor convergence to the long and thin boundary concavities), 
we adapt the VFC field for greedy algorithm as external energy. Therefore, our proposed 
method integrates the computational simplicity of simplex meshes, speed of the greedy 
algorithm, and robustness of VFC in a unified system.

The deformable models are known to be sensitive to shape initialization [19]. In order 
to get accurate and robust results, we develop an automatic shape initialization method 
to derive an initial shape that has high overlap with the object of interest, such that the 
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deformable models can then evolve more locally. We apply our proposed deformable 
surface model to the application of femur statistical shape model construction to illus-
trate its accuracy and efficiency. This paper significantly extends our preliminary con-
ference paper on GVF-based deformable simplex meshes [21] by (1) introducing a new 
VFC external energy, (2) developing an automatic shape initialization method, and (3) 
applying our method to establish shape correspondence and construct statistical shape 
models.

Related work
In this section, we briefly review the related mesh-to-volume registration based methods 
for establishing shape correspondence.

In mesh-to-volume registration based methods, a landmarked deformable surface model 
is fitted to all the segmented training images. After the evolution of deformable model has 
converged, the final landmark locations of the deformable template determine the point 
correspondence [3]. Kaus et al. [22] presented a 3-D elastically deformable model for the 
automated establishment of shape correspondence from segmented images, where a tri-
angulated deformable template was adopted to segment binary volumetric images of the 
remaining training samples. Their method can approximate and predict unseen shapes 
well. Shang and Dossel [20] then extended the above-mentioned method by adopting the 
force equilibrium concept of deformable surface model, which included the internal forces 
and the external GVF image forces [19]. Compared with traditional simple gradient image 
forces, their use of GVF forces greatly improved the accuracy of shape correspondence. 
Shen et al. [23] proposed an adaptive-focus deformable model (AFDM) to establish shape 
correspondence based on the hand-labeled 3-D brain images. They introduced an attribute 
vector for each landmark of the deformable template to preserve its geometric shape while 
evolution. However, there exit failure cases where the deformable template has to be man-
ually pulled towards the boundary. Later, Zhao and Teoh [24] extended the AFDM method 
by developing a “bridge over” framework and used it to construct SSMs of brain ventricles. 
Compared with the original AFDM method, their new method achieved more accurate 
shape representation, but at the cost of more computation time. Clogenson et al. [25] pro-
posed a model-fitting based approach to establish shape correspondence from manually 
segmented CT scans. An initial Procrustes alignment between the training data and the 
reference surface mesh is performed, followed by a non-rigid registration between the ref-
erence surface mesh and distance maps of the training label maps. The non-rigid registra-
tion is formulated as a model-fitting problem, where a Gaussian Process prior is employed 
to model smooth deformations of the reference surface mesh.

Background
In this section, we briefly show the main geometry of simplex meshes [21], the reader is 
referred to [15] for the detailed definition. These geometry information, especially the 
metric parameters and simplex angle, will be used to define the internal energy of our 
proposed deformable simplex meshes.

A k-simplex mesh is a polygonal mesh where each vertex has precisely (k + 1) neigh-
bors. In this study, we will only consider 2-simplex meshes defined in R3, which are also 
the dual of the triangular meshes (see Fig. 1). Each vertex Pi is linked to exactly 3 distinct 
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vertices (PN1(i),PN2(i),PN3(i)), which form the tangent plane at Pi with its normal vector 
ni. Local geometry around a vertex Pi involves the circumscribed circle S1 with center Ci 
and radius ri of the triangle (PN1(i),PN2(i),PN3(i)), and the circumscribed sphere S2 with 
center Oi and radius Ri of the tetrahedron (Pi,PN1(i),PN2(i),PN3(i)) (please refer to Fig. 8 
of [15]).

The metric parameters (ǫ1i, ǫ2i, ǫ3i) at a vertex Pi are the barycentric coordinates of 
the orthogonal projection Fi of Pi onto the tangent plane with respect to the triangle 
(PN1(i),PN2(i),PN3(i)):

The simplex angle φi ∈ [−π ,π ] at Pi is defined as:

The height L(ri, di,φi) of Pi with respect to the tangent plane is defined as:

with

where di = �Fi − Ci�. Therefore, the position of Pi can be uniquely defined in terms of 
its three neighbors:

(1)Fi = ǫ1iPN1(i) + ǫ2iPN2(i) + ǫ3iPN3(i),

(2)ǫ1i + ǫ2i + ǫ3i = 1.

(3)cos (φi) =
�Ci − Oi�

Ri
sign((Ci −Oi) · ni).

(4)L(ri, di,φi) =
(r2 − d2) tan(φi)

ǫ
√

(r2 − d2) tan2(φi)+ ri
,

ǫ =
{

1, if |φi| < π/2
−1, if |φi| > π/2,

(5)Pi = ǫ1iPN1(i) + ǫ2iPN2(i) + ǫ3iPN3(i) + L(ri, di,φi)ni.

Fig. 1  Diagram showing the duality between 2-simplex meshes (black lines) and triangular meshes (red lines)
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While the metric parameters control the position of the orthogonal projection Fi of Pi 
onto the tangent plane, the local mean curvature Hi = sin (φi)

ri
 at Pi is controlled by the 

simplex angle.

Methods
In this section, we describe the details of the proposed deformable surface model based 
statistical shape models construction method. It adopts a greedy algorithm which allows 
simplex meshes to converge on the object of interest under the constraints of both inter-
nal energy and VFC external energy. The whole procedure is illustrated in Fig. 2.

Automatic initialization of deformable surface models

In order to get accurate and robust results, we develop an automatic shape initializa-
tion method to derive an initial shape that has high overlap with the object of interest, 
such that the deformable models can then evolve more locally. Given the training sam-
ples with ground truth segmentation, we firstly obtain their simplex mesh representa-
tions, which are defined as the dual of the triangular mesh derived via Marching Cubes 
algorithm [26] and mesh smoothing methods [27]. To minimize bias towards the chosen 
initial shape and make the deformable simplex meshes more robust to local minima, we 
then choose the training sample similar to an average femur shape as the template mesh 
for the deformable models.

In order to obtain a good initial shape for the deformable models, we employ the 
Gaussian mixture model (GMM) based point set registration method [28] by aligning 
the template mesh with other training meshes via an affine transformation. In GMM 
based registration method, the main idea is to represent the point sets to be registered 
as Gaussian mixture models, and then align the two corresponding Gaussian mixtures 
by minimizing their L2 distance. Specifically, we represent the point sets of the tem-
plate mesh as a Gaussian mixture f (x) =

∑m
i=1 αiφ(x|µi,�i), where αi is the weight 

of each component, φ(x|µi,�i) is a Gaussian distribution with mean µi and covari-
ance variance �i. Similarly, the point sets of other training meshes are represented by 
g(x) =

∑n
j=1 βjφ(x|νj ,Ŵi). An affine transformation can be represented by a 3× 3 

matrix A, and a translation vector t. For convenience, the matrix A is factorized as an 

CT Scans with Manual Segmentation

Input CT Scans with
 Manual Segmentation

Template Mesh Selection

Deformable Simplex Mesh
GMM Based
Shape Initialization

Shape Prior Models

SSM Construction

Fig. 2  Flowchart of the proposed method for statistical shape model construction
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orthogonal matrix Q and a symmetric positive definite matrix S, i.e., A = QS [28]. Then 
the affine transformation (i.e., A and t) can be found by minimizing the following L2 dis-
tance between Gaussian mixtures f (x) and g(x) [28]:

where fA,t(x) =
∑m

i=1 αiφ(x|Aµi + t,Q(�i)Q
T ) is the transformed distribution of the 

template mesh. Since 
∫

g2 is independent of the affine transformation, we only need to 
consider 

∫

f 2A,t and 
∫

fA,tg. Fortunately, both terms has closed-form expressions, for the 
latter term:

Considering that the gradients associated with affine transformation have analytical 
solutions [28], fast gradient-based numerical optimization techniques (e.g., Quasi-New-
ton methods) can be deployed to minimize the objective function.

After deriving the affine transformation (i.e., A and t), we used it to transform the tem-
plate mesh to the space of other training meshes, resulting in the initial shape for the 
deformable models.

Evolution method

We adopt the greedy algorithm [16] as evolution method to guide deformable 2-simplex 
meshes to the object of interest (e.g., edges) [21]. Let Vi be the voxel in the volumetric 
image containing vertex Pi. During each iteration, a w × w × w cubic window around Vi 
is searched, and the energy is computed at each voxel within the window (see Fig. 3a). 
The energy at vertex Pi is defined as a combination of both internal and external energy 
normalized within the window:

(6)dL2(f , g ,A, t) =
∫

(g − fA,t)
2dx =

∫

(f 2A,t − 2fA,tg + g2)dx,

(7)

∫

fA,tg dx =
m
∑

i=1

n
∑

j=1

αiβjφ(x|µi − νj ,Q(�i)Q
T + Ŵi).

(8)
E(Pi) = αEint(Pi)+ βEext(Pi)

= α
(

ETangent(Pi)+ ENormal(Pi)
)

+ βEVFC(Pi),

a b
Fig. 3  The greedy algorithm: a the energy function is calculated at vertex Pi and voxels in the w × w × w 
cubic window around Vi, and the point with the smallest energy is selected as the target position of Pi. b The 
vertex Pi is moved only along its normal direction ni. For illustration purpose, only a 2-D window is showed
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where ETangent and ENormal are internal energy, EVFC is the VFC external energy, and 
α > 0, β > 0 are weighting parameters that control the relative influence of internal and 
external energy. The internal energy regularizes the rigidity and elasticity of the deform-
able models, while VFC external energy attracts the deformable models to the object of 
interest (e.g., edges).

We define Ni
t as the w × w × w cubic window around voxel Vi. The position Qi

t with 
minimum energy within the window Ni

t is chosen as:

In order to guarantee a stable and smooth deformation of the 2-simplex meshes, the ver-
tex Pi is moved only along its normal direction ni, rather than directly moved to Qi

t as in 
the classical greedy algorithm (see Fig. 3b):

The overall pseudocode of the greedy algorithm is summarized in Algorithm 1 [21].

Algorithm 1 The Greedy Algorithm
Input: Initial simplex mesh M, min movement.

M′ ← M.

// Evolution until a stable simplex mesh M′ is derived.
repeat

// Find a better position for each vertex Pi.
for all vertex Pi ∈ M′ do

MoveF lag ← false.
Emin ← α ETangent(Pi) +ENormal(Pi)

)

+ βEV FC(Pi).

// Search vertex Pi’s neighbors for a better position.
for all vertex Pj ∈ Ni do

E(Pj) ← α ETangent(Pj) +ENormal(Pj)
)

+ βEV FC(Pj).

if E(Pj) < Emin then
Emin ← E(Pj).
Qi ← Pj .
MoveF lag ← true.

end if
end for

// Move vertex Pi to the target position.
if MoveF lag then

Pi ← Pi + (Qi − Pi) · ni

)

ni

movement ← movement+ 1.
MoveF lag ← false.

end if
end for

Smooth M′ after every 10 iterations.
until movement < min movement

Output: Resulting simplex mesh M′.

(9)
Qi

t = arg min
Pj∈Ni

t

E(Pj).

(10)Pi
t+1 = Pi

t +
(

(Qi
t − Pi

t) · ni
)

ni.
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Internal energy computation

The internal energy maintains the geometrical regularity of the deformable 2-simplex 
meshes. We adopt the original internal force proposed in [15] for greedy algorithm as 
internal energy, which is decomposed into tangential energy and normal energy [21]:

where φ̃i is the reference simplex angle defined as the mean of neighboring vertices’ 
simplex angles. The tangential energy measures the distance of the orthogonal projec-
tion Fi of Pi from the center of gravity of its three neighbors in the tangent plane. When 
the energy achieves the minimum, it ensures that the vertices exhibit uniformly on the 
surface. While the normal energy keeps a local smoothing simplex mesh through a C2 
smoothness constraint.

VFC external energy computation

Vector field convolution (VFC) field [18] is a widely used static external force for phys-
ics-based deformable models. It largely solves the problems associated with traditional 
external force and can guide the active contour into long and thin boundary. Further-
more, in comparison with the classical GVF external force [19–21], VFC force shows 
superior robustness to noise and initialization, and much less computational cost [18]. 
The three-dimensional VFC field v(x, y, z) = [u(x, y, z), v(x, y, z),w(x, y, z)] is defined as 
the convolution of a vector field kernel k(x, y, z) with the edge map f(x, y, z) generated 
from the input image I(x, y, z):

where ⊗ denotes linear convolution. The basic principle behind this formula is to prop-
agate the gradient vectors of input image I(x,  y,  z) into homogeneous image regions 
via image convolution, such that the deformable models have more chances to move 
towards the object of interest (e.g., edges).

The edge map f(x, y, z) for gray-level input images is usually defined as the gradient 
magnitude of the blurred image:

where Gσ (x, y, z) is a 3-D Gaussian function with standard deviation σ, and ∇ is the gra-
dient operator. The vector field kernel k(x, y, z) = [uk(x, y, z), vk(x, y, z),wk(x, y, z)] can 
be calculated as follows:

where m(x, y, z) is the magnitude of the vector at (x, y, z) and n(x, y, z) is the unit vector 
from (x, y, z) to the kernel origin (0, 0, 0) given as:

(11)

Eint(Pi) = ETangent(Pi)+ ENormal(Pi)

=
∥

∥

∥

∥

1

3
(PN1(i) + PN2(i) + PN3(i))− Fi

∥

∥

∥

∥

2

+
∥

∥

∥
L(ri, di, φ̃i)− L(ri, di,φi)

∥

∥

∥

2
,

(12)v(x, y, z) = f (x, y, z)⊗ k(x, y, z),

(13)f (x, y, z) = |∇[Gσ (x, y, z)] ⊗ I(x, y, z)|,

(14)k(x, y, z) = m(x, y, z)n(x, y, z),

n(x, y, z) =
{

[0, 0, 0], if(x, y, z) = (0, 0, 0),
[− x

r ,−
y
r ,−

z
r ], otherwise,
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where r =
√

x2 + y2 + z2 is the distance from the kernel origin (0, 0, 0).
The magnitude of the vector field kernel m(x, y, z) plays a major role in generating the 

VFC field. Considering that the influence of the object of interest should be diminished 
as the deformable models become further away, then two types of magnitude functions 
can be defined as decreasing functions of the distance from the kernel origin [18]:

where γ > 0 and ζ > 0 are parameters that control the decrease of the magnitude, and 
ε > 0 is a small constant for the prevention of division by zero at the kernel origin. The 
parameters γ and ζ are set by considering the signal-to-noise ratio (SNR) of the input 
image I(x, y, z) [18].

In the practical implementation, the 3-D VFC field v(x, y, z) = [u(x, y, z), v(x, y, z),

w(x, y, z)] can be calculated by convolving the edge map f(x, y, z) with each component of 
the vector field kernel k(x, y, z) = [uk(x, y, z), vk(x, y, z),wk(x, y, z)] [18]:

The continuous vector field kernel k(x, y, z) is approximated by a discrete matrix defined 
on a 3-D grid [18]:

where R is the chosen kernel radius.
To the best of our knowledge, all current work on deformable models employs VFC 

as force fields rather than potential energy. To tackle the main issues of the traditional 
external energy, we extend it for greedy algorithm as external potential energy. Specifi-
cally, we make the following enhancements to the original VFC method:

1.	 The magnitude of the VFC field 
∥

∥v(x, y, z)
∥

∥ is used as external energy instead of the 
force field itself.

2.	 One major drawback of the original VFC method is that the generated VFC fields are 
dominated by the strong edges, this will make the weak yet important edges smooth 
out along with the noise and cause leakage problem [18]. The GVF fields presented 
in [19] have successfully avoided this leakage problem and can retain the weak edges, 
as can be seen from Fig. 3(b) in [18]. It is mainly because in GVF, all the edges gener-
ated from different features are treated equally, which is achieved by normalizing the 
used edge maps to the range [0, 1] during GVF computations. After this normaliza-
tion step, the weak edges will thus have similar magnitude to that of the strong edges, 
resulting in equal importance between them. Considering that no noise is presented 
in our binary input images, we propose also to normalize the edge map f(x, y, z) to [0, 

(15)m1(x, y, z) = (r + ε)−γ ,

(16)m2(x, y, z) = exp

(

−r2

ζ 2

)

,

(17)u(x, y, z) = f (x, y, z)⊗ uk(x, y, z),

(18)v(x, y, z) = f (x, y, z)⊗ vk(x, y, z),

(19)w(x, y, z) = f (x, y, z)⊗ wk(x, y, z).

(20){k(x, y, z) |x, y, z = −R, . . . ,−1, 0, 1, . . . ,R},
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1] before the computation of VFC energy, in order to alleviate the leakage problem 
and preserve the weak yet important edges.

Therefore, the VFC energy at vertex Pi can be defined as:

When vertex Pi is within the volumetric image, its external energy can be derived 
through a trilinear interpolation of the external energy at its neighboring image grid 
points; otherwise, to keep the deformable simplex meshes from moving out of the volu-
metric image, its VFC energy is set to be the maximal value of the external energy in the 
volumetric image [21]. When VFC is used as potential energy, we can pre-compute it 
and store its field magnitude as gray-level images, this can help greatly reduce the com-
putation time of the VFC, while this does not hold when VFC is used as force fields.

Statistical shape model construction

Using our proposed greedy algorithm-based deformable simplex meshes, we obtain a 
set of K corresponding femur training shapes {Mi | i = 1, 2, . . . ,K }, and each shape Mi 
is represented by a shape vector xi with N landmark points. Firstly, all training shapes 
are spatially aligned into a common coordinate frame using the generalized Procrustes 
analysis (GPA) [29]. We define the corresponding covariance matrix as:

where x̄ is the mean shape vector of all subjects: x̄ = 1
K

∑K
i=1 xi. Then the principal com-

ponent analysis (PCA)-based statistical shape model (SSM) can be built by an eigen-
decomposition on the covariance matrix S:

where columns of matrix of U form the principal modes of variation φm, and diagonal 
entries of D are their respective variances �m. Then any valid shapes of femur structure 
can be approximated by a linear combination of the first c modes of variation:

where c = min{t |
∑t

i=1 �t/
∑K−1

i=1 �t > 0.98}, and bm is the shape parameter constrained 
to the interval bm ∈

[

−3
√
�m, 3

√
�m

]

.

Experimental setup
Datasets and parameters

To evaluate the performance of our proposed deformable simplex meshes-based method 
for establishing shape correspondence, we applied it to construct the femur statistical 
shape models based on a femur database. The database consists of ten femur CT scans 
from 10 different patients (6 males, 4 females) with ground truth segmentation manually 

(21)EVFC(Pi) = �v(Pi)�.

(22)S = 1

K − 1

K
∑

i=1

(xi − x̄)(xi − x̄)T ,

(23)S = UDUT ,

(24)x = x̄ +
c

∑

m=1

bmφm,
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delineated by clinical experts. The ages of patients ranged from 30 to 71 years with an 
average age of 54 years. These CT scans were provided by the Weihai Municipal Hos-
pital, and were acquired by use of a 64-row multidetector CT scanner (Brilliance 64; 
Philips Healthcare, Best, the Netherlands) with varied in-plane resolution between 0.58 
and 0.67 mm, and a slice thickness of 1.5 mm.

In the experiments, the first magnitude function m1(x) is employed for the computa-
tion of VFC energy. The parameter settings of our proposed method are as follows: the 
weighting parameters in Eq. 8 α = 0.4, β = 1.0, the width of the cubic window w = 11; 
the vector field kernel radius R = 256, γ = 1.7, and ε = 10−8 for VFC energy. All these 
parameters are the same for all the training data. The parameters for the deformable 
model were chosen empirically according to that used in our previous paper [21], where 
we thoroughly evaluated the effect of these parameters on the final segmentation accu-
racy via the metric of mean radial error (MRE); while for VFC energy, the parameters 
were empirically set to the values suggested in the original VFC paper [18], where the 
authors experimentally showed the effect of these parameters on the final segmentation 
accuracy via the metric of root mean square error (RMSE).

Compared method

We compared our proposed method with the classical spherical harmonics (SPHARM) 
shape correspondence method [8]. Although the SPHARM method is not being pro-
posed recently, the reason we chose this method for comparison is that it is still quite 
efficient and popular, especially for the analysis of brain morphology structures in the 
neuroimaging community [30]. Moreover, the SPHARM method is still frequently 
cited by researchers for comparative experiments [30–32]. Since the SPHARM method 
requires the input shape to be of spherical topology (i.e., objects without holes), all holes 
in the training images must be filled firstly. The SPHARM method maps all the input 
shapes to a common parameter domain (i.e., the unit sphere) using an area-preserving 
spherical parameterization. It means that every vertex on the input surface is mapped 
to a unique point on the unit sphere using a spherical coordinate system. By using 
these spherical parameterizations, a unique shape descriptor coefficient can be derived 
for each input shape based on SPHARM basis functions. Point correspondence in the 
parameter domain is then determined by rotating the spherical parameterization, such 
that the poles of the input shape described by the first order coefficient (an ellipsoid) 
are coinciding with the poles of the parameterization. Finally the corresponded train-
ing shapes are derived by uniformly sampling the rotated spherical parameterization via 
icosahedron subdivision.

Results
Qualitative analysis

Figure 4 shows 3D visualization of the shape variation on the surface for the constructed 
femur shape model. We can see that the upper extremity and lower extremity of the 
femur have more variation than other parts of the femur surface, while the body of the 
femur (middle parts) only has little variation (shown in dark blue color). Figure 5 illus-
trates the first two principal modes of variation for the constructed femur shape model. 
Each row shows the variation of a specific mode between −3σ and +3σ. It can be seen 
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that the first mode accounts for the whole volume size of the femur structure, while 
the second mode mainly represents the change of femoral neck and greater trochanter. 
These demonstrate that we have successfully constructed the femur shape model by 
using our proposed deformable simplex meshes-based method.

Quantitative analysis

Compactness, generalization ability, and specificity are the three standard metrics for 
assessing the quality of a constructed shape model [33]. In this section, we use all these 
three metrics to quantitatively evaluate the quality of the constructed femur shape 
model by using our proposed method.

Compactness

A compact shape model should the one that has little variance and can accurately recon-
struct new shape instances with few shape parameters. Thus, the compactness is defined 
as the cumulative variance of the Mth mode used in the shape reconstruction [33]:

where �m is the mth eigenvalue. For the compactness, the smaller the value is, the better 
the constructed shape model.

(25)C(M) =
M
∑

m=1

�m,

Fig. 4  3D visualization of the shape variation on the surface for the constructed femur shape model. The 
variation spans from small (blue) to large (red)
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Figure 6 shows the compactness for both SPHARM and our proposed method with 
varying number of modes of variation. For all the employed number of modes, our 
method achieves better compactness than the SPHARM method. Table  1 shows the 
compactness for the two compared shape prior modeling methods with nine modes. 
Specifically, the compactness of our method is 1.38, and SPHARM method’s compact-
ness is more than three times that of our method. Therefore, the shape model con-
structed by our method is more compact than that of the SPHARM method.

Generalization ability

The generalization ability quantifies the ability of the constructed shape model to repre-
sent new shape instances of the same structure class. It is measured based on the training 

-3σ

Mode 1

Mode 2

3σMean

Fig. 5  The first two principal modes of variation for the constructed femur shape model. Each row shows the 
variation of a specific mode between −3σ and +3σ
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data by performing leave-one-out tests. Specifically, a shape model is built by using all 
but one training shape xi, and then the constructed model is employed to reconstruct 
the excluded shape xi. The approximation error is defined as the distance between the 
excluded shape xi and its reconstructed shape x′

i. The generalization ability is the average 
approximation error of all the performed K tests [33]:

where the reconstructed shape x′
i(M) is defined as a linear combination of the first M 

modes of variation:

And a smaller value of the generalization ability indicates a better constructed shape 
model.

The generalization ability for both SPHARM and our proposed method is shown in 
Fig.  7 with different number of modes of variation. And our method shows consist-
ently better generalization ability than the SPHARM method in all the used number 

(26)G(M) = 1

K

K
∑

i=1

�xi − x
′
i(M)�

2
,

(27)x
′
i(M) = x̄ +

M
∑

m=1

bmφm.
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Fig. 6  Compactness for both SPHARM and our proposed method

Table 1  The compactness for the two compared shape prior modeling methods with nine 
modes

Method C (M)

SPHARM 4.35

Our method 1.38
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of modes. The mean and standard deviation of the generalization ability for the two 
compared shape prior modeling methods are shown in Table  2 by using nine modes. 
The generalization ability of our method is 0.84 mm, while the generalization ability of 
SPHARM method is nearly 50% higher than that of our method. These demonstrate that 
our method can reconstruct new shape instances more accurately than the SPHARM 
method.

Specificity

The specificity measures the validity of shape instances generated by the constructed 
shape model. It is measured by generating a large set of N shape instances using the con-
structed model. The approximation error is defined as the distance between the gener-
ated shape instance xj and its most similar sample in the training data x′

j. The specificity 
is the average approximation error of all the generated N shape instances [33]:

where the shape instance xj is generated by choosing random values for the first M’s 
shape parameter b from the range bm ∈

[

−3
√
�m, 3

√
�m

]

:

and the most similar sample x′
j is defined as:

(28)S(M) = 1

N

N
∑

j=1

�xj(M)− x
′
j�

2
,

(29)xj(M) = x̄ +
M
∑

m=1

bmφm,
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Fig. 7  Generalization ability for both SPHARM and our proposed method

Table 2  The mean and standard deviation of the generalization ability for the two differ-
ent shape prior modeling methods with nine modes

Method G (M) (mm)

SPHARM 1.16 ± 0.44

Our method 0.84 ± 0.22
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A value of N =   10,000 was used to obtain the results reported in this study. For the 
specificity, a smaller value means a better constructed shape model.

Figure  8 illustrates the specificity for both SPHARM and our proposed method 
with various number of modes of variation. In all the used number of modes, our 
method shows better specificity than the SPHARM method. Table  3 summarizes 
the mean and standard deviation of the specificity for the two compared shape prior 
modeling methods with nine modes. In particular, the specificity of our method 
is 1.52 mm, and SPHARM method’s specificity is more than 50% higher than that 
of our method. These indicate that the shape instances generated by the model of 
our method is more specific to the modeled structure than that of the SPHARM 
method.

Through all the above quantitative comparative results of the three employed 
metrics, we can conclude that the quality of the constructed femur shape models 
by using the proposed method is much better than that of the classical SPHARM 
method. Therefore, our method can be employed for effective femur shape model 
construction.

(30)x
′
j = arg min

k∈[1,K ]
�xj(M)− xk�2.
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Fig. 8  Specificity for both SPHARM and our proposed method

Table 3  The mean and  standard deviation of  the specificity for  the two different shape 
prior modeling methods with nine modes

Method S (M) (mm)

SPHARM 2.60 ± 0.64

Our method 1.52 ± 0.34
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Computational time

The proposed method was implemented in C++1 and tested on a PC with an Intel pro-
cessor and 2 GB of RAM. Our proposed method takes an average of about 15 min to 
establish shape correspondence for each shape. For comparison, the time taken by the 
SPHARM method for the same task is about 1 h in average. Thus our proposed method 
achieves much higher computational efficiency than the SPHARM method.

Conclusion
In this paper, we have proposed a novel mesh-to-volume registration based method for 
automatically establishing shape correspondence. It integrates the computational sim-
plicity of simplex meshes, speed of the greedy algorithm, and robustness of VFC in a 
unified system. Through extensive experiments on ten femur CT scans from ten differ-
ent patients, we demonstrate that the quality of the constructed femur shape models by 
using the proposed method is much better than that of the classical SPHARM method. 
Moreover, the proposed method achieves much higher computational efficiency than 
the SPHARM method. Therefore, the proposed method can be employed for effective 
femur shape model construction.

For this study, we mainly focus on a new method for automatically establishing shape 
correspondence, rather than a direct extension of an existing method, thus few similar 
methods are available for direct comparisons. Nevertheless, we adapted the original 
implementation of the classical SPHARM method with fine-tuned parameter settings, 
and provided an extensive quantitative comparison based on the same femur CT data-
sets. Considering that no public femur CT datasets with ground truth are currently 
available, in our future work, we will implement more state-of-the-art methods and pro-
vide more comparative results. Furthermore, our future research will go in the direc-
tion of applying the constructed femur shape models in ASM based femur segmentation 
method as the shape prior models.
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