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Background
According to World Health Organization (WHO), there were 14 million incidences of 
cancer and 8.2 million of cancer associated deaths in 2012. In addition, the new cases 
of cancers would increase by 70% over the next 2 decades [1]. Currently, the clinically 
available cancer treatments are chemotherapy, radiotherapy, and surgical excision. How-
ever, there are several drawbacks in using these treatment modalities. In chemotherapy, 
chemotherapeutic drugs are injected into the body for the elimination of cancerous cells. 
Chemotherapy not only kills cancerous cells but it also has side effects such as lowering 
the immunity and increasing the risk of infection, inducing problems in the digestive 
system and also damaging the nervous system. Another treatment method, radiotherapy, 
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uses radiation energy to destroy the tumor. Because it is hard to target the whole tumor, 
the radiation cannot eradicate the entire tumor effectively and the organs located around 
the targeted radiation region may lose their functionality. Surgery can be successful only 
if the exact cancer location can be approached. In the other words, the surgical option is 
not available for deep-seated tumors. Furthermore, surgery may induce the risk of infec-
tion and also cause complications on surrounding organs.

Due to the drawback of currently accepted cancer treatment modalities, alternative 
or adjunctive therapies have been sought after by clinicians. One of the promising 
treatment modalities is thermotherapy where heat is used to kill the cancerous cells. 
There are 2 major types of heating used in thermotherapy, namely hyperthermia and 
thermal ablation [2]. Hyperthermia is a thermotherapy where heat is used to increase the 
whole body or part of the body temperature from a normal body temperature of 37 °C to 
the temperature range of 41–45 °C. The heating of tumor to this temperature is used to 
enhance the therapeutic effect of radiotherapy and chemotherapy. This heating has the 
potential to selectively kill cancerous cells without harming surround healthy tissue [3]. 
Thermal ablation, as suggested by the term ‘ablation’, refers to the application of a high 
temperature, above 45  °C, with the aim to produce significant tissue destruction. This 
heating will cause cell death of both tumor and surrounding tissues, hence it has to be 
applied with caution [4].

During hyperthermia, the temperature of the tumor is increased to around 42 °C for a 
duration of an hour or longer [5, 6]. This applied heat changes the biomolecular systems 
of cells [7–10] and leads to cell death due to either apoptosis or necrosis [11–13]. There 
are strong biological rationales in accepting hyperthermia as a cancer therapy method 
[14, 15]. One of the fundamental reasons for using hyperthermia as a cancer therapy 
method is the discovery that the tumor is more sensitive to heating than healthy tissues. 
It implies that if the tumor is heated to 41–45 °C, the tumor will be destroyed without 
harming surrounding healthy tissues [16–18]. The tumor sensitivity to heat is due to the 
high acidity of the cancer cells as a consequence of the high glycolytic activities inside 
cancer cells [19]. Furthermore, the heat dissipated by blood flow protects the healthy 
tissue from overheating. As the temperature increases, the thermoregulation system 
of the body will remove the excess heat by increasing the blood flow; hence the blood 
volumetric flow rate is a function of temperature. In response to temperature rise, the 
blood flow rate in healthy tissues can increase up to 20 times higher than its preheating 
rate, while the heating would only cause an increase in the tumor blood flow rate up to 
double its flow rate [20, 21].

The rate of cell death induced by heating in hyperthermia is dependent on the tem-
perature and duration of treatment [22, 23]. Overgaard and Overgaard [24] carried out 
a study on the application of heat treatment on mouse mammary carcinoma to find out 
the relation between the temperature and time and suggested that longer heat exposure 
was required where a lower temperature of treatment was used, and vice versa [24]. The 
combination of these two parameters can be used to define the minimum heating time 
required to achieve irreversible damage on a tumor at a specific temperature setting 
[25]. This combination is expressed in the form of the thermal isoeffect dose which is 
the equivalent time–temperature heating setting that can generate the same heating out-
come [26]. The isoeffect dose can be estimated using an Arrhenius plot. The Arrhenius 



Page 3 of 22Suriyanto et al. BioMed Eng OnLine  (2017) 16:36 

plot depicts the time–temperature relationship of cells survival phenomenon due to 
applied heat is shown in Fig. 1. Factors affecting the Arrhenius plot include the thermo-
tolerance, pH, cell phase in a cell cycle, and cell lines [27]. Generally, there is a break-
point in the Arrhenius plot at around 43 °C which could be due to the thermotolerance 
of a patient in a prolonged heating of mild hyperthermia. The rate of cell death is double 
for every degree in temperature rise beyond the breakpoint of the Arrhenius plot. This 
killing rate decreases four to six times for every drop in temperature below the break-
point [28, 29].

Commonly used methods to determine the thermal isoeffect dose is the cumulative 
equivalent minutes at 43 °C (CEM43 °C) which is a method for the conversion of heating 
duration at a specific temperature to an equivalent minute required for heating at 43 °C 
that generates the same heating outcome [30]. CEM43  °C can be used for comparing 
various hyperthermia treatment outcomes in different studies. There are variations of 
CEM43  °C such as CEM43  °C T90, and CEM43  °C T50. T90 refers to the magnitude of 
temperature reached and exceeded by 90% of the measuring point. Similarly, T50 refers 
to the magnitude of temperature reached and exceeded by 50% of the measuring point. 
Dewey [27] suggested that CEM43 °C T90 of around 25 and CEM43 °C T50 of around 400 
were suitable for the hyperthermia treatment.

Other than using hyperthermia as a single cancer treatment modality, it can also be 
combined with other therapies to form multimodality treatment [31]. The combinations 
of hyperthermia and other cancer treatments modalities are able to provide a superior 
treatment outcome. One of the combinations is the use of hyperthermia and chemo-
therapy where heat can enhance the cytotoxicity of chemotherapeutic drugs [3, 32–36]. 
Through laboratory and clinical studies, Woodhall et al. found that better regression of 
tumors occurred in the treatment using this combination [37]. Similarly, in a number 
of studies, a synergetic effect of the combined treatment was observed and caused sig-
nificant deaths of cancerous cells [38, 39]. In addition, Shingleton proposed that heating 
might increase the effectiveness of chemotherapy by increasing the local blood supply 
and oxygenation of tissues in response to body thermoregulation in removing excessive 
heat which enhanced the uptake of chemotherapeutic drugs in the tumor [40]. An in vivo 

Fig. 1  a Typical graph of survival curve of a cell line which is heated at different temperatures for various 
durations, b typical graph of Arrhenius plot with a break point at around 43 °C
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animal study using this combination of treatment was conducted by Kossatz et al. [41] 
on breast tumor bearing nude mice. The result showed a significant reduction in tumor 
growth and complete tumor regression was observed in a number of cases.

Beside the multimodality of hyperthermia together with the chemotherapy, the tumor 
can also be treated using the synergetic effect of hyperthermia and radiotherapy [42]. 
Heating increases the cells sensitivity to radiation [43, 44]. This effect occurs because 
of the increase of blood flow that drives the tissue oxygenation enrichment and the 
momentary enhancement of radio sensitivity by facilitating formations of oxygen radical 
[3, 45, 46]. The enhancement of oxygenation in a tumor has been proved in the clinical 
trial done by Brizel et al. [47]. Furthermore, in this type of multimodality, the hyperther-
mia can suppress the healing mechanism that repairs damaged cells in the tumor [48, 
49]. This damage on the repair system was further proved in the experiment done by 
Xu et al. [50] which suggested that the hyperthermia delocalized the DNA repair pro-
tein which led to an increase in the efficiency of radiotherapy. A number of preclinical 
and clinical trials on this multimodality model have been carried out [51–54]. An animal 
model test to examine the efficiency of hyperthermia in treating prostate cancer using 
96 Copenhagen rats was done by Johannsen et al. The multimodality using hyperther-
mia and radiotherapy at a low radiation dose of 20 Gy was found to be able to produce 
the same therapeutic effect as using merely a radiation dose of 60 Gy [51]. Another ani-
mal model was done to prove the efficiency of applying hyperthermia for treatment of 
malignant glioma. The results showed a positive antitumor effect of hyperthermia on 
malignant brain tumors. Subsequently, clinical trials were performed to combine hyper-
thermia and radiotherapy for treating patients with glioblastoma multiforme [52, 53]. 
These trials showed that the target hyperthermia temperature could be achieved and the 
thermotherapy was a safe treatment modality since the therapeutic effect of hyperther-
mia had increased the overall survival rate of patients.

Advancement of thermotherapy required the involvement of experts from various 
fields including physicians, biologists, chemists, physicists, engineers, etc. This is due 
to the multidisciplinary scope in the development of thermotherapy and the transition 
process from bench to bedside. Some major technical concerns in hyperthermia have 
to be solved, including the planning, execution, monitoring and optimization of the 
treatment. This paper focuses on the application of magnetic nanoparticle heating for 
hyperthermia, specifically on the heat generation process through Néelian and Brownian 
relaxation and the recent advancement in the modeling and simulation of hyperthermia 
through these relaxation processes.

Magnetic fluid hyperthermia
In hyperthermia, heat can be generated through different methods, such as the applica-
tion of ultrasound [55, 56], microwave radiation [57], radiofrequency heating [58, 59], 
and laser photocoagulation [60]. These heating techniques have several common draw-
backs that hinder their clinical acceptance. The waves generated by those methods cause 
unintended hotspots because there is a difficulty for the waves to focus on targeted areas. 
In addition, the waves have a low penetration ability [61, 62]. It is also hard to accurately 
raise and control the temperature of small tumors or deep-seated tumors using these 
methods [63]. Magnetic fluid hyperthermia (MFH) offers a solution to tackle the issues.
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The magnetic nanoparticles have a wide range of applications in the biomedical sector 
[5, 64–67]. The use of MFH as a cancer therapy can be traced back to 1957 in a study car-
ried out by Gilchrist et al. [68]. In their work on an animal model, MFH was concluded 
as a compelling method for the treatment of lymph nodes. At present, a number of stud-
ies have shown that the MFH alone could generate enough power to cause a complete 
regression of a tumor [69–71]. The use of MFH offers the solution to solve the hotspots 
and targeting issues that occur in other hyperthermia heating methods. The unwanted 
hot spots formation in the non-targeted area can be avoided in MFH because the use of 
nanoparticles offers a better control of energy deposition in the tumors by heating only 
the vicinity of particles [72]. For targeting issues, the high surface to volume ratio of mag-
netic nanoparticles enables the functionalization of particle surface with cancer-targeting 
molecules where a lot of researches are still ongoing to identify the suitable coating mate-
rials [73]. In addition, the targeting process can also be guided by the magnetic parti-
cle imaging [74, 75]. Besides, MFH offers other benefits, as hyperthermia is a minimally 
invasive treatment and the applied heat can be controlled therefore it minimizes the side 
effects. Besides, it can be used to treat complex geometries tumors. It can be used for 
treating the tumors hidden in vital organs where a surgical excision is not feasible [61]. 
The MFH has been assessed in a number of pre-clinical and clinical trials. An animal 
model was designed by Johannsen et al. to test the prospect of MFH in treating prostate 
cancer [76]. In their study, 48 male Copenhagen rats were treated with hyperthermia with 
a magnetic field frequency of 100 kHz and a field strength of 0–18 kA m−1. The results 
showed a significant difference in the tumor weight between the treated and control 
group. A follow-up prospective clinical trial on humans was conducted where 10 patients 
with locally recurrent prostate cancers underwent 6 thermal therapies [77]. In this study, 
the applied heat was found to be tolerable by the patients and the heating method using 
nanoparticles was successful. Besides, for the treatment prostate cancer, the use of MFH 
has been tested in for the treatment of different types of cancer on animal models. In a 
study on treating breast and pancreatic cancer using MFH, positive treatment outcome 
was obtained where a decline in the cancer cell proliferation and an increase in the apop-
tosis and necrosis were observed [78]. Another study on the rat breast carcinoma model 
showed that hyperthermia could inhibit tumor growth by downregulating the vascular 
endothelial growth factor and inhibiting the angiogenesis process in the tumor [79].

Magnetic nanoparticles can be delivered to the tumor through four different 
approaches, i.e. the arterial injection, the direct injection into the tumor region, the 
in situ implant formation using entrapped nanoparticle gel, and the active targeting by 
coating with the targeting ligands [80]. After the delivery of magnetic nanoparticles, 
an alternating magnetic field is activated to generate heat in the nanoparticles through 
an energy conversion based on the principle of the hysteresis loss or the Néelian and 
Brownian relaxation. Subsequently, heat dissipates to the surrounding tissues and causes 
the death of cancerous cells.

Heat generation model based on Néelian and Brownian relaxation
The heating in magnetic particles caused by changes of the magnetic field can occur 
via several mechanisms. The most well-known heating mechanism is by generating 
heat loss due to induced eddy currents which occur in bulk materials. Eddy currents 
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heating occur due to the induced currents which are the flows of electrons against the 
electrical resistance of the material. For nano-sized materials, the eddy current heating 
is extremely weak since magnetic nanoparticles have a rather poor electrical conductiv-
ity to produce a noticeable induction heating and the nano-sized dimension of particles 
cannot generate a substantial electrical voltage [81]. For particles having a size of micro 
or nano-scale, the heating due to the hysteresis loss is dominant. Heat is generated by 
thermal energy dissipated through the magnetic domain reversal process that occurs 
in the ferromagnetic material. Especially for nanoparticles with a particle size smaller 
than its superparamagnetic critical diameter, the hysteresis loss is presented in terms of 
the Néelian and Brownian relaxation. The Néelian relaxation refers to the heating due 
to the energy loss produced by the rotation of individual magnetic moments within the 
particles. On the other hand, the Brownian relaxation refers to the heat generated by 
the physical rotation of particles due to the alignment process of magnetic moments 
with the external applied magnetic field. In MFH, the heat dissipated by nanoparticles 
is caused by the hysteresis loss as depicts in Fig. 2. This paper focuses on the heating 
process in superparamagnetic nanoparticles and hence, the discussion is limited to the 
heat generation due to the Néelian and Brownian relaxation which is the dominated heat 
generation process in nano-sized particles. More detailed information about these dif-
ferent types of heating mechanisms can be found in refs [82–86].

The modeling of heat generation and transfer process in MFH will increase the 
understanding of MFH phenomena and allow a successful transition of this technology 
from bench to bedside. In addition, the modeling through simulation can be used in the 
planning of the treatment and it also serves as a new alternative method for temperature 
mapping due to the difficulty in the real time temperature measurement during the 
treatment [87, 88].

The superparamagnetic nanoparticles are nano-sized particles with single-
domain configuration due to the energetically instability of domain wall [89]. The 
use of these particles for hyperthermia offers benefits of allowing better dispersion 
of particles and avoiding the formation of particle aggregations. In order to qualify 
as a superparamagnetic nanoparticle, the particle’ diameter has to be smaller than its 
superparamagnetic critical diameter. These nano-sized particles exhibit a narrow 

Fig. 2  Different heat generation models in a magnetic nanoparticle in response to the alternative magnetic 
field. The short straight arrows represent the magnetic moment direction, the curved arrows represent the 
movement or change in direction, and the dash lines represent the domain boundaries in multi-domain 
particles
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hysteresis and the contributor to heat rise is the heating via Néelian and Brownian 
relaxation [90]. Rosensweig developed the formulation for the heat generation by 
superparamagnetic nanoparticles [91]. The equations for these two relaxation processes 
are given in Table 1 Eqs. 1, 2 and Table 1 Eq. 3 respectively. When Néelian and Brownian 
relaxations occur together, by using Eq. 4 Table 1 the effect of the combinatory process 
can be found. The volumetric power dissipation by monodispersed nanoparticles due 
to the applied magnetic field can be expressed as Table 1 Eqs. 5–8. These formulas are 
applicable when the susceptibility is assumed to be independent of the applied magnetic 
field. The power dissipated is often formulated in term of the specific loss power (SLP) or 
specific absorption rate (SAR), which is presented in Table 1 Eq. 9. When polydispersed 
particles are used, the heating power can be obtained by summarizing the heat generated 
from all particles as shown Table  1 Eqs.  10 and 11. Physical properties of potential 
materials used in MFH are provided in Table 2.

There are several factors affecting treatment outcome of MFH [92]. Different types 
of material offer different heating capabilities. The size of the nanoparticle’s core and 
its hydrodynamic size affect the generation and distribution of heat. The magnetic 
property of material, the anisotropy constant affects the heat generation process. 
Dynamic viscosity of the medium influences the amount of heat generated by Brownian 
motion. The variation in the applied magnetic field strength and frequency changes 
the magnitude of heat generated by superparamagnetic nanoparticles. In addition, the 
concentration of nanoparticles is proportional to the total amount of heat generated 
in the treatment. The optimization of these factors is necessary so as to acquire the 
maximum heating for the treatment [93]. However, it is important to note that the 
optimum setting in generating maximum heating outcome does not ensure if the 

Table 1  Equations used in determining the heating power

Eq. no. Parameter Equation expression Nomenclature

1 Néelian relaxation time, τN (s) τN =
√
π

2
τ0

expΓ

Γ 1/2
τ0 time constant (s)
K  anisotropy constant (J m−3)
VM magnetic volume (m3)
kB Boltzmann constant
T  absolute temperature (K)

2 Gamma, Γ Γ = KVM
kBT

3 Brownian relaxation time, τB (s) τB = 3ηVH
kBT

η dynamic viscosity of the fluid 
(Pa s)

VH hydrodynamic volume (m3)

4 Effective relaxation time, τ (s) 1
τ
= 1

τN
+ 1

τB

5 Volumetric power dissipation, P 
(W m−3)

P = πµ0χ0H
2
0 f

2π f τ
1+(2π f τ )2

µ0 free space permeability
H0 magnetic field strength (A 

m−1)
f  magnetic field frequency (s−1)
φ nanoparticles volume fraction
Md domain magnetization (A 

m−1)

6 Equilibrium susceptibility, χ0 χ0 = χi
3
ξ
(coth ξ − 1

ξ
)

7 Initial susceptibility, χi χi =
µ0φM

2
dVM

3kBT

8 Langevin parameter, ξ ξ = µ0MdH0VM
kBT

9 Specific loss power (W kg−1) SLP = P
ρφ

ρ nanoparticle density (kg m−3)

10 Volumetric power dissipation of a 
polydispersion, P̄ (W m−3)

P̄ =
∞
∫
0
Pg(D)dD

D particle diameter (m)
lnD0 median of lnD
σ standard deviation of lnD

11 Particle size distribution function 
g(D)

g(D) = 1√
2πσD

exp
[

−(ln (D/D0))
2

2σ 2

]
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condition is suitable to be used clinically as the optimization process is often analytical 
based with a number of assumptions that may deviate in real life application [94].

Type of material

The most frequently used nanoparticles in MFH is the iron oxide (maghemite or 
magnetite) because it is found tolerable by the human body and it is immuno-evasive 
[95]. An immuno-evasive behavior of particles is required for MFH to avoid unwanted 
immune response where a small amount of the nanoparticles may be taken up by 
surrounding healthy tissue. Iron oxide nanoparticles will be eaten by macrophages or 
neutral granulocytes and they will be degraded in lysosomes. The degraded form can 
be integrated into the normal iron metabolism and eliminated from the body eventually 
[96]. In addition, the iron oxide is able to generate enough power to induce MFH. Hence, 
it is an excellent biomaterial for hyperthermia [97].

Other than iron oxide nanoparticles, several alternative materials with better 
heating properties have been explored by researchers. By comparing the heating 
power of iron-cobalt and ferrite core–shell nanoparticles, it was found that iron-cobalt 
nanoparticles had a considerably higher specific loss power due to its high saturation 
magnetization [98]. The higher power dissipation reduces the required concentrations 
of nanoparticles to be injected in MFH. However, the toxicity of cobalt can be an issue 
and further processing such as coating using biomaterial is required. The comparison 
of more types of materials has been carried out where 6 types of nanoparticles, i.e. 
magnetite, maghemite, iron-cobalt, iron-platinum, barium-ferrite, and cobalt-ferrite, 
were compared [99]. It was shown that due to either the low rate of temperature change 
generated by the barium-ferrite and cobalt-ferrite or the large rate of temperature 
change produced by iron-cobalt; these materials were not recommended to be used 

Table 2  Physical properties of potential magnetic particles used in hyperthermia

a  Estimated (Dcr ≈ (150kBT/π)
1/3 [150]), b [151], c [152], d [61], e [153], f [154], g [91], h [100], i [155], j [156], k [157], l [158], m 

[159], n [160]

Material Superparamagnetic 
critical diameter
Dcr (nm)

Domain magnetization
Md (kA m−1)

Anisotropy constant
K  (kJ m−3)

Density
ρ (kg m−3)

Barium-ferrite 9a 300f 300–330g 5280g

380g

Cobalt-ferrite 10b 425g 180–200g 4907g

14c 120j 5290n

Iron 16d 1707d 48d 7870d

20e

Iron-cobalt 16b 1815d 1.5h 8031d

24d 1790h 15d 8140h

Iron-platinum 3b 1140i 206f 15,200h

10d 7000k

Maghemite 31b 414g 4.7l 4600g

35d 16j

Magnetite 21d 446g 23–41g 5180g

25b, c 9d

Nickel-ferrite 28c 301c −0.068c 5380n

33m
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in MFH. The study suggested that the magnetite, iron-platinum, and maghemite were 
suitable options in MFH because they would generate high enough heating power. In 
another study, it was found that iron-platinum nanoparticles have the capability to be 
the high-performance nanoheaters for their high saturation magnetization and high 
chemical stability [100]. At lower frequency, the iron-platinum nanoparticles provide 
a higher heating rate as compared to the magnetite. Since iron-platinum nanoparticles 
offer a superior heating power as compared to iron oxide nanoparticles, the amount of 
administered iron-platinum nanoparticles in generating the same quantity of heat is 
lower. In addition, the diameter of iron-platinum nanoparticles required to produce a 
higher heating rate is smaller as compared to the magnetite. This small diameter may 
increase the selectivity of nanoparticles in targeting the tumor attributable to its higher 
surface to volume ratio for functionalization on particles’ surface. Thus, the iron-
platinum nanoparticle seems to be a good alternative material used for hyperthermia. 
More studies have to be done to test the nanotoxicity of these alternative materials 
before it can be deemed as a safe material to be injected into the human body.

Particle size

The particle size influences SLP outcome significantly [97, 101–103]. Numerous studies 
tried to determine the optimum size of nanoparticles that would generate an optimum 
heating outcome. However, different studies always came out with different conclusions. 
For instance, for the size of magnetite, different optimum diameters had been proposed, 
such as 10  nm [104], 11.2  nm [105], 12  nm [106], 16  nm [103], and 19  nm [107]. 
Differences in the finding of optimum particle size used for the treatment are due to the 
differences of heating process setting; the magnetic field strength and frequency. Even 
the comparison was done by using intrinsic loss power (ILP), the results obtain will also 
be different across different studies, because of variation in the other parameters such as 
the anisotropy [86]. In order to get the real maximum heating, the particle size together 
with all other factors has to be optimized.

Anisotropy

The magnetic anisotropy influences the hyperthermia treatment outcome [83, 108]. 
Through modeling, it was revealed that the nanoparticle size at which the particle 
generated maximum heating power decreased as the anisotropy constant increased [98]. 
The approximation of optimum anisotropy used to generate optimum heating can be 
calculated analytically using proposed formulation by Carrey et al. [86]. This anisotropy 
constant can be altered through modifying the methods for synthesizing nanoparticles. 
The shapes of nanoparticles also affected the magnetic anisotropy. Coating the 
nanoparticles in order to gain additional functions may also change the anisotropy 
constant of the particles [109].

Viscosity

Types of medium also affect the treatment outcome. Using the same concentration of 
material and the same magnetic field conditions, the temperature was observed to rise 
highest in the water, followed by glycerol and the temperature rose lowest in collagen 
[110]. This phenomenon occurred because of the high viscosity of collagen that reduced 
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the Brownian relaxation effect. Another similar experimental study was done and 
concluded that the heating ability of nanoparticles was reduced with an increment in 
viscosity as a result of the reduction in the heating contribution from the Brownian 
relaxation [111]. Thus, it was anticipated that due to the high viscosity of the extracellular 
matrix in a biological tissue, the heat loss by Brownian relaxation is negligible. This 
inhibition of Brownian relaxation was further proved in the experiment carried out 
in vitro on living cells [112]. In their study, a range of different nanoparticle types was 
inserted into the cell cultures. Despite different morphologies and characteristics of 
nanoparticles, all samples showed a decline in the heating power when the nanoparticles 
were attached to the cell membrane. When the particles were inside the cells, the SLP 
dropped by half or even to its one-tenth.

Magnetic field strength

Magnetic field strength affects the temperature rise significantly [113]. The range of 
commonly used magnetic field for MFH is between 0 and 15  kA  m−1 [64, 114]. The 
increment in magnetic field strength would raise the temperature of a tumor and 
reduce the treatment duration [115]. This relationship between magnetic field strength 
and generated heat was explored in a number of experiment and simulation works and 
through those studies, it was found SAR varies linearly with the square of magnetic field 
strength [107, 116].

Magnetic field frequency

Typical magnetic field frequency used in MFH is between 0.05 and 1.2 MHz [64, 114]. It 
has been found that frequency and SAR have a linear relationship [107, 116]. It may be 
beneficial to apply a high magnetic field strength and frequency in order to produce a 
large amount of heat, but using high magnetic frequency and field strength on the human 
body may cause side effects and hence, there is a threshold that should not be exceeded. 
Based on an experimental study, the tolerable limit of applying the magnetic field on the 
human body was up to the magnetic field intensity of 35.8 A turns m−1 at a frequency of 
13.56 MHz [117]. It was recommended that the product of magnetic field strength and 
frequency used in the clinical setting should not go beyond 4.85 × 108 A turns m−1 s−1. 
However, this limit might be too stringent and a higher threshold can possibly be 
accepted [118]. More studies have to be done to clarify the maximum allowable magnetic 
field strength and frequency at different parts of the human body.

Concentration

The total amount of heat generated in MFH and the toxicity effect on cancer cells 
strongly depend on the concentration of nanoparticles [119]. As the concentration of 
nanoparticles increases, the temperature reached by a tumor increases [113, 120]. In 
the experiment using the collagen to represent the tissue behavior, it was found that by 
doubling the concentration of particles, the temperature rise was also doubled [110]. The 
increment in concentration heightens the temperature by increasing the amount of heat 
source but it does not influence SAR generated by each nanoparticle [116].
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Polydispersity

Synthesizing monodisperse particles is extremely challenging and thus for real life 
application, the polydispersity of particle diameters has to be taken into consideration in 
calculating optimized heat generation. Studies have been conducted to observe the effect 
of polydispersity on the heat generation by magnetic nanoparticles. By incorporated 
polydispersity into heat generation equations, as shown in Table 1 Eqs. 10 and 11, it was 
found that the large size distribution of particles reduced the heat production of the 
system [91]. Experimental data have shown similar finding where the heating rate was 
dependent on the polydispersity and by having a lower polydispersity of nanoparticles, 
the heating outcome generated was substantially higher [105, 121]. A proposed method 
to reduce the detrimental effect of size distribution is to have an optimum anisotropy 
which could increase the heating power [86].

Bioheat transfer model for heat distribution
In the nanoscale world, certain well-known Physics of phenomena behave differently. 
For heat transfer phenomenon, the conventional heat transfer model by conduction 
is no longer valid when the mean free path of material is below a threshold value and 
the ballistic energy transfer is more appropriate. This threshold is the mean free path 
of material. Rabin showed that the conventional heat transfer as defined by the Fourier 
law is applicable for nanoparticles with the size larger than 0.3 nm [122]. So for the heat 
distribution analysis in biological tissue during MFH, the Fourier law is applicable. It is 
important to note that there is a minimum size of the domain occupied by nanoparticles 
needed to achieve the hyperthermic temperature. Rabin proposed that a minimal region 
with a diameter of 1.1  mm occupied by nanoparticles was required to increase the 
temperature of tissue by 6 °C for hyperthermia [122].

In describing the heat transfer phenomenon, it is crucial to remember that the blood 
flow plays a significant role for dissipating heat away from tissue with the purpose of 
maintaining the homeostasis of the body [123]. When heat is applied to the biological 
tissue, there is a maximum temperature a tissue can achieve due to heat loss by the 
blood flow. Without the blood flow, the temperature of tissue will increase linearly with 
the heating time at a specific heating rate. In the presence of blood flow, the increase 
of temperature is nonlinear due to the heat loss and its rate of temperature rise is 
decreasing until it reaches the steady state. Therefore, the bioheat transfer model is 
established to take into account the heat loss term due to the blood flow for describing 
heat transfer in biological tissue [124–126].

The development of bioheat transfer equation can be traced back to more than 
60  years ago when it was first proposed by Pennes [127]. Pennes modeled the heat 
transfer in a resting human forearm by presenting extra terms to represent the heat 
generation due to the metabolism in tissue and the heat transfer between the blood 
and adjacent tissues as shown in Table 3 Eqs. 12–14. Due to the assumption made by 
Pennes, the equation developed has ignored or simplified certain features of the system 
and consequently, the solution may have only limited real life application. Pennes 
equation failed to account the directional convective phenomena and the heat exchange 
between closely packed countercurrent blood vessels. Hence, various modified models 
have been developed to overcome these weaknesses. Wulff modified the basic bioheat 
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transfer equation by introducing the effect of flow direction [128]. Chen and Holmes 
classified the blood vessels into the large vessels and the small vessels and accounted 
their effect on heat transfer separately with modified form of Pennes bioheat transfer 
equation as expressed in Table 3 Eqs. 15, 16 [129]. Taking into account the interaction 
of blood vessels, Weinbaum, Jiji and Lemons modified the model by adding the response 
of countercurrent heat exchange of artery and vein as presented in Table 3 Eqs. 17–19 
[130–132]. A more detailed review of these modified bioheat transfer model can be 
found in Ref [133].

Analytical modeling
With the aim of obtaining the temperature distribution of the hyperthermia process in 
the biological system, the heat transfer phenomenon is modeled using the bioheat heat 
transfer equation. Several attempts in deriving analytical solutions of hyperthermia 

Table 3  Equations used in describing bioheat transfer phenomena based on basic Pennes 
model [133]

Eq. no. Parameter Equation expression Nomenclature

Pennes model (1948)

12 Bioheat transfer 
equation

ρc ∂T
∂t = −k

[

∂2T
∂r2

+ 1

r
∂T
∂r + 1

r2
∂T
∂∅ + ∂2T

∂Z2

]

+ qm + qb ρ density of medium (kg m−3)
c medium specific heat (J kg−1 

K−1)

13 Heat transfer from 
blood to tissue, qb   
(J m−3 s−1)

qb = (ρc)bω(Ta − T ) T  tissue temperature (K)
k tissue specific thermal 

conductivity (W m−1 K−1)

14 Temperature 
dependent blood 
flow, ω (s−1)

ω = ω0(1+ γ T ) qm heat production rate of tissue 
(J m−3 s−1)

qb heat transfer rate from blood to 
tissue (J m−3 s−1)

r , ∅, Z cylindrical coordinate
ω blood perfusion (s−1)
ρb blood density (kg m−3)
cb blood specific heat (J kg−1 K−1)
Ta arterial blood temperature (K)
ω0 baseline of volumetric flow 

rate of blood (s−1)
γ time dependent blood flow 

coefficient (K−1)

Chen and Holmes model (1980)

15 Thermal equilibrium 
length, le (m)

le = A(ρc)bV̄
U·P

A flow area (m2)
V̄  local blood velocity (m s−1)
U overall heat transfer coefficient 

(W m−2 K−1)
P circumference (m)
ū net volume flux (m s−1)
kp heat transfer coefficient of 

contributing vessel(W m−2 K−1)
∗ properties of large blood vessel

16 Bioheat transfer 
equation ρc

∂T

∂t
= ∇ · k∇T + (ρc)bω

∗(T ∗a − T
)

− (ρc)bū∇T +∇ · kp∇T + qm

Weinbaum, Jiji and Lemons model (1984)

17 Countercurrent 
arteries

(ρc)bπ r
2
b V̄ · dTa

ds
= −qa rb blood vessel radius (m)

qa heat loss rate at artery wall 
(J m−1 s−1)

qv heat gain rate at vein wall 
(J m−1 s−1)

g blood bleed off rate (m s−1)
Tv venous blood temperature (K)
n vessel number density (m−2)
s direction along a blood vessel

18 Countercurrent 
veins

(ρc)bπ r
2
b V̄ · dTv

ds
= −qv

19 Bioheat transfer 
equation ρc

∂T

∂t
= ∇ · k∇T + 2nπ rb(ρc)bg(Ta − Tv)

− nπ r2b(ρc)bV̄ ·
d(Ta − Tv)

ds
+ qm
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phenomena have been carried out. Analytical solutions were commonly obtained by 
simplifying problems so that exact solutions can be obtained.

Andrӓ et al. derived equations to describe the temperature distribution of MFH with 
the assumption that the nanoparticles samples were in the form of a sphere shape 
located inside the tumor [134]. Several boundary conditions were applied: firstly, the 
center of sphere had to be finite at all time; next, the temperature at the radius of infinity 
was equal to the initial temperature at all time; thirdly, the temperature distribution was 
assumed to be continuous at the interface between the tumor and the surrounding tissue 
at all time; and lastly, the heat flux was assumed to be continuous across the interfaces. 
Based on these boundary conditions, an analytical solution was derived to describe the 
temperature variation with respect to time and space. The authors further compared 
the derived solution with the experimental data and found an agreement between them. 
This analytical solution was further verified by Sawyer et  al. who carried out a study 
on the heat distribution and found an agreement between their experimental data and 
Andrӓ et al’s solution [135]. However, it is important to note that the solutions of heat 
transfer equations derived did not consider the effect of heat loss caused by the blood 
flow which might affect the heat transfer process significantly in highly perfused tissues.

An improved analytical solution took into account heat loss due to the blood flow 
in MFH was carried out by Bagaria and Johnson [136]. In their work, the developed 
model consisted of 2 spherical regions where the inner region represented the tumor 
with nanoparticles embedded in it and an outer spherical region represented the 
healthy surrounding tissues. The Pennes’ bioheat transfer was applied to the model 
with boundary conditions including a finite temperature in the tumor, continuous 
temperature and heat flow between the interface of 2 spheres, the temperature of the 
outer sphere was equal to the body temperature and the initial temperature throughout 
both regions were equal to the initial body temperature. Analytical solutions were 
derived using separation of variables method with assumptions that the heat generation 
had a quadratic spatial variation and higher order polynomials deemed to be impractical 
to be used.

Numerical modeling
Because of numerous assumptions used in deriving the analytical solution, the results 
may have oversimplified the real phenomena and have questionable accuracy. The 
complex properties of biological tissues, the human body regulation and the interaction 
between the biological environment and foreign particles are too complex to be solved 
analytically. Numerical methods in the modeling of the heat transfer phenomena can 
be useful methods to solve this complex problem. Most of the simulations of MFH heat 
transfer were carried out by using either the finite element method (FEM) or the finite 
difference method (FDM).

Sawyer et al. [135] applied FEM to model the heat transfer process in hyperthermia 
by using difference approximation method of the differential heat equation. The model 
described the heat distribution using iron-cobalt as magnetic nanoparticles in MFH for 
the fat and muscle tissues. The results showed the proposed model fitted with derived 
analytical solutions by Andrӓ et al. [134] well. Pearce et al. [137] carried out the simula-
tion using FEM to model the heat transfer from nanoparticles to surrounding biological 
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tissue in order to investigate the required power density to be generated by nanopar-
ticles in hyperthermia. They showed that the tendency of particles to cluster together 
in vivo reduced the required power density. Pavel and Stancu applied FEM in simulating 
heat transfer in MFH and demonstrated that the achievable temperature in the tumor 
decreased considerably in the presence of blood vessel near the tumor [138]. They also 
showed that a smaller dose is required to reach the hyperthermic temperature in a larger 
tumor as compared to a smaller size tumor. The heat transfer due to the different injec-
tion sites in multiple tumor regions was simulated by Pavel and Stancu in another study 
[139]. By modeling the biological system using FEM software, they showed that the 
treatment outcomes were varied for according to the tumor types and sizes of blood ves-
sels that presented near to the tumor. This study suggested the required concentration 
of nanoparticles in the hyperthermia based on the diameter of metastases in order to 
generate the optimum heating power. To further explore the effect of the blood vessel 
on heat distribution in MFH, Yue et al. [140] carried out a study using FEM to find out 
the influence of the vessel bifurcation on heat transfer in MFH. The study found that 
a larger blood bifurcation caused higher heat loss to the blood and hence, it exerted a 
higher cooling effect on temperature distribution. This study confirmed that the MFH 
treatment planning should take into account the shape, position, and size of the vessel 
bifurcation. Nabil et al. [141] showed the effect of blood flow and capillary on the dis-
tribution of nanoparticles and the temperature distribution generated. Miaskowski and 
Sawicki implemented FEM to mimic a more realistic heat transfer in the biological tissue 
by taking into consideration effects of metabolic heat, blood perfusion, and convection 
skin cooling [126]. Their study simulated the hyperthermia in breast cancer and showed 
that the proposed model could potentially be used to provide an accurate temperature 
mapping of MFH.

Another well-known numerical method commonly used in the biomedical simulation 
is FDM. Chen et  al. believed that FDM was an effective method to be used in the 
modeling of MFH heat transfer phenomena for solving the three-dimensional non-
homogenous problem in hyperthermia [142]. Rast and Harrison simulated the heat 
transfer of MFH using FDM [114]. In the model, they coupled the heat production 
using the Maxwell’s equation with the Pennes’ bioheat transfer equation. The domain 
created was a multilayer domain with the innermost layer consisted of the tumor 
and nanoparticles, covered by the gray matter which was further enclosed by the 
perfused dermal and skeletal layers. The nanoparticles were assumed to be distributed 
homogeneously all over the tumor. The results showed that blood perfusion rate 
affected the temperature rise in the tumor. Another FDM simulation was carried out by 
Bagaria and Johnson [136]. In this work, the numerical model was developed based on 
finite differencing scheme and it showed a good agreement with the derived analytical 
solution. Craciun and Calugaru also explored the use of FDM in describing the heat 
transfer in MFH [143]. They created the algorithm for solving the heat transfer equation 
by incorporating the tissue metabolism heat term and the heat sink due to the blood 
vessel. To improve the performance of the model, new technology or system can be 
introduced into the numerical modeling, such as the use of the parallel computing to 
enhance the processing speed [144].
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Optimization model
Optimization of hyperthermia process is crucial in the clinical setting for the purpose 
of maximizing the therapeutic effects and minimizing any side effects. Besides, 
optimization of MFH should ensure that the required amount of nanoparticles is as 
small as possible while the nanoparticles are still able to produce high enough heating 
power. Hence, by carrying out optimization, the limit of targeted area can be controlled, 
the potential overheating may be avoided and any harm to the surrounding healthy 
tissue may be minimized.

The optimization of MFH heating process can be found in the study done by Bagaria 
and Johnson [136]. In this study, first, the domain was modeled as 2 concentric spheres 
to represent the tumor and adjacent tissue and the Pennes’ bioheat transfer equation was 
applied. The optimization was done with objectives to sustain the therapeutic tempera-
ture in tumors and keep adjacent healthy tissue at an acceptable temperature range as 
shown in Table 4 Eq. 20. A penalty function was applied in the optimization which mini-
mized both the insufficient heating of tumor and the overheating in the normal tissue. 
Using this model setting, the authors concluded that for a fixed amount of nanoparticles, 
optimization of particle distribution in the tumor can improve the therapeutic effect on 

Table 4  Summary of optimization model for MFH

Eq. no. Parameter Equation expression Nomenclature

Bagaria and Johnson optimization 
model, 2005 [136]

20 Objective function, f
Error function for insufficient and 

overheating in tumor, E1
Error function for overheating in 

healthy tissue, E2

f =
√
E1 + E2

For 42 ≤ T1∞ ≤ 45

E1 = 0

For T1∞ < 42 or T1∞ > 45

E1 = W1

∑

(T1∞ − 42)2

For T2∞ = 37

E2 = 0

For T2∞ �= 37

E2 = W2

∑

(T2∞ − 37)2

T1∞ steady state temperature of a 
point in tumor

T2∞ steady state temperature of a 
point in healthy tissue

W1 weight factor for insufficient 
heating in tumor

W2 weight factor for overheating in 
healthy tissue

Mital and Tafreshi optimization 
model, 2012 [145]

21 Objective function, f
Thermal damage, D

f =∝1 D1− ∝2 D2

D(x , y) =
tf
∫
0
R(43−T (x ,y ,t))dt

∝1 weight factor for tumor damage
∝2 weight factor for healthy tissue 

damage
D1 thermal damage value of tumor
D2 thermal damage value of healthy 

tissue
tf  period of time
R empirical constant
T  temperature at a point at a time
t  time

Salloum, Ma and Zhu optimization 
model, 2009 [146]

22 Objective function, f
Error function for deviation of 

tumor boundary temperature, E
Percentage of tumor volume with 
T ≥ Tn, R1

Percentage of tumor boundary 
with T ≥ Tn, R2

f = E
R1·R2

E =
∑

(Tb−Tn)
2

(Ta−Tn)
2

R1 = Vtumor,T≥Tn
Vtumor,total

· 100

R2 =
Sboundary,T≥Tn

Sboundary,total
· 100

Tb temperature at tumor boundary
Tn cutoff temperature where the 

value above it is desired for tumor 
and below it for healthy tissue

Ta arterial blood temperature
V  volume
S surface area
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tumor and maintain the safety heating limit in the surrounding healthy tissue. A simi-
lar model setting was imposed in the study done by Mital and Tafreshi [145]. However, 
there was a slight difference in the optimization function used. Instead of just focusing 
on minimizing the error, the optimization function rewarded the therapeutic effect on 
a tumor. In the other words, it was favorable for the tumor to be heated to the range 
of therapeutic temperature while minimizing the harmful effect on surrounding tissue. 
The optimization was set by maximizing a fitness function expressed in Table 4 Eq. 21 
which value increased if there was a higher damage in the tumor and decreased if the 
treatment caused more harm to adjacent healthy tissue. Based on the available power 
dissipation records, the results of this optimization suggested the optimum treatment 
time of hyperthermia was 1 h. Another optimization of MFH heating process was done 
by Salloum et al. [146]. Salloum et al. simulated the heat transfer pattern using FEM in 
order to obtain optimum parameters for hyperthermia with multiple nanoparticle injec-
tion sites. The tumor was designed as an irregular tissue in a large cubical domain. The 
objective function was set to ensure that at least 90% of the tumor had a temperature 
rise to 43 °C while less than 10% of the surrounding healthy tissue hit the temperature of 
43 °C or higher as shown in Table 4 Eq. 22.

In order to receive clinical acceptance, the results obtained from simulation (analytical, 
numerical and optimization model) must be verified with real clinical data. However, 
a major hindrance in the verification of these methods is an unavailability of accurate 
clinical data. The temperature distribution measurement comes with errors especially 
for temperature measurement of a deep-seated tumor. The significance difference in 
thermal conductivity of metal thermocouple and surrounding biological tissue causes 
distortion in temperature measurement [147]. This thermal conductivity differences 
issue can be overcome by applying insulation on the probe. However, the use of 
insulation will also cause an error in the reading due to temperature drop across the 
sheath wall [148]. Besides, the use of a magnetic field for heating nanoparticles may also 
heat up the metal thermocouples through eddy currents heating and show an unusual 
reading. With the aim of minimizing the error in temperature measurement, careful 
thermocouple probe, and instrumentation design by taking into account the use of 
magnetic field as nanoparticle heating method is required. Exploring new alternative 
temperature mapping technique may also offer a solution for obtaining higher accuracy 
clinical temperature reading, such as the use of magnetic resonance imaging for 
temperature mapping during hyperthermia treatment [149].

Conclusion
Hyperthermia has the potential to be a new alternative therapy modality for cancer 
treatment. Hyperthermia selectively targets the tumor without harming surrounding 
tissue as the tumor has higher sensitivity to heat. A promising heating method for the 
hyperthermia therapy is MFH. Several simulations of heat transfer phenomena in MFH 
have been carried out and proposed based on the bioheat transfer equation. However, 
there are still needs for the further study of simulation that can mimic the biological 
response to the applied heat. By having a more accurate simulation, the effect of various 
parameters on the treatment outcome can be determined. In addition, it will allow 
a better control of therapy and can be used as an alternative temperature mapping 
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technique. Further optimization studies also have to be carried out to find the optimum 
material used which could generate the highest heating and the optimum treatment 
setting that can enhance the treatment outcome.
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