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Background
Dynamic brain electrical impedance tomography (EIT) reconstructs the changes in 
intracranial conductivities at two different instants by injecting safe currents and 

Abstract 

Background:  Electrode disconnection is a common occurrence during long-term 
monitoring of brain electrical impedance tomography (EIT) in clinical settings. The data 
acquisition system suffers remarkable data loss which results in image reconstruction 
failure. The aim of this study was to: (1) detect disconnected electrodes and (2) account 
for invalid data.

Methods:  Weighted correlation coefficient for each electrode was calculated based 
on the measurement differences between well-connected and disconnected elec-
trodes. Disconnected electrodes were identified by filtering out abnormal coefficients 
with discrete wavelet transforms. Further, previously valid measurements were utilized 
to establish grey model. The invalid frames after electrode disconnection were substi-
tuted with the data estimated by grey model. The proposed approach was evaluated 
on resistor phantom and with eight patients in clinical settings.

Results:  The proposed method was able to detect 1 or 2 disconnected electrodes 
with an accuracy of 100%; to detect 3 and 4 disconnected electrodes with accuracy of 
92 and 84% respectively. The time cost of electrode detection was within 0.018 s. Fur-
ther, the proposed method was capable to compensate at least 60 subsequent frames 
of data and restore the normal image reconstruction within 0.4 s and with a mean 
relative error smaller than 0.01%.

Conclusions:  In this paper, we proposed a two-step approach to detect multiple 
disconnected electrodes and to compensate the invalid frames of data after discon-
nection. Our method is capable of detecting more disconnected electrodes with 
higher accuracy compared to methods proposed in previous studies. Further, our 
method provides estimations during the faulty measurement period until the medical 
staff reconnects the electrodes. This work would improve the clinical practicability of 
dynamic brain EIT and contribute to its further promotion.

Keywords:  Brain electrical impedance tomography, Electrode disconnection, 
Weighted-correlation coefficient, Wavelet transform, Grey model
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measuring boundary voltages through 16 or more surface electrodes [1, 2]. Therefore, 
well-connected electrodes are a prerequisite for normal data acquisition and image 
reconstruction. However, dynamic brain EIT monitoring is a long-term process. Elec-
trode disconnection is a common occurrence because of several factors such as patient 
body movement, conscious or unconscious head rotation, and operations by medi-
cal staffs [3, 4]. The disconnection affects the quality of acquired data, which gives rise 
to reconstruction failure. Therefore, it is essential to investigate the case of discon-
nected electrodes in clinical experiments for improving the applicability of long-term 
monitoring.

In contrast to other conventional long-term physiological parameter monitors such as 
electrocardiogram monitors, the electrodes of brain EIT systems are laid under band-
ages around the transverse plane of the head. Therefore, it is difficult to visually discover 
the disconnected electrodes. Disconnected electrodes can be detected by improving 
hardware of EIT systems. However, the hundreds of measuring channels with many pos-
sible electrode combinations make redesigning the data acquisition system troublesome. 
Moreover, such improvements would not help to compensate for invalid data produced 
by disconnected electrodes. Therefore, a fast and convenient method is needed to dis-
cover disconnected electrodes and to compensate for the invalid data using a specific 
algorithm based on the characteristics of measurement.

Some similar studies have been performed in lung EIT. Adler proposed a methodology 
that calculated the image with remaining good data by modifying the noise covariance 
matrix in maximum a priori (MAP) reconstruction algorithm [3]. However, this method 
requires priori information of the disconnected electrode. Asfaw and Adler realized 
automatic detection of detached electrodes based on comparisons between measured 
voltages and simulated voltages, but it is not applicable in real-time [5]. Hartinger et al. 
[4] presented a detection method for faulty electrodes’ management based on recipro-
cal principle. This method’s detectability for multiple disconnected electrodes still needs 
improvement and the application requires extra reciprocity measurement. Nevertheless, 
the dynamic lung EIT is different from dynamic brain EIT because the imaging interval 
between the reference data and current data is shorter [6, 7]. Besides, there are other 
studies of electrode error detection in multi-sensor devices [8–10]. However, their appli-
cation conditions are not suitable for our brain EIT case. Recent studies of EIT elec-
trodes have primarily concentrated on the impact of electrode–skin contact impedance 
on EIT image quality, which is a different problem from disconnection [11–14].

In this study, we develop a real-time detection for multiple disconnected electrodes to 
alert medical staff and to help to fix the disconnected electrodes as soon as possible. And 
compensation for invalid data is proposed to restore the image reconstruction, which 
is necessary for medical staff to gain approximate monitoring results while the data 
acquisition electrodes are disconnected. The novelty of our proposed approach is as fol-
lows. Without modifying the data acquisition protocol or the reconstruction algorithm 
as proposed in previous studies, we presented a measured-data-based approach to deal 
with the electrode disconnection by two steps. For disconnected electrode detection, we 
utilized the measured voltages and correlation coefficients to calculate weighted corre-
lated coefficient for each electrode, and distinguished the EVC values corresponding to 
disconnected electrodes by wavelet transform. Besides, we employed EVC calculation in 
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a circular fashion to unify the EVC calculation environments and simplify complicated 
scenarios with different number and location of disconnected electrodes into limited 
cases. In the data compensation, we utilize grey model prediction established by previ-
ous good data to replace the lost frames of date.

Methods
The methodology developed to manage the disconnection of electrodes is described in 
“Analyzing the influence of electrode disconnection on measurements”, “Calculation of 
electrode variation coefficient”, “Detection of disconnected electrodes based on wavelet 
decomposition” and “Compensation algorithm based on grey model method” sections . 
In “Data acquisition procedure” section, we describe the details about data acquisition 
and experimental operations.

Analyzing the influence of electrode disconnection on measurements

In this section, we illustrate the difference between measurements with disconnections 
and measurements without disconnections via a theoretical analysis and phantom tests.

There are two primary data collection strategies for EIT data acquisition, namely pair-
driven and multiple-driven electrode systems. The applied potential tomography (APT) 
and adaptive current tomography (ACT) systems are corresponding implementations 
[15]. The typical APT system was developed by Sheffield University [16]. This system 
attaches 16 electrodes at equal distances around the body surface. Successively applied 
current is injected through a pair of electrodes, and the voltages between other adjacent 
noncurrent-carrying electrodes are measured. A frame of data is collected after the pro-
cedure is repeated for each adjacent pair. In dynamic imaging, the APT system uses one 
frame of data as a reference and another frame of measurement data as the current data. 
In the reconstruction algorithm, if there is any impedance change that leads a variation 
in the boundary voltage, the internal impedance change will be displayed in the image. 
The ACT system applies current to all electrodes and simultaneously measures the volt-
age on all electrodes [17]. For an ACT system with L electrodes, there are L(L − 1)/2 
independent measurements, since at most L − 1 independent currents can be applied 
and the current-to-voltage operator is self-joint [15, 18].

Our brain EIT system is an APT system [19]. It applies 16 electrodes on the transverse 
plane of the patient’s head with opposite-drive adjacent-measurement protocol [20]. The 
process of boundary voltages acquisition was shown in Fig.  1. When the current was 
injected through electrode pair 0–8, excluding the measurements from drive electrodes, 
the 12 sets of voltage differences between electrode pairs 1–2, 2–3, 3–4, 4–5, 5–6, 
6–7, 9–10, 10–11, 11–12, 12–13, 13–14, 14–15 were measured. Then the current were 
sequentially injected through electrode pairs 1–9, 2–10…15–7 and the voltage differ-
ences on the other adjacent electrodes were measured. After the completion of 16 exci-
tations, a frame of data was generated with 16× (16−4) = 192 valid measurements [21].

Here, we assumed an ideal situation of a homogeneous circular medium in a vacuum 
with 16 electrodes placed on the surface at equal spacing (Fig. 2). The current I flows 
into the circular field through electrode A and flows out through B. Here, we set elec-
trode B as ground to simulate a single-end current source. Then, the analytical solution 
of the electric potential of the circular point is [22–24]
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Fig. 1  Illustration of opposite-drive adjacent-measurement protocol. Subfigures in the same row represent 
the procedure of measuring with once current excitation. Subfigures in the same column represent the 
excitation switch procedure

Fig. 2  Illustration of the analytical solution of electric potential in a two-dimension homogeneous circular 
field. Marked points such as A, B, M, N, K represent electrodes. σ is the conductivity and R is the distance 
between electrodes
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where σ is the conductivity of circular medium, num is point index inside the circle, and 
R is the distance from the point and the drive electrode pairs. Then, the potential differ-
ence between two points is

Regarding the differential voltage of adjacent electrodes in the first quadrant, the poten-
tials are written as φKN, φNM, φMC, while φKN  > φNM  > φMC. In the second quadrant, 
ϕK ′N ′ > ϕN ′M′ > ϕM′C ′, which is the same as in the opposing two quadrants.

If the positive drive electrode A is disconnected, there will be no current injected into 
the medium, which is equivalent to I =  0. Thus, the potential is 0 everywhere in the 
circle. If the negative drive electrode B is disconnected, we can only solve the potential 
distribution via the method of the potential distribution of a point current source in a 
homogenous field. The potential calculation Eq. 1 can be approximately rewritten as [25]

where r is the distance from point num to the point of the current source, and A is a con-
stant coefficient. Then, the differential potential Eq. 2 becomes

In the upside quadrants, ϕK ′
N

′ > ϕN ′
M

′ > ϕM′
C > ϕCM > ϕMN > ϕNK . The two down-

side quadrants have the same distribution. If the measuring electrode N is disconnected, 
the potential at electrode N equals zero. At the same time, φK,N equals φK and might be 
saturated for the EIT system because its value is much higher than in normal conditions.

To test the theoretical analysis, measurements were acquired with our EIT system 
on a resistor mesh phantom that simulates circular homogenous medium. The results 
are shown in Fig. 3. We simulated clinical disconnection by detaching the connection 
of electrodes or connecting a high impedance resistor in series. A 60 k� resistor repro-
duced measurements of actual clinical malfunctions well. When all electrodes are well 
connected, the boundary voltage is positively correlated with the distance between the 
measure electrodes and drive electrodes. Therefore, the measured data will have mul-
tiple saddle-shaped waveforms with similar levels of amplitude (Fig. 3). Then electrode 
4 is set disconnected. The measurements when electrode 4 acts as the drive electrode 
follow the theoretical analysis. Once electrode 4 is included in the adjacent measuring 
pair, the measurement is statured or reduced to a trivial value because of the instable 
performance of the EIT system in such extreme disconnection cases. The measurement 
is abnormally higher in amplitude when the resistor is connected to electrode 4 [26]. 
Therefore, the results of theoretical analysis and verification of the resistor phantom are 
highly consistent. Regarding more complicated medium, such as the human head, the 
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measurement performance also follows the consequences described above because of 
the constant current conduction principle.

Through the theoretical analysis and resistor phantom tests, we determined that there 
existed a similarity among measurements with once current excitation. Correlation coef-
ficient is one of the most widely used methodologies in similarity measures. We select 
the correlation coefficients combined with average measuring values to evaluate the 
electrodes. As shown in Fig. 4, the similarity of the invalid data is evaluated by correla-
tion coefficients corri and the mean measuring value avei of data recorded under each 
current excitation. The corr4 and ave4 corresponding to disconnected electrodes are 
apparently lower than their values corresponding to normal electrodes. Thus, we pro-
posed a method to determine disconnected electrodes based on these characteristics.

Calculation of electrode variation coefficient

In this section, we propose a metric termed the electrode variation coefficient (EVC), 
which is obtained by calculating the weighted correlation coefficients for each electrode, 
and we determine disconnected electrodes by distinguishing abnormal EVC values.

In our method, only electrodes in the middle of the excitation pair are checked with 
each current excitation. Assuming electrodes 4 and 12 to be the excitation pair, the EVC 
values which correspond to electrode 0 and electrode 8 are calculated (Fig. 5). All EVC 
values are obtained by repeating this manipulation. We calculate the EVC values in this 
way because: First, measurements with different excitations have similar curve morphol-
ogies (Fig. 3), and therefore, the principle used to check one specific middle electrode is 
also able to detect other middle electrodes; Second, we only need to focus on the mid-
dle electrodes regardless of the actual location or number of disconnected electrodes 

Fig. 3  EIT data acquired on a resistor mesh phantom with a single-ended current source. a One frame of 
data is acquired with no disconnected electrode. Then, electrode 4 is disconnected by full disconnection and 
connecting a high value resistor. b Data acquired while electrode 4 acts as a positive excitation electrode. 
c Data acquired when the disconnected electrode 4 acts as negative excitation electrode. d Data acquired 
while electrodes 0 and 8 act as the drive pair and electrode 4 is disconnected: full disconnected 1 is the case 
in which the measurement including the disconnected electrode closed to a trivial value; full disconnected 2 
is the case in which measurement is statured
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because of the similarity. Via this process, we can simplify complicated scenarios with 
different numbers and locations of disconnected electrodes into limited cases.
The details of each step are given as follows:

(i) Calculate the correlation coefficients. Transfer one frame data vector d ∈ R1×256 
into matrix form D ∈ R16×16, where each column corresponds to 16 measurements in a 
single current excitation. The correlation coefficient matrix S ∈ R16×16 is given by

Fig. 4  Mean values of cross-correlation coefficients and measurements recorded with each excitation. a 
Mean voltages of measurements corresponding to 16 excitations with no disconnected electrode. b Mean 
values of measurements corresponding to 16 excitations while electrode 4 is disconnected. c Normal-
ized mean values of cross correlation coefficients corresponding to 16 electrodes with no disconnected 
electrodes. d Normalized mean values of cross-correlation coefficients corresponding to 16 electrodes while 
electrode 4 is disconnected

Fig. 5  Schematic of the circulatory calculation of EVCs. With once current stimulation, only the EVC values of 
the two middle electrodes are calculated
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while

with ρij as the correlation coefficient of the measured data with ith and jth excitation and 
n as the electrode number. The mean values of the correlation coefficients can be written 
as the vector

where

with si as the average value of correlation coefficients under the ith excitation.
(ii) Pre-process specific measured data. Compute the column means of matrix D and 
write it as the vector ave = [ave0, ave1, . . . , aven]. The element of ave is calculated by

According to the conduction characteristics of current flow in the head, the voltages 
obtained with target electrodes should be at a lower level compared with other measure-
ments of the same-half under each current excitation. If the target electrode is discon-
nected, the corresponding measurement D(i, j) (i ∊ {3, 4, 11, 12}, j ∊ [0, 7]) will tend to a 
trivial value or an extreme value. In this step, we set the threshold Tpre,j defined as

where a acts as a damping coefficient to adjust the metric of preprocessing in accord-
ance with specific conditions. Here, a can be set to 0. Then, we set a threshold to nor-
malize the affected voltages:

where trivial equals 10−12.
(iii) Calculate EVC values for all electrodes. In this step, we derive the proposed metric 
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where sk is the correlation coefficient of the ith electrode with k + i = 15 and wi is the 
weighting factor for the ith electrode. The threshold Tc is set to select wi by the following 
rules

Because in previous step the abnormal voltages were preprocessed, it is convenient 
to distinguish normal measurements from abnormal measurements. If there exists 
D(n,j)+D(n+1,j)

2
> Tc (j = [0, 15], j ∈ Z), there are no disconnected electrodes.

Detection of disconnected electrodes based on wavelet decomposition

Based on the EVC calculation method and the theoretical analysis above, we conclude 
that the EVC values of connected electrodes are consistent and tend to a trivial value, 
while the EVC values of disconnected electrodes tend to relatively high values. If the 
EVC values are sorted in ascending order, the EVC sequence of the connected electrodes 
is a relatively smooth and slowly varying parameter. Thus, the EVC sequence of dis-
connected electrodes reveals mutation points of high amplitude. In the signal analysis, 
such slowly changing signals are considered low frequency while dramatically chang-
ing signals are considered high frequency. Wavelet transformation is an effective tool 
for detecting the discontinuity points [8, 27]. The detailed decomposition coefficient at 
discontinuity points is rather high while the other coefficients spread around zero [28]. 
Therefore, the reconstructed detail coefficient would have higher amplitude at the dis-
continuity point, which is also the first point corresponding to disconnected EVCs. 
Therefore, we can localize the group of EVCs corresponding to disconnected electrodes 
by identifying the frequency discontinuity point in the ascending EVC sequence [27]. In 
our study, we used db4 wavelet function to perform the wavelet transform and to local-
ize the discontinuity by detecting the minimum value.

Here, we apply discrete wavelet decomposition (DWT) to process the EVC 
sequence. We obtain the EVC and construct the EVC sequence as xEVC =  {xk = EVCj}
(k = 0, 1,…, 15) by sorting the EVC values in ascending order. Then, by implementing the 
fast wavelet transform algorithm [29, 30], the level one detail coefficients of the wavelet 
transform with the EVC sequence are given by

where g(l) is the DB4 wavelet filter bank high-pass filter, and j0 is the coarsest level. d(l) 
was used to obtain reconstructed EVC sequence x̂EVC by

where g ′(l) is the reconstruction function for the detail coefficients.
If there are no disconnected electrodes, xEVC will be consistent. If there are discon-

nected electrodes, there will be mutation points in xEVC and minimum value in x̂EVC. As 
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a result, we chose x̂EVC(min) as the criterion of selection, electrodes with indices higher 
than the minimum are disconnected electrodes.

Compensation algorithm based on grey model method

Dynamic brain EIT is a continuous process of data acquisition and monitoring, there-
fore, under normal circumstances the measured data has certain continuity [31–33]. For 
a particular time instants, the data can be regarded as the continuation of the previous 
period of data [34, 35]. The pre-data contain the potential changes of the monitoring 
object. Therefore, the data prediction method can be used to estimate the original data 
based on mathematical model calculated by using prior reliable measurements.

The grey systems theory was proposed by Deng in 1982 [36]. Grey prediction is an 
estimation of a grey system. Grey predication makes scientific, quantitative forecasts 
about the future output of a system by generating and extracting the useful informa-
tion from a small number of samples and partially known information, which has a good 
application in the engineering field [37, 38]. The single variable first order grey model, 
which is abbreviated as GM(1,1), is the main and basic model of grey prediction. In this 
study, GM(1,1) is used to compensate for the invalid frames of data.

There are 4 main steps in this part: Generating the accumulation sequence, generating 
the reverse accumulation, establishing the grey model and data calculation. The detailed 
procedures are as follows:

(i) Generate the accumulation sequence. For one given measurement channel, 
the original data is expressed as X(0) =  {x(0)(1), x(0)(2), …, x(0)(n)}, where n is the sam-
ple size of data. Based on our experimental experience, we chose n =  30. The first-
order accumulative generation converts X(0) to X(1) =  {x(1)(1), x(1)(2), …, x(1)(n)}, where 
x(1)(k) = ∑ ki=1x(0)(i), k = 1, 2, …, n. Then, the adjacent neighbor mean sequence is com-
puted as Z(1) = {z(1)(2), z(1)(3), …, z(1)(n)}, where z(1)(k) = x(1)(k−1)+x(1)(k)

2
k = 2, 3, . . . , n.

(ii) Establish the first-order differential equation. Let x(1) be the solution of equation

where a and u are constant to solve out. If t = t0, the solution for x(1) = x(1)(t0) is

Letting t0 = 1, there is

(iii) Establish the least square estimate sequence of the grey differential equation of 
GM(1,1). Discretize Eq. 16 to gain the GM(1,1) equation:

Transform Eq. 19 to matrix form:

(16)
dx(1)

dt
+ ax(1) = u

(17)x(1)(t) =
[

x(1)(t0)−
u

a

]

e−a(t−t0) + u

a

(18)x(1)(k + 1) =
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a

]

e−ak + u

a

(19)x(0)(k)+ az(1)(k) = u

(20)y = BU
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with

Solve the equation and obtain the values of coefficients with

(iv) Estimate the following data. Substitute â and û into x(1)(k + 1) and get

Set k = m, when m ≥ n, x̂(0)(k + 1) = [x̂(1)(k + 1)− x̂(1)(k)] is the prediction of the 
original data sequence x(0).

There are 192 valid data channels in the EIT system. We need to repeat the above 4 
steps 192 times to obtain a complete frame. Based on our experience in the trials, here n 
was set to 60, which indicates that 60 continuous frames are needed for the calculation.

To examine the reliability of the GM(1,1) model and the accuracy of predicted data, 
we used several parameters: the develop factor, the mean relative error (MRE), the mean 
posterior relative error (MPRE), the mean posterior correlation coefficient (MPCC). 
These parameters are defined as:

The develop factor is −a, which is the indicator used to identify whether the grey model 
is suitable for long-term predictions. Here, xj(0)(i) is the jth voltage data of ith frame. MRE 
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evaluates the error of the grey model. The agreement of the predication and actual meas-
urement is measured by parameters MPRE and MPCC. Smaller the Develop Factor, MRE 
values and MPRE values correspond to larger MPCC values, and better the prediction.

Data acquisition procedure

To verify the effectiveness of the proposed approach, experiments were performed on a 
resistor phantom and clinical patients. EIT data were measured in real time using an EIT 
system (FMMU-EIT5). This system consists of 16 electrodes. The working frequency of 
the system ranges from 1 to 190 kHz, the current from 500 to 1250 μA with a measuring 
accuracy of ±0.01%. The common-mode rejection ratio is over 80 dB. We have carried 
out a series of experiments using this system and demonstrated is a reliable data acquisi-
tion system [34, 35]. A more detailed description of the EIT system is presented in previ-
ous studies [19, 20]. The reconstruction algorithm is damped least square method using 
finite element models [33]. In this study, 1 mA and 50 kHz altering current and 1 frame 
per second data acquisition speed was used. All calculation was implemented on a Pen-
tium G630 computer.

The physical model experiments were carried on a resistor phantom representing a 
circular homogeneous medium and comprising 120 resistors (1 k�) with 0.1% preci-
sion [39]. There were 16 unoccupied bonding pads and 1 SCIS-36 port on the phantom. 
Localized conductivity perturbations could be produced by operating the 16 push-type 
switches. The schematic of the resistor phantom is shown in Fig. 6. The finite element 
model for the physical phantom was a homogeneous circular mesh with 288 triangle ele-
ments. We simulated the disconnection by detaching the electrodes from the phantom 
or connecting high impedance resistor in series.

The clinical data were acquired at Xijing hospital, Fourth Military Medical Univer-
sity, Xi’an, China. They were approved by the Fourth Military Medical University Eth-
ics Committee on Human Research and informed written consent was obtained from 
the patients’ relatives. In electrode detection scenario, six patients (five males and one 
female) were included. All patients were conscious and lay on the sickbed. Before the 
monitoring, sixteen copper cup electrodes were rigorously sterilized and placed with the 
conductive gel (Ten 20 conductive paste, Weaver and Company, Aurora, USA) on the 
circumference of the head. The set-up of disconnected electrodes was the same as in the 
phantom experiments. We simulated disconnection by detaching the electrodes from 

Fig. 6  Illustration of the resistor phantom. a The topological graph. b The real photo. c Set-up of the discon-
nected electrodes on the resistor phantom
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underneath of bandage around the head or connecting a resistor in series with the wire. 
In compensation scenario, data collected from the patients (two males) who received 
treatment of twist drill drainage in department of neurosurgery of Xijing hospital were 
analyzed retrospectively [34, 35]. The finite element model was obtained by segmenting 
the patient CT images into three parts (scalp, skull, parenchyma), which were further 
discretizing into 851 triangle elements. In both phantom and clinical trials, we selected a 
period of data to test the compensation method without setting disconnected electrodes.

Results
Detection of disconnected electrodes

The resistor phantom experiments were carried out to validate the detection method. 
This experiment was performed to verify the correctness of the detection method rather 
than its limitations. The disconnected electrodes were simulated by total contact loss or 
by connecting a 60 kΩ resistor in series with the electrode wire. We used ‘Infinite’ and 
‘R’ to respectively represent complete loss contact and the resistor connection. Four dif-
ferent cases corresponding to data acquired with different distribution of disconnected 
electrodes are shown in Fig. 7. Column A is the basic scenario in which one electrode is 
disconnected. Column B and C illustrate the more complex scenarios with disconnected 
electrodes at different locations simulated by a total loss of contact and connecting a 

Fig. 7  Results of the experiments on resistor phantom. Column A to D is the four different scenarios with 
different disconnected electrodes. Row I shows the detailed location of the disconnected electrodes. ‘Infinite’ 
and ‘R’ respectively represent complete loss of contact and the high impedance resistor connection. Row II 
presents the corresponding EVC values of all electrodes. Row III is the EVC values ordered from small to large, 
which are prepared to be processed with DWT. Row IV is the final results of the reconstructed EVC sequence 
with level one detail coefficients. In Rows III and IV, the dashed lines mark the location corresponding to the 
reconstructed EVC minimum and abnormal values in the original sequence
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high value resistor. Column D shows three adjacent disconnected electrodes while two 
correspond to complete contact loss and one is connected to the resistor. Rows I to IV 
show the detailed outcome of each step. From Rows II and III, we can see that the EVC 
values of disconnected electrodes were much greater than normal ones. After the rank-
ing process, the higher EVCs were moved to the right side of the sequence. By compar-
ing Row III with Row IV, the mutation locations corresponded to the minimums of the 
reconstructed EVC signal, and the reconstructed EVCs behind the minimums in Row 
IV corresponded to the original abnormal ones. Therefore, using the minimums of the 
reconstructed EVC sequence, all abnormal EVC values were detected as well as the cor-
responding disconnected electrodes.

The results of the experiments on patients are shown in Fig. 8. The layout of the fig-
ure is the same as in Fig. 7 except that the max number of disconnected electrodes is 
increased to 4. The corresponding values of abnormal EVC in the reconstructed EVC 
sequence were behind the minimum marked by the dashed line in the graphs (Fig. 8 Row 
III and IV). By locating the minimums of the reconstructed EVC sequence, the EVC val-
ues of disconnected electrodes were filtered out.

Table 1 shows the robust performance evaluation of this detection method in real time 
monitoring during clinical experiments. The detection algorithm exhibited a high sensi-
tivity for up to three disconnected electrodes. When there were four disconnected elec-
trodes, the accuracy of the detection declined to 84%. In particular, if there were five 
disconnected electrodes, the algorithm could detect five electrodes in only 17% of cases. 

Fig. 8  Results of disconnected electrode detection on patients. Columns A to D present four different 
scenarios of disconnected electrodes. Row I gives the detail of the disconnection distribution. ‘Infinite’ and 
‘R’ respectively represent complete loss of contact and the high impedance resistor connection. Rows II to 
IV show the outcome of each step. In Rows III and IV, the dashed lines mark the correspondence between 
reconstructed EVC minimum and abnormal values in the original sequence
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The results show that for more than four disconnected electrodes, it is difficult for this 
algorithm to accurately detect them.

Compensation for invalid frames of data

Figure  9 illustrates the effectiveness of compensation for invalid frames of data with 
resistor phantom and clinical patients. Because time differential images represent inter-
nal changes in conductivity between two instants, data acquired from the moment when 
no electrode is disconnected are used as a reference. In the experiments of resistor phan-
tom, the target was created by shunting specific resistors. Figure 9 shows the results of 
reconstructed image. If there were disconnected electrodes, the images were seriously 

Table 1  Performance evaluation of the detection algorithm in clinical condition

Number of disconnected 
electrodes

Number of clinical  
datasets tested

Number of correctly detected 
disconnected electrodes

Percentage  
of cases

0 12 0 100

1 12 1 100

2 12 2 100

3 12 2 8

3 92

4 12 2 8

3 8

4 84

5 12 2 25

3 33

4 25

5 17

Fig. 9  Comparison of the reconstructed images with the original data and predicted measurements. Rows 
I to III show three different experimental scenarios. In Row I, the data are acquired from a resistor with no 
target. In Row II, the data are acquired from a resistor with a target. In Row III, the data are acquired from clini-
cal patients receiving twist drill drainage treatment. Column A is the original normal image. Column B is the 
image with electrode 4 disconnected. Column C and D are a comparison of the 1st image calculated with the 
original data and predicted after the instance of disconnection. Column E and F are a comparison of the 60th 
image calculated with the original data and predicted after the moment of disconnection
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affected by artifacts (Fig. 9 Column A and B). By comparing Column C and D, the 1st 
frame image reconstructed by the compensated frame of data was capable of restoring 
the original image. Furthermore, we determined that this good performance could last 
for at least 60 frames by comparing the images in Column E and F.

Table 2 illustrates the accuracy of the grey model established with measured data and 
quantized characteristics of the estimated data. The Development Factor was quite low 
so that the grey model was suitable for long-term predications. It could also be found 
that the MRE are both under 1%, which meant that the grey model was qualified to make 
prediction. The MPRE was at a quite low level <0.01% while the MPCC was up to 0.88. 
Therefore, the estimated data were shown to be highly correlated with the original data.

Evaluation of time cost

Figure  10 shows the details of the time cost of the entire process. The detection and 
compensation cost approximately 0.42 s at most. The compensation first required time 
to establish the GM(1,1) model, but it cost much less in the following prediction after 
establishing the grey model. Even with the calculation of the grey model, the time cost 
of the entire procedure, including detection, compensation and image reconstruction, 
could be restricted to <1  s. Such time cost is acceptable because the data acquisition 
speed is 1 frame per second.

Discussion
This paper analyzed the problem of electrode disconnection during brain EIT monitor-
ing in clinical environments, and we proposed a two-step approach to detect discon-
nected electrodes and to compensate for the invalid data. The experiments with data 

Table 2  All parameters for comparison between the actual measurements and prediction

Development 
factor

MRE Model level MPRE (1st 
frame)

MPRE (60th 
frame)

MPCC

Phantom without 
target

≤3.73e−04 ≤0.0034 Qualified ≤3.2834e−06 ≤3.2834e−06 0.8865

Phantom with 
target

≤4.67e−04 ≤0.005 Qualified ≤1.7359e−05 ≤1.7698e−05 0.8543

Clinical trial twist 
drill drainage

≤5.21e−04 ≤0.0043 Qualified ≤2.2145e−06 ≤6.5038e−06 0.7763

Fig. 10  Illustration of time cost of the entire process. The disconnected electrodes detection completes 
calculations within 0.018 s. The compensation needs no more than 0.4 s. The entire calculation can be com-
pleted within 0.71 s
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from the resistor phantom and patients proved an effective approach for managing such 
disconnections.

Multiple disconnected electrodes detection

With the detection method, we can locate multiple disconnected electrodes with high 
accuracy to help medical staff to fix the disconnected electrodes and minimize the data 
loss as much as possible.

Different from previous studies, we defined the EVC values calculated from the 
weighted-correlation coefficients to evaluate the connection of electrodes and singled 
out the disconnected electrodes via DWT. In previous studies, the detection approaches 
were either based on the inverse and forward problem calculation or reciprocal princi-
ple theory. In Asfaw‘s method, detached electrodes were automatically detected through 
repeating forward and inverse calculations. He proposed that a set of ‘good’ electrodes 
could produce measurements consistent with each other and such consistency would be 
terminated if ‘bad’ electrodes were contained in the set, and thus erroneous electrodes 
could be excluded by verifying the consistency of the measured data with the electrode 
sets. However, the detection method required n × n (where n is the electrode number) 
calculations of the forward problem and inverse problem and thus was not suitable 
for real-time detection. Furthermore, the method was designed to reliably detect one 
detached electrode. In Hartinger’s method, faulty electrodes are confirmed by examining 
voltage-current reciprocal measurements. Although the detection method was reliable 
for its intended purpose, the sensibility was low in case of more than one faulty elec-
trode. In addition, extra data were required if the data acquisition protocol of the EIT 
system cannot provide reciprocal measurements.

A result comparison with previous detection methods is shown in Table  3. Asfaw’s 
method shows potential in detecting multiple disconnected electrodes with a high accu-
racy. However, the computation time is too long to be applied to our data collection 
procedure. The accurate time cost of Hartinger’s method is not reported, but the main 
limitation of this method is that the accuracy of detection needs to be improved. There-
fore, our method has a higher accuracy in detection with more disconnected electrodes. 
This method is applicable for our EIT system incorporating an opposite-drive adjacent-
measure data acquisition protocol.

Table 3  Comparison of  the results of  two previous detection methods and  the method 
reported in this study

Methods Reported computing 
time

Reported detection 
number

Notes

Asfaw et al. [5] About 4 s Designed for 1 Scenarios for 2 and 4 
disconnected electrodes 
were shown

Hartinger et al. [4] Real-time, accurate time is 
not reported

1 with 100% accuracy
2 with 96% accuracy
3 with 8% accuracy

The presented method within 0.018 s 1 or 2 with 100% accuracy
3 with 92% accuracy
4 with 84% accuracy
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In addition, Ghanem implemented wavelet decomposition to detect lead failure of 
ECG electrodes [8]. Two parameters were extracted from the reconstructed approxi-
mation sequence and reconstructed detail sequence to build a no lead failure zone. If 
the point with the two parameter as X and Y coordinates falls in the lead failure zone, 
there is a lead failure in the acquired data which is processed by wavelet decomposi-
tion. Unfortunately, this implement is not suitable for brain EIT because EIT data has 
no significant spikes to extract and such detection might be hysteretic. Ross developed a 
system and method for correcting fault conditions in soft-field tomography [9]. His pro-
jection detected fault excitation through mismatch response and compensated the valid 
data by a pre-calculated output. However, the successfulness relied on the redesign of 
hardware and therefore, not as practical as our method.

In the detection method, we use correlation coefficient to measure the similarity. This 
similarity can be represented by other statistical parameters, such as Euclid distance, 
Hausdorff distance, cosine distance and dynamic time warping [40–43]. These param-
eters are used to measure sequence similarity in many cases. However, the performance 
of the Euclid and Hausdorff methods may introduce issues in comparing between meas-
urements from different frames because their calculations of absolute distance highly 
depending on the calculation baseline. The cosine distance focuses more on the direc-
tion change of the data sequence, not the shape of the curve. Dynamic time warping 
introduces more calculations and does not exhibit an apparent advantage over correla-
tion coefficients [42]. To avoid potential problems and to cooperate with the following 
calculation, we selected the correlation coefficients. Besides, we utilize wavelet decom-
position to filter out abnormal EVC values corresponding to disconnected electrodes. 
Here, we primarily take advantage of the time–frequency correspondence characteristic 
of the wavelet transform. Other time–frequency methods include the Hilbert transform, 
the short time Fourier transform and the quadratic time–frequency distribution [44–
47]. These methods are also used to extract instantaneous characteristics of the signal. 
However, we need a very precise one-to-one correspondence between the original EVC 
and the reconstructed EVC with the detail coefficients. The wavelet transform has the 
ability to provide high time resolution in high frequency to meet our requirements [48, 
49]. Other methods do not offer such point to point accuracy.

During the experiments, to verify the effectiveness of the disconnected electrodes 
detection, we disconnected multiple adjacent electrodes to simulate various possible 
scenarios. With data acquired from each excitation, we only checked the two middle 
electrodes between the current-driving electrode pair. According to Eq. 2, the amplitude 
of the measurement containing the middle electrode is usually less than other meas-
urement on the same side, which makes it easier to preprocess the abnormal measure-
ment. By locking the relative position of the target electrode, we simplify all possible 
scenarios of disconnection into four cases: ‘good’–‘bad’–‘good’, ‘bad’–‘bad’–‘good’, ‘bad’–
‘good’–‘bad’, ‘bad’–‘bad’–‘bad’, while the middle electrode is the target to check. This 
design greatly decreases the logical complexity and location sensitivity. Experiments on 
the resistor phantom showed that all disconnected electrodes could be filtered out with 
100% accuracy. However, due to noise and target differences between clinical and labo-
ratory environments, we did not further evaluate the phantom tests after verification of 
the methodology principle. In clinical trials, before the monitoring was started, it should 
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be ensured that all electrodes are well-connected. The results from patients showed that 
the detection method was able to achieve very high accuracy if the number of discon-
nected electrodes is no more than four. However, disconnections would lead to interfer-
ence in the measurements made by the data acquisition system in an ICU environment. 
Therefore, in several scenarios in which less than five electrodes were disconnected, the 
detection sensitivity was not able to reach 100%. Moreover, if there are five or more dis-
connected electrodes, the weighting part for calculating EVCs becomes very unstable 
and might affect the use of the minimum of wavelet reconstruction to determine abnor-
mal EVC values, which would lead to missed disconnected electrodes. In the clinical 
experiments, more complicated explorations with more disconnected electrodes were 
not performed because other ‘good’ electrodes could be compromised when adjusting 
the disconnected electrodes if there are more than four disconnected electrodes. There-
fore, removing the bandage to examine and fix all electrodes is a more reliable way to 
eliminate such disconnections. Otherwise, this detection principle of this method is not 
only suitable for EIT systems with opposite-drive adjacent-measurement protocol, but 
also suitable for systems with pseudoopposite-drive adjacent-measurement protocol or 
other working protocols.

The electrode disconnections actually reflect malfunctions of data acquisition sys-
tem. The most common numerical simulation method is not applied in this paper. The 
numerical simulation could display the voltage and current distribution of the imaging 
area, but for electrode disconnection, the affected data are not inexistent but missed in 
the transmission from the body to the EIT system through electrodes. The numerical 
simulation results are not related to the peripheral hardware. Therefore, we chose to 
show simulations on resistor phantom.

If an electrode is of incomplete contact, the contact impedance will increase compared 
with a well-connected electrode. The contact impedance affects the EIT measurement in 
two ways. First, contact impedance affects the current distribution beneath the electrode 
inside the body [14]. Second, contact impedance causes the common mode voltage to 
yield a differential mode voltage at the amplifier input of EIT system [26]. The incom-
plete contact introduces interface into the voltage measurement through these two ways 
described above, which leads to artifacts in the image reconstruction. In circumstance of 
incomplete contact, current is still able to flow through the electrode. But in disconnec-
tion there is little drive current flow through the electrode into the body. So the voltage 
measurements from disconnected electrode become unstable, and the measurements 
acquired are different from the connected electrode in amplitude and curve shape, when 
the disconnected electrode acts as positive electrode or negative electrode.

The aim of detecting disconnected electrodes is to reduce data loss. In this study, 
the detection method presented in this study makes a judgment as to whether the 
electrode is disconnected or not. The method does not quantitatively reflect the con-
tact status of the electrodes. Recent studies on EIT electrode primarily focus on elec-
trode scenarios with incomplete contact, where there is still normal current injection, 
and the measurement error mainly comes from current distribution distortion caused 
by electrode–electrolyte layer [11, 13, 50]. Mamatjan et al. [51] proposed a method to 
quantitatively evaluate EIT data quality. The method provided an overall assessment 
of the whole dataset. In next step, we will evaluate each single electrode with detailed 
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scenarios regarding where the current distribution is affected or the common mode 
error is included, because these issues are not clearly addressed at the present.

Compensation for invalid frames of data

In the compensation part, we employed the GM(1,1), which was established with normal 
measurements before disconnection, to predict the subsequent frames of data. The pre-
dicted data can be used to reconstruct images without disconnection artifacts. In previ-
ous studies, the compensation was based on reconstruction algorithm improvement [3, 
4]. Adler and Hartinger both modified the measurement noise covariance matrix in the 
MAP reconstruction algorithm to compensate for invalid data. And they still required 
rest valid data to continue monitoring. Our prediction method does not need to recalcu-
late the reconstruction matrix.

We made full use of the valid data before the disconnection occurred to establish 
GM(1,1) to predict the data to replace the invalid frames. Indeed this method could not 
utilize the residual valid data. However, in most circumstance of long-term monitoring, 
it is not possible to have intracranial pathological or physiological changes, which will 
lead to a dramatic change in the brain impedance in minutes. This means that the latter 
measurement could be considered an extension of the previous measurement. There-
fore, it is reasonable to extract the features of existing valid data to predict the subse-
quent measurements in specific brain EIT monitoring. Our compensation method offers 
another thought that based on available frames of data rather than the reconstruction 
algorithm improvement to compensate the data loss.

The result of grey model compensation depends on the data used to establish the grey 
model. If the interval of two interruptions is shorter than the data frames that we need 
to establish grey model, the effect of compensation will be affected. If the contact is lost 
momentarily, the compensation method will start to compensate for invalid frames 
of data and the compensation procedure will not until all electrodes are connected. 
Whether the compensation is activated or inactivated depends on the disconnected 
electrode detection result. There is one scenario that the contact is lost immediately 
after the monitoring begins, the compensation algorithm could not compensate the lost 
data. Because we need a period of good data before disconnection happens to establish 
the grey model. However, the dynamic brain EIT monitoring is a long-term process, so 
the data loss at the beginning of monitoring has limited effect on the overall monitoring 
results.

One limitation of compensation algorithm is that it couldn’t utilize the residual valid 
data. But in most circumstance of long time monitoring, it is not possible to have intrac-
ranial pathological or physiological changes, which will lead to a dramatic change of the 
brain impedance in minutes [42, 43]. So although there are some limitations, the com-
pensation method could meet our need.

After electrode disconnection happens, the reconstructed image will be invalid imme-
diately. The grey model compensation is designed to offer the predicted image result 
until the clinical staff comes to solve the issue. Afterwards, a new reference frame will be 
established. The image result before disconnection cannot be shown in the new image. 
If we continue to monitor without reselecting reference frame, the position and contact 
status of re-adhering electrodes are changed compared with their initial conditions and 
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artifacts will be introduced in monitoring image [3]. Therefore, in further research, we 
need to consider how to inherit the information of former image into new monitoring 
images by combining present techniques.

Conclusions
In clinical long-term dynamic brain EIT monitoring, electrode disconnections are a 
common occurrence and will lead to a failure of data acquisition. This paper offers a two-
step solution to address the electrode detection. Our approach is able to detect more 
disconnected electrodes with a higher accuracy. The invalid frames of data were replaced 
by calculating a grey model with more stability. This proposed method is based on the 
features of available measurements rather than improving hardware or reconstruction 
algorithm in previous studies, which offers a novel way to deal with such problems.
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