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Background
Nanotechnology is a newly-emerging and up-to-date technology that has been classified 
as a vital scientific and commercial venture with economic benefits in global scale. By 
rapid development of technology in last decades, the knowledge on nanomaterial man-
ufacturing techniques have been increased and this consequently promoted, research 
groups studying on several areas around the world, to focus more on the preparation 
or syntheses techniques of nanomaterials for a variety of applications. According to lit-
erature, it can easily be seen that various techniques are reported for the fabrication of 
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nanomaterials for different purposes. These techniques include drawing-processing, 
template-assisted synthesis, self-assembly, solvent casting, phase separation, and elec-
trospinning techniques [1–3]. Among the various techniques used and reported in the 
literature, in the scientific community as well as in industry, electrospinning has gar-
nered significant attention because of its ability to fabricate nanostructures with unique 
and advantageous properties such as a high surface area and inter/intra fibrous poros-
ity [4]. Another advantage of using electrospinning technique is that it is the only one 
that can produce at large scale continuous nanofibers for industrial applications [5, 6]. 
Since it has been used in the early twentieth (1900) century, several significant improve-
ments have been made in the design of different instruments, miscellaneous materials 
and nanomaterials production [7].

Electrospun nonwoven provide high-surface area, micro/nano-porosity, and the abil-
ity to add drugs, polymers or biomolecules into the nanofibers [8]. There may be several 
alternative utilization types of electrospinning one of them is co-axial needle electro-
spinning. It can be evaluated as an innovative extension of electrospinning. Co-axial 
needle electrospinning depends on the fact that it enforces the formation of fibers with 
a core–shell structure. The principles, technique details and biomedical applications of 
coaxial-needle electrospinning have been reported in detail in literature [9, 10].

In this study, the preferred method is co-axial needle electrospinning and the aim is to 
use the final products, which are nanofibers, in biomedical applications such as wound 
dressing.

Open wounds have high tendency to infection and bacterial colonization. Therefore, 
the property of bacterial barrier is an important parameter that can specify the success 
of a wound covering material [11]. Barrier property of materials to micro-organism is a 
leading aspect in many biomedical applications like wound dressings [12]. A wide range 
of biomaterials has been utilized by medical practitioners to handle chronic wounds 
[13]. The traditional forms of wound dressings are non-resorbable gauze and/or sponge, 
which are made of nonwoven, cellulose [14]. The conventional wound dressings contin-
ued for over 40 years, which were then swapped by the advanced materials, which com-
prise of thin films that are permeable to vapor and gases [14–16].

According to research made in biomedical applications, it has been indicated that syn-
thetic or natural agents can be successfully used in wound dressing applications. Both 
synthetic polymers and natural polymers include in their structure hydrolytically or 
enzymatically labile bonds or groups are degradable [17]. The advantages of synthetic 
polymers are obvious, including predictable properties, uniformity and can be tailored 
easily [18]. Despite of all these good properties, they are extremely expensive. Thus, it 
leads researcher to focus on natural polymers, which are inherently biodegradable [19] 
and can be promising candidates to meet different requirements.

Starch is the centre of attention among lots of natural polymers. It is obtained from 
carbon dioxide and water by photosynthesis in plants [20]. By means of its complete bio-
degradability [21], low cost and renewability [22], starch can be used in promising can-
didate for developing sustainable materials [23, 24]. Many efforts have been employed 
to develop starch-based polymers for conserving the petrochemical resources, reduc-
ing environmental impacts and searching more applications [25–27]. On the other 
hand, PCL poly (ε-caprolactone) or simply polycaprolactone is synthetic biodegradable 
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aliphatic polyester which has attracted considerable attention in recent years, particu-
larly in the biomedical applications [28]. A number of polymers have been worked for 
their compatibility to modify the thermal, rheological as well as biophysical properties of 
PCL, based on its application [29–36].

In this work, starch/PCL composite nanofibers were fabricated with the electro-
spinning technique. Several characterization tests such as density, viscosity, electrical 
conductivity were performed. In order to report the structure characterization and mor-
phology analysis of nanofibers produced, Fourier transform infrared (FTIR) and scan-
ning electron microscope (SEM) analysis were conducted, respectively. Furthermore, 
cell culture testing was carried out to be able to demonstrate that nanofibers fabricated 
have great potential for wound dressing application.

Methods
Materials

Starch derived from corn {(C6H10O5)n, average molecular weight Mw  ~106  g  mol−1, 
amylose:amylopectin 25–28:72–75%} and dimethyl foramide (DMF) were supplied 
by Sigma Aldrich, UK. Dimethyl sulfoxide (DMSO) which is colorless and clear liquid 
{(CH3)2SO}, average molar mass 78.1 and its storage conditions at between +15 °C and 
+30  °C) was supplied by Merck KGaA. The average molecular weight of PCL (Mw) is 
80,000 g mol−1, which was purchased from Sigma-Aldrich and used with no extra treat-
ment or purification.

Preparation of polymer composite solutions

The polymer composite solution consists of starch and PCL. They were separately pre-
pared by dissolving their characteristic solvents. Herein, starch with different concen-
tration (4, 5, 6, 7, 8 and 10 wt%) was dissolved in DMSO by stirring and heating at the 
same time and cooled down to room temperature whereas PCL (10 wt%) was dissolved 
in DMF and the same procedure was performed for this solution. Since different sol-
vents were used it is not possible to mix them and electrospin. Instead, different needle 
was utilized for each solution which is called as co-axial electrospinning process.

Experimental setup

The experimental set up used in this study is demonstrated in Fig.  1a. The co-axially 
arranged needles contained an outer needle with an internal diameter of 2700 µm and an 
external diameter of 3000 µm, and an inner needle with an internal diameter of 1560 µm 
and an external diameter of 2100 µm. Outer and inner stainless steel needles were con-
nected to the same high-power voltage supply (Matsusada Precision, Shiga, Japan). The 
perfusion of PCL solution and starch solution into the individual needles was controlled 
by two syringe pumps (NE-300, New Era Pump Systems, Inc., New York, USA).

All experiments were performed at the ambient temperature. Processing a physically 
mixed composite solution was carried out by infusing the material into both the needles. 
The flow rates of these were fixed at a ratio of 1:2 for inner and outer needles, respec-
tively. For encapsulation co-axial experiments, PCL solution was fed through the inner 
needle at half the flow rate of the starch solution. This solution was fed through the outer 
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needle at various flow rates (15–25 µl min−1). At selected flow rates, from 25 kV up to 
30 kV voltage was applied.

Characterization

Rheology

In order to determine physical properties of solutions prepared, the values of den-
sity, viscosity and electrical conductivity were measured. Density was measured using 
a standard 10  ml density bottle. Viscosity was determined using a DV-E Viscometer 

Fig. 1  a Schematic representation of the co-axial needle electrospinning set-up. b, c Images of the Instron 
experimental set-up
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(Brookfield AMETEK, Massachusetts, USA). Electrical conductivity was assessed using 
a conductivity meter whose model is Cond 3110 SET 1 (Xylem Analytics Germany Sales 
GmbH & Co. KG, WTW, Weilheim, Germany). All measurements were performed at 
the ambient temperature.

FT‑IR analysis

FT-IR analysis was used to qualitatively characterize the functional groups of the electro-
spun fibers. The infrared (IR) spectra of starch/PCL composite samples were recorded 
on a Thermo Nicolet 6700 FTIR spectrophotometer equipped with Smart Orbit dia-
mond ATR accessories. Measurements were conducted at room temperature between 
400 and 4000 cm−1 in transmission mode.

Morphology

The morphological characterization of the starch/PCL composite nanofibers was exam-
ined using a scanning electron microscope (SEM; EVO LS 10, ZEISS). The pores, bead 
structures and nanofibers were observed and diameter range of fibers was determined 
on SmartSEM, which is the graphical user interface of the device. The samples were put 
on a metal stub using carbon adhesive tape and coated with gold under vacuum before 
observation.

Mechanical properties

Ultimate tensile strength (UTS) and elongation values were performed and measured 
by Instron 4411 tensile test machine by means of running a special software (Bluehill 2, 
Elancourt, France). The test speed of 5 mm min−1 and room temperature of (23 °C) were 
prepared. The cross-section is rectangular dimensions of 1 × 5 cm and the same for all 
test samples [37]. Three different samples were used to analyze each composite (with 
different percentages), therefore 18 different test samples were used during tensile tests. 
The distance between the grips was 1 cm to mount samples. Thickness of the composites 
was also measured (0035–0094 mm) using a digital micrometer (Mitutoyo MTI Corp). 
Photographs during mechanical tests are shown (Fig. 1b, c). The working area in which 
the study has been conducted was clean and experiments have been carried out at steady 
room temperature. Engineering diagrams have been obtained by a tensile test software 
and almost no deviation between the tests was observed.

Cell culture and cell viability

NIH-3T3 mouse fibroblast cell lines were used and cultured in DMEM with 10% FBS 
at 37 °C, 5% CO2. The culture medium was changed every second day. Cell viability was 
measured MTT assay according to manufacturer’s protocol (Sigma USA). Firstly all sam-
ples were sterilized with 70% ethanol and UV then small piece of membranes were laid 
down onto 96 well plate and cells were plated onto samples surface 103 cells per well 
in 96 well plate. Control was just tissue culture plate surface. After 1 and 3 days later 
20 µl MTT solution (5 mg ml−1) was added into each well. After additional incubation 
for 4 h, 100 µl DMSO was added. The absorbance was read at 595 nm wavelength with 
microplate reader. Experiments were performed in triplicates. A test was performed to 
determine the statistical significance between experimental groups. Kruskal–Wallis test 
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was used to compare the groups. A value of p < 0.05 was considered to be statistically 
significant.

Results and discussions
The effect of starch concentration on the physical characteristics which are density, elec-
trical conductivity and viscosity of starch solution was obtained and results are shown 
in the Table  1. It can be figured out that the higher the concentration of starch, the 
more electrical conductivity and viscosity. Similar observation is reported in literature 
for viscosity in which when such polymer concentration increases in the solution, the 
viscosity also increases proportionally [38]. This change can be easily observed. How-
ever, the addition of starch into the solution does affect the density lower than the other 
properties.

Figure  2 reveals the wavenumber versus transmittance from (a) to (f ) which cor-
respond to the concentration of starch from 4 to 10 wt%, respectively. This figure rep-
resents the FTIR spectra of the starch/PCL composite nanofibers. It can be seen that 
there are three main peaks on the FT-IR spectra of the starch/PCL fibers on which the 
maximum absorbance is 1144, 1066 and 995 cm−1, respectively. While the bands at 1144 
and 1066 cm−1 depend on the ordered structures of starch, the band at 995 cm−1 repre-
sents the starch that is amorphously structured [39]. The characteristic absorption bands 
at 1210 and 1720 cm−1 of starch were imputed to the bending vibration and stretching 
vibration of C–O, respectively. Moreover, the wide absorption band around 3423 cm−1 
was because of the stretching vibration of O–H [40].

Several characteristic bands of PCL were observed at 2949  cm−1 (asymmetric CH2 
stretching), 2865  cm−1 (symmetric CH2 stretching), 1727  cm−1 (carbonyl stretching), 
1293  cm−1 (C\O and C\C stretching), 1240  cm−1 (asymmetric C\O\C stretching) and 
1170 cm−1 (symmetric C\O\C stretching) [41].

Morphological study has an importance to visualize and understand the orientation 
of structures inside the nanofibers fabricated. SEM image was used to observe the mor-
phology of the starch/PCL composite nanofibers and it is shown in the Fig. 3 depending 
on the concentration of starch.

In this Fig. 3, the subfigures that are associated with the low magnification results—
Fig. 3a, c, e, g, i and k-show the general view of the nanocomposite structures and the 
fibers cannot be noticed very well. On the other hand, in others, high-magnification 
ones—Fig. 3b, d, f, h, j and l-, fibers and bead structures can be clearly observed. The 

Table 1  Physical properties of solutions

a  Unit in cP

Sample (w/w) Density (g cm−3) Viscosity (Pa s) Electrical conductivity 
(µs cm−1)

4 wt% starch 1.106 0.35 7.00

5 wt% starch 1.113 0.72 8.20

6 wt% starch 1.115 0.98 8.56

7 wt% starch 1.118 1.28 9.80

8 wt% starch 1.119 1.45 10.00

10 wt% starch 1.126 4.65 11.26

10 wt% PCL 1.060 >500a 0.60
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conclusion that can be reached is that while PCL proportion in the electrospun nano-
composite structure is more prone to create fiber form, starch tends to turn into bead 
form. This is because of structural characteristics of starch. The bead diameter ranged 
from 958 to 1530  nm (Fig.  3a, b). The greatest bead diameter ranged from 2840 to 
3530 nm (Fig. 3k, l). It was previously reported that some other material, such as PVA, 
is needed to be added to starch in order to increase its spinnability property [42]. Fur-
thermore, the diameter range of nanofibers observed is 80–250 nm which is lower so 
better than the ones reported in the similar previous studies [43]. However, the general 
behavior of fiber diameter is to increase with the starch concentration (Fig. 4). This is 
because while the bead forms get bigger, the fibers connecting to these beads get thicker 
to provide a good strength. For instance, the fiber diameter is about 138 nm in the solu-
tion with 5 wt% starch/10 wt% PCL composite fibers (Fig. 3c, d) and it is about 150 nm 
in the solution with 7 wt% starch/10 wt% PCL composite fibers (Fig. 3g, h). As it can be 
seen, the mostly-measured diameter of fibers among entire the concentration values is 
about 150 nm (Fig. 4). A lower diameter range of fibers is caused by both low viscosity 
and low electrical conductivity. This is because the characteristic of low viscosity and 
electrical conductivity lead to a low viscoelastic force. [38]. In fiber diameter measure-
ment performed in this study, results showed that the higher concentration of starch the 
higher viscosity (Table 1), fiber diameter and bead formation.

In order to perform tensile testing, the prepared nanofiber samples with different con-
centration of starch were used. While comparing the results to each other, the changing 
parameter was the concentration of starch which are 4, 5, 6, 7, 8 and 10 wt%, respec-
tively. The mean value of Young’s modulus and strain at break were determined and 
listed in the Table 2.

Fig. 2  a 4 wt% starch/10 wt% PCL, b 5 wt% starch/10 wt% PCL, c 6 wt% starch/10 wt% PCL, d 7 wt% 
starch/10 wt% PCL, e 8 wt% starch/10 wt% PCL, f 10 wt% starch/10 wt% PCL
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Fig. 3  SEM images of the electrospun starch/PCL composite nanofibers with varying starch concentrations 
of a, b 4 wt% starch/10 wt% PCL composite fibers; c, d 5 wt% starch/10 wt% PCL; e, f 6 wt% starch/10 wt% 
PCL; g, h 7 wt% starch/10 wt% PCL; i, j 8 wt% starch/10 wt% PCL; k, l 10 wt% starch/10 wt% PCL
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According to these results, it can be deduced that the Young’s modulus values are rel-
atively higher for lower concentration values, such as 4 and 5 wt%, of starch in fibers 
(Table 2). Optimum starch concentration value may be determined as 5 wt% due to hav-
ing the highest Young’s Modulus. It tends to decrease after this value because of the fact 
that the bead forms are bigger after the starch concentration of 5 wt% (Fig. 3c–l). The 
bigger form of beads, the lower value of Young’s Modulus. The values of strain at break 
associated with all concentration values are very close to one another. These character-
istic behaviors are mostly based on the material properties so that different results have 
been observed in other similar studies performed with different materials and/or con-
centration in fibers [44].

Ultimate tensile stress is another important factor to determine material character-
istics of nanofibers produced. It represents the highest stress value at which nanofiber 
could hold without breaking. Ultimate tensile stress values for each sample are given in 
the Fig. 5.

Based on the analysis of ultimate tensile stress, it can be easily concluded that nanofib-
ers’ ultimate tensile stress values somehow have a tendency to decrease with the increase 
of starch concentration. This shows that how the concentration of secondary materials 
affects the ultimate tensile stress of composite nanofibers produced. It depends on the 
properties of material added. Different type of materials and concentration values can 
give different results [45].

Fig. 4  Mean diameter distribution of composite nanofibers with varying starch concentration mixed with 10 
wt% PCL

Table 2  Young’s modulus and strain at break of each sample

PCL/starch nanofiber samples (wt%) Young’s modulus (MPa) Strain at break (%)

10 PCL/4 starch 10431.2 32.7

10 PCL/5 starch 10739.9 22.9

10 PCL/6 starch 7372.2 30.0

10 PCL/7 starch 6817.1 34.5

10 PCL/8 starch 6591.9 36.3

10 PCL/10 starch 4950.2 30.8
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In order to carry out cell culture study, the composite nanofibers of 4 and 5 wt% starch 
were used. It was observed that the materials have no cytotoxic effect on fibroblast cells. 
The materials have increased the reproduction of cells since the first day. The mate-
rial with the concentration of 5% increased the cell growth more than the one with the 
concentration of 4%. At the end of the third day, approximately, the material with the 
concentration of 4% increased the cell growth at the rate of 30% so did the one with con-
centration of 5% at the rate of 40%. The results are shown in Fig. 6.

According to results of cell culture study, the finding can be determined that the 
increase of starch in the fiber also increases the cell viability. However, the further anal-
ysis and longer time range are needed to demonstrate this finding more properly. To 
compare the result to the similar ones reported previously, addition of starch increases 
the cell growth more than pure PCL usage. Oh et al. [46] showed that PCL nanofibers 
increase the cell proliferation in order of approximately 20%. Depending on this, it can 
be concluded that greater increase of cell viability arises from saccharide increase in the 
medium produced from starch degradation [47].

Fig. 5  Ultimate tensile stress of composite nanofibers versus starch concentration

Fig. 6  Cell viability of nanofiber with starch concentration of 4/10 wt% PCL and 5/10 wt% PCL
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Conclusion
Composite nanofibers of starch/PCL have been prepared using a co-axial needle elec-
trospinning technique. PCL was successfully encapsulated within starch. Fiber forma-
tion could have been observed for different ratio of starch. The effect of starch ratio in 
the solution on the properties and morphological structure of the fibers produced was 
presented. With lower starch concentration values, the fibers have greater ultimate ten-
sile strength characteristic (mostly 4 and 5 wt%). According to SEM results, it can be 
figured out that the nanofibers fabricated have good spinnability and morphology. The 
mean diameter of the fibers is about 150 nm. According to results of cell culture study, 
the finding can be determined that the increase of starch in the fiber also increases the 
cell viability. However, such further analysis may be required to demonstrate this charac-
teristic. Several characterization analysis have been performed and based on this, it was 
demonstrated that the starch/PCL composite nanofibers have great potential for wound 
dressing applications.
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