
Real‑time inverse kinematics for the
upper limb: a model‑based algorithm using
segment orientations
Bence J. Borbély* and Péter Szolgay

Background
Quantitative movement analysis is a key concept in understanding processes of the
human movement system. Evolved, high precision measurement devices have advanced

Abstract 

Background:  Model based analysis of human upper limb movements has key impor-
tance in understanding the motor control processes of our nervous system. Various
simulation software packages have been developed over the years to perform model
based analysis. These packages provide computationally intensive—and therefore
off-line—solutions to calculate the anatomical joint angles from motion captured raw
measurement data (also referred as inverse kinematics). In addition, recent develop-
ments in inertial motion sensing technology show that it may replace large, immobile
and expensive optical systems with small, mobile and cheaper solutions in cases when
a laboratory-free measurement setup is needed. The objective of the presented work is
to extend the workflow of measurement and analysis of human arm movements with
an algorithm that allows accurate and real-time estimation of anatomical joint angles
for a widely used OpenSim upper limb kinematic model when inertial sensors are used
for movement recording.

Methods:  The internal structure of the selected upper limb model is analyzed and
used as the underlying platform for the development of the proposed algorithm. Based
on this structure, a prototype marker set is constructed that facilitates the reconstruc-
tion of model-based joint angles using orientation data directly available from inertial
measurement systems. The mathematical formulation of the reconstruction algorithm
is presented along with the validation of the algorithm on various platforms, including
embedded environments.

Results:  Execution performance tables of the proposed algorithm show significant
improvement on all tested platforms. Compared to OpenSim’s Inverse Kinematics tool
50–15,000x speedup is achieved while maintaining numerical accuracy.

Conclusions:  The proposed algorithm is capable of real-time reconstruction of
standardized anatomical joint angles even in embedded environments, establishing a
new way for complex applications to take advantage of accurate and fast model-based
inverse kinematics calculations.

Keywords:  Inverse kinematics (IK), Inertial measurement unit (IMU), Real-time,
Upper limb, OpenSim, Embedded systems, Wearable

Open Access

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

RESEARCH

Borbély and Szolgay ﻿BioMed Eng OnLine (2017) 16:21
DOI 10.1186/s12938-016-0291-x BioMedical Engineering

OnLine

*Correspondence:
borbely.bence@itk.ppke.hu
Faculty of Information
Technology and Bionics,
Pázmány Péter Catholic
University, Práter Street 50/a,
Budapest 1083, Hungary

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12938-016-0291-x&domain=pdf

Page 2 of 29Borbély and Szolgay ﻿BioMed Eng OnLine (2017) 16:21

research activity in movement rehabilitation [1–4], performance analysis of athletes [5]
and general understanding of the motor system [6–9] during the last decades by mak-
ing movement pattern comparison possible. This advancement was further accelerated
by model-based analysis approaches that enabled explicit characterization of the studied
movement patterns [10–15].

The most widely used measurement systems apply line-of-sight (LoS) methods (optical
or ultrasound-based) that require a fixed marker-sensor structure. In these cases passive
(optical) or active (ultrasound) markers are placed on anatomically relevant locations of
the studied subject. Having the markers in place, measurements have to be performed
in a specialized laboratory environment where locations and orientations of the sensor
elements (i.e. cameras or microphones) are known and invariant (at least across trials).
This means that even the spatial positions of the markers can be determined with good
accuracy—especially with optical systems—the possible range of motion will always be
constrained by the actual measurement volume covered by the sensors of the system.
Although this property is not an issue for many movement analysis scenarios, there are
cases when a measurement method allowing unconstrained free space movement would
be more beneficial (e.g. various outdoor activities or ergonomic assessment of work
environments, to name a few).

Advancements in the field of inertial sensor technology have given rise to new devel-
opment directions in laboratory-free movement analysis methods. The main difference
between LoS and inertial systems is the recorded modality: while LoS methods deter-
mine the spatial locations of markers based on planar position (optical) or timing (ultra-
sound) information, inertial sensors give their orientation in space by measuring physical
quantities acting on them directly. These quantities are linear acceleration and angular
velocity in most cases while they are supplemented with magnetic field measurements
in more complete setups. To obtain orientation from raw inertial measurements, various
sensor fusion algorithms have been developed utilizing Kalman-filters [16, 17], gradient
descent methods [18], complementary filters [19, 20] and other techniques [21], most
of them being capable for real-time operation in embedded systems. In addition, recent
evolution of chip-scale inertial sensors based on MEMS technology further widened the
possibilities of wearable measurement device development by making the core sensing
elements available for better integration. While there is no gold standard among fusion
algorithms and sensor chips as compromises have to be made in aspects of accuracy,
system complexity and computational demand of the fusion algorithm, it can be stated
that inertial sensor technology is taking a more and more growing part in human move-
ment measurements (a good example for this progress is Xsens’ product portfolio).

In addition to accurate measurement, proper evaluation of the recorded motion is
an other key building block of human movement analysis. Considering the kinematic
assessment of upper limb movements by using inertial sensors, reliable methods have
been proposed to estimate joint kinematics in custom local coordinate systems, also
dealing with the problem of functional calibration and measurement error compen-
sation [22–25]. While these methods may work well in movement analysis scenarios
focusing only on the spacial kinematics of the upper limb, the goal of the present study is
to extend the applicability of a more complex freely available upper limb model [26] with
inertial measurement and real-time joint angle reconstruction capabilities. The chosen

Page 3 of 29Borbély and Szolgay ﻿BioMed Eng OnLine (2017) 16:21

model includes 15 degrees of freedom and 50 muscle compartments and in addition
to movement kinematics it enables the evaluation of muscle-tendon lengths, moment
arms, muscle forces and joint moments in an anatomically reasonable setup (also con-
forming to the ISB recommendation [27] as those presented in [23] and [24]). Our moti-
vation of choosing this approach instead of using direct joint kinematics estimates from
inertial sensor data lies in the strong belief that the utilization of this upper limb model
leads to better understanding of the additional inherent properties of arm movements
(e.g. muscle activation patterns) compared to a pure kinematic investigation.

By using the model from [26], two main differences from the direct approach should
be considered: (1) because the model was developed mainly for optical motion capture
technology, joint angle reconstruction is less coupled with raw measurement data in the
sense that it is performed as an inverse task based on locations of arbitrarily placed vir-
tual markers (instead of relying on sensor orientations directly) and (2) as a consequence
of the inverse kinematics approach, the model raises more computational demand for
joint angle reconstruction. While the first point contributes to a possibly wider adoption
of the model (i.e. measurement data of any reasonable source—being it optical, ultra-
sound based, inertial, etc.—only needs to be expressed in terms of virtual marker loca-
tions), the second can be considered as a drawback in certain situations when real-time
joint angle reconstruction would be beneficial.

To analyze model-defined parameters of recorded movements, various software pack-
ages have been developed for biomechanical analysis over the past decades. Some of
them are tightly integrated into their corresponding measurement system’s ecosystem
with only kinematic reconstruction capabilities [28–30] while others are independent
of a particular hardware setup (SIMM [31] and OpenSim [32]), even including analysis
options for muscle activations and movement dynamics if the corresponding models are
available. While these tools may address the joint angle reconstruction problem involv-
ing inverse kinematics in different ways resulting in varying performance, OpenSim [32]
was chosen as the reference model-based analysis software for the purposes of the cur-
rent study, because (as to the best of the authors’ knowledge) it is the only free and open
source (thus widely accessible) option in the biomechanical modeling field.

Because the upper limb model used in this study was originally developed for the
SIMM software, an other reason for using OpenSim was it’s ability to import and han-
dle SIMM models natively, so combined with the model it provides a complete pack-
age for open source arm movement analysis. For kinematic evaluation, OpenSim uses
the “standard” offline measurement-scaling-inverse kinematics pipeline where the actual
biomechanical model (single limb to full body) is fitted to measurement data. During
this process, positions of virtual markers placed on specific model segments are fitted
to experimentally recorded marker positions of the subject with the same arrangement.
Scaling is important to generate subject-specific model instances while inverse kinemat-
ics (IK) is performed to extract model-defined anatomical joint angles that produced the
movement. OpenSim uses a text based structured XML model format that contains all
information needed for the biomechanical description of the human body [bodies, kin-
ematic constraints and forces (i.e. muscles)] that are accessible through API calls, too.

Complex measurement and analysis of upper limb movements including kinematics
and muscle activities is an exciting and growing subfield of human movement analysis

Page 4 of 29Borbély and Szolgay ﻿BioMed Eng OnLine (2017) 16:21

[33–37] that promises better understanding of control patterns during specific move-
ments, and as an example benefit may—on the longer term—advance control techniques
currently applied to arm and hand prostheses. This process however needs tighter inte-
gration of kinematic measurement and reconstruction (from raw data to anatomical
joint angles) as the time and computational overhead of the offline measurement-scal-
ing-inverse kinematics scheme gives a bottleneck in applications where real-time analysis
of the control patterns with respect to the actual kinematics would be beneficial.

As a specific example, let us consider a supervised learning based muscle activity clas-
sification framework like the one proposed in [38] that is built around the increasingly
popular concept of deep neural networks [39]. The goal of this setup is to assess the clas-
sification capability of various network architectures in estimating upper limb move-
ment kinematics based only on muscle activity recordings. The large amount of labeled
data that is needed to train these networks (even iteratively after initial deployment)
should be presented by a method that performs muscle activity data labeling based on
the actual (anatomically relevant) kinematic state of the limb automatically as the meas-
urements occur. By using the approach proposed in this paper, labeled measurement
data could be collected in real-time and simultaneously from multiple recording devices
and a high level of automation might be reached in the process of measurement, net-
work training and deployment.

Purpose of the study

The main goal of this study is to extend the measurement and analysis workflow of
human arm movements with a method that allows accurate and real-time calculation of
anatomical joint angles for a widely used upper limb model in cases when inertial sen-
sors are used for movement recording. For this purpose a custom kinematic algorithm is
introduced that utilizes orientation information of arm segments to perform joint angle
reconstruction. Accuracy and execution times of the proposed algorithm are validated
against the most widely available biomechanic simulation software’s inverse kinematics
algorithm on various platforms.

Methods
Upper limb model

To analyze arm kinematics with OpenSim the most complete model available was cho-
sen known as the Stanford VA Upper Limb Model [26]. It is freely available as part of
the Simtk project [40] in SIMM model format [41] that can be imported directly into
OpenSim. The model is based on experimental data, includes 15 degrees of freedom
and 50 muscle compartments and enables the evaluation of kinematics, muscle-tendon
lengths, moment arms, muscle forces and joint moments in an anatomically reasonable
setup. After importing, the structure of the model follows OpenSim’s convention includ-
ing bodies connected with joints, rotational and translational kinematic constraints
and forces defining muscle paths and attributes (for details, see Additional file 1). The
15 degrees of freedom define the kinematics of the shoulder (3), elbow (2), wrist (2),
index finger (4) and thumb (4). As the current work focuses on kinematics of the shoul-
der, elbow and wrist joints only, any muscles and kinematics of the index finger and the
thumb will not be taken into account further in this study. The seven degrees of freedom

Page 5 of 29Borbély and Szolgay ﻿BioMed Eng OnLine (2017) 16:21

that define the kinematic state of the whole arm excluding the fingers are elevation
plane, thoracohumeral (elevation) angle and axial rotation for the shoulder, elbow flexion
and forearm rotation for the elbow and deviation and flexion for the wrist.

The model represents the upper limb as a linked kinematic chain of bodies, each hav-
ing a parent body, a location in the parent’s frame and a joint describing the possible
relative motion of the child with respect to the parent. The three-dimensional posture of
the arm is generated by consecutive rotations of bodies determined by the actual angle
values (joint coordinates) in proximal to distal order. As the movement of the shoulder
girdle (clavicle, scapula and humerus) is complex and cannot be measured directly in
most cases, the model implements regression equations that vary only with the thoraco-
humeral angle to determine the position of the shoulder joint with respect to the thorax.

Orientation from joint coordinates

The reference orientation of the model (all joint coordinate values equal 0°) occurs when
all of the following conditions are true [26] (for a visual reference, see Fig. 1a):

1.	 The shaft of the humerus is parallel to the vertical axis of the thorax.
2.	 In case of shoulder elevation, the humerus moves in the plane of shoulder abduction.
3.	 In case of elbow flexion, the forearm moves in the sagittal plane.
4.	 The hand is in the sagittal plane.
5.	 The third metacarpal bone in aligned with the long axis of the forearm.

During the calculation of arm orientation determined by the actual joint coordinates
the position of the shoulder joint is calculated first from the thoracohumeral angle. This
is followed by four consecutive rotations in the shoulder joint in the order of elevation
plane, elevation angle, elevation plane and axial rotation, where the rotation axes of
elevation plane and axial rotation overlap in the reference arm orientation. Elbow flex-
ion occurs in the humeroulnar joint while forearm rotation takes place in the radioulnar
joint. Motion of the wrist is distributed among the proximal and distal rows of carpal
bones by having two rotations for each row (four in total) both depending on flexion and
deviation values.

Markers, scaling and inverse kinematics

To evaluate subject motion with OpenSim, model parameters have to be adjusted to
experimental data. As of OpenSim’s latest version at the time of writing (version 3.3),
this can be achieved by using marker based motion capture data and virtual markers
located on the model at approximately the same places as the experimental markers
are located on the subject. This setup allows automatic subject specific scaling of the
model [42] and calculation of anatomical joint coordinates (inverse kinematics) during
the measured movement using weighted least squares optimization [43]. In the inverse
kinematics tool, individual marker weights can be user specified and the least squares
problem is solved with a quadratic programming solver (convergence criterion: 0.0001,
iteration limit: 1000). As the efficiency of both scaling and inverse kinematics is highly
dependent on the accuracy of virtual marker locations, marker placement is usually an
iterative process until the best fit to experimental data is found.

Page 6 of 29Borbély and Szolgay ﻿BioMed Eng OnLine (2017) 16:21

Prototype markers

To enable the utilization of the upper limb model with inertial measurements, a pro-
totype marker set was defined (see Additional file 2). For this purpose, orthonormal
bases were formed for each anatomical joint (shoulder, elbow and wrist) and markers
were placed at specific locations in these bases to reflect the actual compound rotations
among the respective degrees of freedom (for the corresponding mathematical defini-
tions, see Appendix 1.

VM1_THVM2_AC

VM3_EL_IN

VM4_EL_OUT

VM5_WR_IN

VM6_WR_OUT

VM7_MC2

VM8_MC5

PM
1_
SH
_Y

PM1_SH_X

PM1_SH_Z

PM1_SH_O

P
M
3
_
S
H
_
Z

PM3_SH_O

P
M
3
_
S
H
_
Y

PM2_SH_Z

PM
2_

SH
_X

PM
2_

SH
_Y

P
M
2
_
S
H
_
O

PM3_SH_X

Reference

a b

c d

Actual

Fig. 1  Representations of the used upper limb model with reference poses and markers. a Screenshot taken
from OpenSim while displaying the used full arm model. The reference configuration is shown as a shaded
overlay on an actual example configuration determined by the joint angle vector [θelv = 0◦, θsh_elv = 63◦,
θsh_rot = 15◦, θel_flex = 95◦, θpro_sup = −60◦, θdev_c = 0◦, θflex_c = 20◦]. b Representation of the
model’s exported structure in MATLAB producing the same actual configuration as in sub-figure (a) using
the developed forward kinematics function (functionally equivalent to OpenSim’s version). c Locations of
prototype markers that are solely used to the reconstruction of model-defined anatomical joint angles with
the proposed algorithm. d Locations of virtual markers that are used for the algorithm validation process by
serving as inputs to OpenSim’s inverse kinematics tool directly

Page 7 of 29Borbély and Szolgay ﻿BioMed Eng OnLine (2017) 16:21

Orthonormal bases

Shoulder The three independent model axes for the shoulder (defined in model bodies
humphant, humphant1 and humerus that have the same position), collectively denoted
as Bsh_orig, were good candidates to form a basis because they are unit length vectors
(like all axes in the model) and almost orthogonal to each other (pairwise deviations
from right angle are 0.00064°, 0.0029° and 0.0002°). For proper operation of the pro-
posed algorithm however, these axes were orthogonalized using QR decomposition (see
Appendix 2) to prevent error accumulation during the calculations. This resulted in the
orthonormal basis Bsh_orth.

As a result, rotations in the shoulder can be expressed as elemental rotations of Bsh_orth
with acceptable angle errors due to the pairwise deviations between the original and new
basis vectors after orthogonalization (0.000019°, 0.000655° and 0.002925°, respectively).

Elbow As relative orientation of the two rotation axes in the elbow is not close enough
to orthogonal and the axes are defined in different parent bodies (rel_flex → ulna
and rpro_sup → radius), the orthonormal basis Bpro_sup and the rotation matrix
R
Bpro_sup
rel_flex (θel_flex) were formed to properly express the compound rotation as the prod-

uct of an axis-angle and an elementary rotation about the main axis in Bpro_sup. Again,
some angle errors are expected while calculating the elbow flexion angle in this basis
because rel_flex is threated as it would belong to the radius body of the model.

Wrist Rotations in the wrist are the most complex among the three anatomical joints.
Effects of the two active joint coordinates (deviation and flexion) are distributed among
two model bodies (lunate and capitate), each having two nonorthogonal rotations (rdev ,
rflex → lunate and rpdr1, rpdr3 → capitate) depending on both joint coordinates. To
deal with the complexity of this structure, the orthonormal basis Bpdr3 and rotation axes
r
Bpdr3

dev , rBpdr3

flex and rBpdr3

pdr1 were constructed to prepare the calculation of θdev and θflex.
Using this approach, rdev and rflex are threated as if they would belong to the capitate
body of the model.

Marker placement

In order to add virtual markers to any OpenSim model, the parent body and the loca-
tion within the parent’s frame have to be defined for each marker. Having the orthonor-
mal bases from the previous section (Bsh_orth, Bpro_sup and Bpdr3), 12 prototype markers
were placed on the model as follows (for reference, see Fig. 1c):

• • Four markers were placed into each orthonormal basis having one at the origin of the
actual basis ([0 0 0] in its parent body) and one in each axis of the basis.

• • The markers were named using the convention PMx_[SH|EL|WR]_[O|X|Y|Z]
where PM refers to prototype marker, x is the serial number of the basis in which the
marker is located (1–3), [SH|EL|WR] refers to the anatomical joint in which the
marker is located and [O|X|Y|Z] refers to the marker’s location within the actual
basis (origin or any of the axes). For example the name of the wrist’s origin marker is
PM3_WR_O.

Because all markers follow their parent bodies’ orientation during analyzed movements,
coordinates of the difference vectors between the origin markers and the same basis’ axis

Page 8 of 29Borbély and Szolgay ﻿BioMed Eng OnLine (2017) 16:21

markers reflect the compound rotation matrix in each anatomical joint (in the corre-
sponding basis) at any time instant. To utilize this feature it is crucial that the struc-
ture of each joint’s marker subset remains consistent during measurements (by keeping
the formation of an orthonormal basis), because any deviation in relative marker posi-
tions renders the derived compound rotation matrix inaccurate. As a consequence, it
is recommended to use arm segment orientations to calculate the actual positions of
prototype markers instead of measuring them directly. This can be achieved when using
optical motion capture devices as segment orientations can be reconstructed with most
systems by having at least three markers on each segment, however this is still an offline
process. More importantly, utilizing orientation information makes the application of
inertial sensors possible and beneficial in this setup as they are used to determine ori-
entation directly. As an additional benefit, the offset-independent nature of orientation
information enables subject-independent joint angle reconstruction, rendering the scal-
ing step of the standard inverse kinematics approach unnecessary in the process. Using
this feature a real-time inverse kinematics algorithm is introduced in the next section
that provides joint coordinate outputs coherent with OpenSim’s inverse kinematics tool.

Algorithm description

The key point in accelerating the selected upper limb model’s inverse kinematics calcula-
tion is the model specific determination of prototype marker locations. By construct-
ing representative orthonormal bases in each anatomical joint of interest (Bsh_orth in
the shoulder, Bpro_sup in the elbow and Bpdr3 in the wrist) joint specific rotations can
be addressed as elementary or axis-angle rotations in the corresponding bases. Having
prototype markers in locations that reflect the actual orientations of these bases gives
the possibility to express joint coordinates (rotation angles) in an efficient way, even in
closed algebraic form in the shoulder and the elbow. As there was no closed form solu-
tion found to calculate angles in the wrist, a numerical algorithm is given for this part of
the problem. MATLAB R2015b (Mathworks, Natick, MA, USA) was used for algorithm
prototyping and development.

Shoulder

Because shoulder prototype markers are placed on the model in a way that they show
the actual orientations of the main axes of Bsh_orth, an experimental (numerical) com-
pound rotation matrix can be constructed from their spatial coordinates as shown in (1),
where each marker position should be considered as a row vector.

By utilizing the kinematic structure of the shoulder joint (and keeping the assumption
that R̃shoulder

= Rshoulder as detailed in Appendix 3), estimations of rotation angle values
can be calculated as follows:

(1)�Rshoulder
=





PM1_SH_X− PM1_SH_O

PM1_SH_Y− PM1_SH_O

PM1_SH_Z− PM1_SH_O


 Bsh_orth




T

(2a)θ̃sh_elv = arccos
(
R̃shoulder
(2,2)

)

Page 9 of 29Borbély and Szolgay ﻿BioMed Eng OnLine (2017) 16:21

Although the formulations in (2a) and (2c) could be susceptible to modulo π and sign
errors in general, the allowed angle ranges defined in the model (θsh_elv: 0◦ → 180◦,
θsh_rot: −90◦ → 20◦) keep these equations safe to use until the experimental data does
not force the model outside of these ranges.

Elbow

Similarly to the shoulder, the experimental compound rotation matrix can be con-
structed from the actual spatial positions of the elbow’s prototype markers. Because the
model implements rotations in an incremental way, a reverse rotation of the extracted
frame have to be performed in the shoulder’s basis to get the correct experimental rota-
tion matrix for the elbow as shown in (3).

Having R̃elbow
= Relbow estimations of joint angle values in the elbow can be calculated

as (for further details, see Appendix 5):

 where rBpro_sup

el_flex = [x y z]

As in the case of the shoulder, (4a) and (4b) should be used with care because of mod-
ulo π and sign errors, but again having sufficient joint angle limits in the model (θel_flex
: 0◦ → 130◦, θpro_sup: −90◦ → 90◦) application of these formulas is safe until experi-
mental data does not force the model outside of these ranges.

(2b)θ̃elv = atan2
(
R̃shoulder
(3,2) ,−R̃shoulder

(1,2)

)

(2c)θ̃sh_rot = arcsin

(
AR̃shoulder

(2,1) + BR̃shoulder
(2,3)

A2 + B2

)

where A = sin(θ̃elv) sin(θ̃sh_elv) and B = cos(θ̃elv) sin(θ̃sh_elv)

(3)

�Relbow
=





PM2_EL_X− PM2_EL_O
PM2_EL_Y− PM2_EL_O
PM2_EL_Z− PM2_EL_O




�
Bsh_orth

�Rshoulder BT
sh_orth

�
Bpro_sup




T

(4a)θ̃el_flex = arccos

(
R̃elbow
(1,1) − x2

1− x2

)

(4b)θ̃pro_sup = arcsin

(
AR̃elbow

(1,2) + BR̃elbow
(1,3)

A2 + B2

)

A = y sin
(
θ̃el_flex

)
− xz

(
cos(θ̃el_flex)− 1

)

B = z sin
(
θ̃el_flex

)
+ xy

(
cos(θ̃el_flex)− 1

)

Page 10 of 29Borbély and Szolgay ﻿BioMed Eng OnLine (2017) 16:21

Wrist

The experimental compound rotation matrix for the wrist can be constructed from the
actual spatial positions of its prototype markers. Because of incremental rotations in the
model, reverse rotations of the extracted frame have to be performed in the shoulder’s
and elbow’s bases to get the correct experimental rotation matrix as shown in (5).

Although there is no closed form solution to calculate joint angle rotations in the wrist,
the flexion angle can be determined as the solution of the following root finding problem
(further details and definitions of a, b, c, x, y and z can be found in Appendix 7):

Based on this definition, the following properties hold for F(θflex, σ):

1.	 (−θflex + η) defines a baseline with constant negative slope for the two possible
solutions F(θflex,−1) and F(θflex, 1).

2.	 Because of the definition of the atan2(y,x) function, the value of atan2
(√

ξ − c2, c
)

will always be positive if
√
ξ − c2 is real (i.e. c2 ≤ ξ). This implies that the two solu-

tions to F(θflex, σ) do not cross the baseline but remain “below” (σ = −1) and
“above” (σ = 1) of it for all values of θflex.

As c depends on the actual compound rotation matrix R̃wrist, its value is influenced by
both θdev_c and θflex_c. As a consequence, there may be wrist configurations where
c2 > ξ for some regions of θflex, driving F(θflex, σ) into a singular state within these
regions. To prevent problems arising from this situation during the root finding process,
singularity border points for θflex can be determined as follows. Let (7) as defined in
(28), only θflex changed to ϑ to denote specific singularity border points.

Considering (6), singularity borders occur at locations where c2 = ξ, resulting in
c1,2 = ±

√
ξ . Using these equalities and Euler’s formula, c can be rewritten into an expo-

nential form that can be solved for ϑ resulting in the formulas shown below.

(5)

�Rwrist
=





PM3_WR_X− PM3_WR_O

PM3_WR_Y− PM3_WR_O

PM3_WR_Z− PM3_WR_O



�
Bsh_orth

�Rshoulder BT
sh_orth

�

·

�
Bpro_sup

�Relbow Bpro_sup
T
�
Bpdr3




T

(6)

Given F(θflex, σ) = −θflex + η + σ atan2
(
Re

(√
ξ − c2

)
, c

)
,

where
η = atan2(b, a)
σ ∈ {−1, 1}

ξ = a2 + b2

find θflex = µ such that F(µ, σ) = 0.

(7)c = x cos(ϑ)+ y sin(ϑ)+ z

(8)

c1 =
√
ξ :

ϑ
(1)
1,2 = − ln

(√
ξ − z ±

√
ξ − 2z

√
ξ − x2 − y2 + z2

x − iy

)
i

Page 11 of 29Borbély and Szolgay ﻿BioMed Eng OnLine (2017) 16:21

As a result, four separate complex-valued singularity border points can be determined
for all wrist configurations. To get a better understanding of the structure of F(θflex, σ) ,
the function was visually inspected with an interactive MATLAB script developed for
this purpose. The tool allows the simulation of different user-defined wrist configura-
tions through separate sliders for θdev_c and θflex_c while plotting all relevant informa-
tion about the problem (a representative screenshot is shown in Fig. 2). Based on manual
testing throughout the model-defined ranges for θdev_c and θflex_c, the following obser-
vations were made:

1.	 The condition in (23) is always met.
2.	 ϑ(k)

1,2 ((k = 1) ∨ (k = 2)) are separate real numbers if there is a singularity region in
the actual wrist configuration for ck. In this case θflex = ϑ

(k)
1 and θflex = ϑ

(k)
2 indi-

cate singularity border locations directly.
3.	 ϑ(k)

1,2 ((k = 1) ∨ (k = 2)) are complex conjugates if there is no singularity region in
the actual wrist configuration for ck. In this case θflex = Re

(
ϑ
(k)
1

)
= Re

(
ϑ
(k)
2

)
 indi-

cates the location where the values of F(θflex,−1) and F(θflex, 1) are closest to
(k = 1) and furthest from (k = 2) each other.

4.	 Re
(
ϑ
(2)
1,2

)
 always remain outside the model defined range of θflex.

5.	 θflex = η is the “gluing point” of F(θflex,−1) and F(θflex, 1), meaning that the
singularity region for c1 starts to develop from this location, driving F(θflex, σ) to
“stick” to the baseline.

6.	 If there is a singularity region for c1, Re
(
ϑ
(1)
1

)
 remains always smaller than µ where

F(µ, σ) = 0.

(9)

c2 = −

√
ξ :

ϑ
(2)
1,2 = − ln

(
−

√
ξ + z ±

√
ξ + 2z

√
ξ − x2 − y2 + z2

x − iy

)
i

Fig. 2  Representative screenshot of the tool developed for visual inspection of F(θflex , σ) [defined in (6)].
The interactive MATLAB script allows simulation of different user-defined wrist configurations through sepa-
rate sliders for θdev_c and θflex_c while plotting all relevant information about the optimization problem. The
two thinner vertical black lines located at ±35◦ indicate model-defined limits for θflex

Page 12 of 29Borbély and Szolgay ﻿BioMed Eng OnLine (2017) 16:21

7.	 In cases when the singularity region starts to develop (i.e.
∣∣∣Im

(
ϑ
(k)
1

)∣∣∣ is sufficiently
small but not zero), two separate roots may appear, but only one being valid.

8.	 F(θflex, σ) will have a valid root at θflex = µ if and only if σ = sign(µ− η).

Based on these observations, (6) can be solved with the following algorithm:

Algorithm 1: Numerical algorithm to calculate θflex

Data: x, y, z, η and ξ from (A.7.7) and (6)
Result: θflex = µ such that F (µ, σ) = 0

1 begin
2 calculate ϑ

(1)
1 and ϑ

(1)
2 from (8)

3 determine the interval [ζ1, ζ2] in which F (µ, σ) changes sign

4 if ϑ
(1)
1 − ϑ

(1)
2 < 10−10 then

5 θflex ←− arg zero
µ∈[ζ1,ζ2]

F (µ, 1)

6 else

7 if Re ϑ
(1)
1 > η then

8 θflex ←− arg zero
µ∈[ζ1,ζ2]

F (µ, 1)

9 else if Re ϑ
(1)
1 < η then

10 θflex ←− arg zero
µ∈[ζ1,ζ2]

F (µ,−1)

11 else
12 θflex ←− η

13 end

14 end

15 end

Having the value of θflex, θflex_c and θdev_c can be calculated as follows:

 where v1 = exp
(
θflexr̂

Bpdr3

flex

)
r
Bpdr3

pdr1 and w1 =

(
R̃wrist exp

(
−θflex [̂1 0 0]

))
r
Bpdr3

flex .

Although the computational demand of wrist angle calculations is higher than of the
shoulder and the elbow, the algorithm has still higher overall time efficiency than the
optimization approach used by OpenSim’s inverse kinematics tool, as it is shown in the
"Results" section.

(10a)θ̃flex_c = 2 ∗ θflex

(10b)θ̃dev_c = atan2
(
wT
1 r1 × v1, v

T
1 w1 −

(
vT1 r1

)(
wT
1 r1

))

Page 13 of 29Borbély and Szolgay ﻿BioMed Eng OnLine (2017) 16:21

Algorithm validation

Testing and validation of the described algorithm was automated using OpenSim with
its Python API and MATLAB. To make direct comparison possible between OpenSim’s
optimization method and the proposed algorithm, eight additional virtual markers were
placed on the model at locations that are suitable for optical motion capture (e.g. using
Vicon) simulating an environment where OpenSim is generally applied. The virtual
marker locations are the following (for visual reference, see Fig. 1d):

• • VM1_TH : Thorax marker at the upper end of the sternum.
• • VM2_AC : Acromio-clavicular joint of the shoulder girdle.
• • VM3_EL_IN : Medial epicondyle of the humerus.
• • VM4_EL_OUT : Lateral epicondyle of the humerus.
• • VM5_WR_IN : Distal head of the radius.
• • VM6_WR_OUT : Distal head of the ulna.
• • VM7_MC2 : Distal head of the second metacarpal bone.
• • VM8_MC5 : Distal head of the fifth metacarpal bone.

The structure of the upper limb model (including marker positions) was extracted using
OpenSim’s Python API and saved into a .mat file for further processing with MATLAB.
A forward kinematics function (functionally equivalent to OpenSim’s implementation)
was developed in MATLAB to calculate body and marker positions for specific joint
coordinate vectors of [θelv, θsh_elv, θsh_rot, θel_flex, θpro_sup, θdev_c, θflex_c] in the
model, enabling the analysis of trajectories for both PMx and VMx markers from artifi-
cially generated movement patterns (Fig. 1b–d).

Simulated movement patterns

To avoid possible problems accompanying experimental measurements, simulated
movement patterns were generated to test the performance and validity of the proposed
algorithm. 100 separate pseudo-random (random seed = 10) joint coordinate trajecto-
ries were constructed in MATLAB having a duration of 5 s and a sampling frequency
of 100 Hz. The trajectories were generated as 5th order Bézier-curves as shown in (11)
using six uniformly distributed control points (0, 20,...,100%) with randomly chosen val-
ues for each joint coordinate from their valid intervals defined in the model. A repre-
sentative movement pattern is shown in Fig. 3.

Following this step, forward kinematics was performed for each of the simulated pat-
terns to calculate PMx and VMx marker trajectories yielding simulated “measurement”
data as it would have been recorded during a real movement. The resulted trajectories
were then used as inputs to inverse kinematics calculations with OpenSim (VMx) and

(11)

B5(t) =

5∑

i=0

(
5
i

)
ti (1− t)5−i Pi

= (1− t)5P0 + 5t(1− t)4P1 + 10t2(1− t)3P2

+ 10t3(1− t)2P3 + 5t4(1− t)P4 + t5P5

where t ∈ [0, 1] and Pi, i ∈ {0, . . . , 5} are the control points.

Page 14 of 29Borbély and Szolgay ﻿BioMed Eng OnLine (2017) 16:21

our algorithm (PMx) while the corresponding movement patterns served as reference for
the outputs of each of the tested methods.

Inverse kinematics with OpenSim

To speed up the validation process, OpenSim (v3.3) was compiled from source on a Super-
micro server having two Intel® Xeon® E5-2695 v3 CPUs (with a total of 56 execution
threads) and 64 GB RAM, running Ubuntu Server 14.04.2 LTS operating system. Although
the inverse kinematics (IK) algorithm in the used OpenSim version do not utilize multi-
core architectures natively, each IK task can be divided into separate subtasks that can
run in parallel thanks to the applied optimization method (there is no data dependency
between time frames). To utilize this property, a pipeline was developed using MATLAB
and Bash to prepare VMx marker data and the required files for OpenSim and manage file
transfers, multi-threaded IK execution, results collection and evaluation. One important
step before performing the IK calculation in OpenSim is subject-specific scaling of the
used model and relative weighting of the markers. As only simulated data were used in the
current study on an unmodified upper limb model, the scaled model file was identical to
the original file during IK execution, while all marker weights were equal.

Algorithm implementation

The prototype of the proposed algorithm was implemented in MATLAB and tested
with the simulated PMx marker trajectories. Calculation of (6) was performed using

Fig. 3  Representative simulated movement pattern used for algorithm validation. Simulated movement
patterns were generated to validate the proposed kinematic algorithm. 100 separate pseudo-random joint
coordinate trajectories were constructed as 5th order Bézier-curves having 5 s duration and 100 Hz sampling
frequency. PMx and VMx marker trajectories were calculated with our forward kinematics MATLAB function
to generate simulated “measurement” data for the proposed algorithm and OpenSim

Page 15 of 29Borbély and Szolgay ﻿BioMed Eng OnLine (2017) 16:21

MATLAB’s built-in fzero() function. Based on the MATLAB version, the algorithm
was implemented in ANSI C to target practical applications. In this case (6) was solved
with Brent’s root finding algorithm from [44]. Furthermore, compilation options were
included to assess the effects of different data precisions (float or double) on the
accuracy and execution time of the algorithm. This was not an option with MATLAB
because fzero() cannot be used with float input.

To address possible accuracy problems arising from the lower precision of float
data, an additional test case with a simple output continuity check for wrist angles was
included, namely when the absolute difference between two successive θflex_c values is
larger than 5°, the actual θflex_c will be the previous θflex_c + 0.5°. This modified ver-
sion of the algorithm is denoted with mod. suffix among the results.

Evaluation platforms

MATLAB and C implementations of the proposed algorithm were tested on a sys-
tem with an Intel® Core® i5-540M processor running Ubuntu Desktop 14.04.4 LTS. In
addition, the C implementation was evaluated on the following microcontroller units
(MCUs) that are capable of targeting resource constrained environments (e.g. wearable
measurement devices) with high performance:

1.	 STM32F407VG - ARM Cortex-M4 core with single precision floating point unit
(FPU), up to 168 MHz core clock, 1 MB Flash memory, 192 KB SRAM.

2.	 STM32F746NG - ARM Cortex-M7 core with single precision FPU and L1-cache, up
to 216 MHz core clock, 1 MB Flash memory, 320 KB SRAM.

For proper comparison, both MCUs were clocked at 168 MHz and the source codes dif-
fered only in device specific details (e.g. hardware initialization). Algorithm evaluation
on the MCUs was controlled with MATLAB via a UART link including data preparation,
transmission and storage.

Performance metrics

To evaluate the overall performance of the algorithm compared to OpenSim’s IK
method, accuracy and execution times were analyzed in all cases (OpenSim, MATLAB
and C implementations). To assess accuracy, RMS values were computed for the differ-
ences between the calculated and simulated joint coordinate trajectories for each trial.
Means and standard deviations of these RMS values were then calculated across trials
for each platform and precision (where this was applicable).

Running times of OpenSim’s IK evaluation were calculated as a sum of subtask execu-
tion times from the IK log output directly. Algorithm execution times were measured
by the tic and toc methods in MATLAB, the clock() function from the <time.h>
library for the C implementation on PC and on-chip hardware timers clocked at 1 MHz
for both MCUs.

Data exclusion from OpenSim trials

Although inverse kinematics in OpenSim was calculated using an unmodified and
unscaled model in each trial, there were cases when large step errors occurred at

Page 16 of 29Borbély and Szolgay ﻿BioMed Eng OnLine (2017) 16:21

seemingly random locations in the IK output (independently of subtask borders men-
tioned in "Inverse kinematics with OpenSim" section). This phenomenon may be han-
dled by marker placement adjustment or error checking in measurement data in general.
As IK input was strictly controlled by using simulated trajectories and the markers
remained intact in the model between trials, further troubleshooting would have been
needed to find a solution to this issue. Because the main emphasis of the study is the
proposed algorithm and not OpenSim’s internal workings and IK troubleshooting, all
OpenSim trials were excluded from final accuracy assessment where any of the resulted
joint coordinate RMS errors exceeded 5° to not bias the results with incorrect data. As a
result, only 59 trials out of 100 were used to calculate the accuracy of OpenSim’s IK algo-
rithm. This however did not have any effect on the other measurements, so MATLAB
and all C results were calculated across 100 trials.

Results
Accuracy

RMS errors from algorithm evaluation are shown in Table 1. The results show that con-
sidering the mean of all valid trials (59 for OpenSim, 100 for all others), all platforms
performed reasonably well producing errors below 3° for all joint coordinates (for a trial-
wise visual comparison between OpenSim’s IK method and the proposed algorithm, see
Additional file 3).

Regarding OpenSim it can be seen that errors for each joint coordinate are larger
than those provided by our algorithm. The reason for this can lie in the optimization
approach of OpenSim that in fact contains hard-coded convergence (0.0001) and iter-
ation (1000) limits. However these limits prevent OpenSim’s IK algorithm to match
the simulated movement patterns perfectly, they provide a practical solution to the
accuracy ↔ running time trade-off for the software’s general usage.

MATLAB and C implementations of the proposed algorithm performed equally well
for shoulder and elbow angles independent of the used data precision (double / float).
This could occur because of the relatively low number of operations needed by these
joint coordinates shown in equation groups () and () that prevented considerable error
accumulation due to the lower precision of float. Regarding wrist angles a clear dis-
tinction can be made between double and float (MATLAB uses double as default).
The two main reasons for this phenomenon are (1) the significantly larger computational
demand of θdev_c and θflex_c involving iterative processes that can lead to precision
error accumulations and (2) rounding error based mismatch in the root finding process
involved in the calculation of θflex in rare cases when two roots are present in (6). A
deeper analysis among the trial-wise results revealed that the second reason was more
significant as roughly 70% of the trials ended up in no more than 0.1° maximum error
with float precision. The rest of the trials contained 1–5 “wrong” samples showing 15°–
20° impulse-like errors while the remaining samples within the trial did not have this
problem. Investigation of the erroneous samples revealed that indeed a wrong root for
(6) was found in these cases. To deal with this issue, an output continuity checking step
was implemented for float precision in cases denoted with the mod. suffix. This turned
out to be a simple yet effective solution to the problem as the corresponding results
show the disappearance of the impulse-like errors.

Page 17 of 29Borbély and Szolgay ﻿BioMed Eng OnLine (2017) 16:21

Ta
bl

e 
1 

RM
S

er
ro

rs

Ea
ch

 ro
w

 re
pr

es
en

ts
 a

 s
ep

ar
at

e
te

st
 e

nv
iro

nm
en

t f
or

 th
e

re
fe

re
nc

e
(O

pe
nS

im
) a

nd
 p

ro
po

se
d

in
ve

rs
e

ki
ne

m
at

ic
s

al
go

rit
hm

. T
he

 c
ol

um
ns

 s
ho

w
 m

ea
n
±

 st
an

da
rd

 d
ev

ia
tio

n
jo

in
t a

ng
le

 R
M

S
er

ro
rs

 a
cr

os
s

al
l v

al
id

 tr
ia

ls
 (5

9
fo

r
O

pe
nS

im
, 1

00
 o

th
er

w
is

e)
 fo

r e
ac

h
te

st
 e

nv
iro

nm
en

t

Te
st

 e
nv

iro
nm

en
t

θ
e
l
v

 (°
)

θ
s
h
_
e
l
v

 (°
)

θ
s
h
_
r
o
t
 (°

)
θ
e
l
_
f
l
e
x

 (°
)

θ
p
r
o
_
s
u
p

 (°
)

θ
d
e
v
_
c

 (°
)

θ
f
l
e
x
_
c

 (°
)

O
pe

nS
im

0.
04

29
 ±

 0
.0

33
9

0.
01

92
 ±

 0
.0

05
3

0.
14

72
 ±

 0
.0

76
0

0.
07

64
 ±

 0
.0

28
8

0.
63

65
 ±

 0
.1

70
1

0.
91

98
 ±

 0
.2

47
7

2.
29

16
 ±

 1
.1

14
2

M
AT

LA
B

0.
00

28
 ±

 0
.0

00
3

0.
00

06
 ±

 0
.0

00
2

0.
00

14
 ±

 0
.0

00
7

0.
00

05
 ±

 0
.0

00
2

0.
00

08
 ±

 0
.0

00
6

0.
00

23
 ±

 0
.0

04
1

0.
00

49
 ±

 0
.0

08
7

PC
 d

ou
bl

e
0.

00
28

 ±
 0

.0
00

3
0.

00
06

 ±
 0

.0
00

2
0.

00
14

 ±
 0

.0
00

7
0.

00
05

 ±
 0

.0
00

2
0.

00
08

 ±
 0

.0
00

6
0.

00
25

 ±
 0

.0
05

1
0.

00
53

 ±
 0

.0
10

7

PC
 fl

oa
t

0.
00

28
 ±

 0
.0

00
3

0.
00

06
 ±

 0
.0

00
2

0.
00

16
 ±

 0
.0

01
3

0.
00

05
 ±

 0
.0

00
2

0.
00

08
 ±

 0
.0

00
6

0.
41

93
 ±

 0
.8

99
5

1.
11

48
 ±

 2
.4

73
0

PC
 fl

oa
t m

od
.

0.
00

28
 ±

 0
.0

00
3

0.
00

06
 ±

 0
.0

00
2

0.
00

16
 ±

 0
.0

01
3

0.
00

05
 ±

 0
.0

00
2

0.
00

08
 ±

 0
.0

00
6

0.
00

45
 ±

 0
.0

09
2

0.
00

97
 ±

 0
.0

19
5

A
RM

 M
4

do
ub

le
0.

00
28

 ±
 0

.0
00

3
0.

00
06

 ±
 0

.0
00

2
0.

00
14

 ±
 0

.0
00

7
0.

00
05

 ±
 0

.0
00

2
0.

00
08

 ±
 0

.0
00

6
0.

00
25

 ±
 0

.0
05

1
0.

00
53

 ±
 0

.0
10

7

A
RM

 M
4

so
ft

 fl
oa

t
0.

00
28

 ±
 0

.0
00

3
0.

00
06

 ±
 0

.0
00

2
0.

00
16

 ±
 0

.0
01

3
0.

00
05

 ±
 0

.0
00

2
0.

00
08

 ±
 0

.0
00

6
0.

41
93

 ±
 0

.8
99

5
1.

11
47

 ±
 2

.4
73

0

A
RM

 M
4

ha
rd

 fl
oa

t
0.

00
28

 ±
 0

.0
00

3
0.

00
06

 ±
 0

.0
00

2
0.

00
16

 ±
 0

.0
01

3
0.

00
05

 ±
 0

.0
00

2
0.

00
08

 ±
 0

.0
00

6
0.

40
95

 ±
 0

.9
05

1
1.

09
44

 ±
 2

.4
84

0

A
RM

 M
4

so
ft

 fl
oa

t
m

od
.

0.
00

28
 ±

 0
.0

00
3

0.
00

06
 ±

 0
.0

00
2

0.
00

16
 ±

 0
.0

01
3

0.
00

05
 ±

 0
.0

00
2

0.
00

08
 ±

 0
.0

00
6

0.
00

78
 ±

 0
.0

12
8

0.
01

70
 ±

 0
.0

27
6

A
RM

 M
4

ha
rd

 fl
oa

t
m

od
.

0.
00

28
 ±

 0
.0

00
3

0.
00

06
 ±

 0
.0

00
2

0.
00

16
 ±

 0
.0

01
3

0.
00

05
 ±

 0
.0

00
2

0.
00

08
 ±

 0
.0

00
6

0.
00

77
 ±

 0
.0

12
8

0.
01

67
 ±

 0
.0

27
5

A
RM

 M
7

do
ub

le
0.

00
28

 ±
 0

.0
00

3
0.

00
06

 ±
 0

.0
00

2
0.

00
14

 ±
 0

.0
00

7
0.

00
05

 ±
 0

.0
00

2
0.

00
08

 ±
 0

.0
00

6
0.

00
25

 ±
 0

.0
05

1
0.

00
53

 ±
 0

.0
10

7

A
RM

 M
7

so
ft

 fl
oa

t
0.

00
28

 ±
 0

.0
00

3
0.

00
06

 ±
 0

.0
00

2
0.

00
16

 ±
 0

.0
01

3
0.

00
05

 ±
 0

.0
00

2
0.

00
08

 ±
 0

.0
00

6
0.

41
93

 ±
 0

.8
99

5
1.

11
47

 ±
 2

.4
73

0

A
RM

 M
7

ha
rd

 fl
oa

t
0.

00
28

 ±
 0

.0
00

3
0.

00
06

 ±
 0

.0
00

2
0.

00
16

 ±
 0

.0
01

3
0.

00
05

 ±
 0

.0
00

2
0.

00
08

 ±
 0

.0
00

6
0.

40
95

 ±
 0

.9
05

1
1.

09
44

 ±
 2

.4
84

0

A
RM

 M
7

so
ft

 fl
oa

t
m

od
.

0.
00

28
 ±

 0
.0

00
3

0.
00

06
 ±

 0
.0

00
2

0.
00

16
 ±

 0
.0

01
3

0.
00

05
 ±

 0
.0

00
2

0.
00

08
 ±

 0
.0

00
6

0.
00

78
 ±

 0
.0

12
8

0.
01

70
 ±

 0
.0

27
6

A
RM

 M
7

ha
rd

 fl
oa

t
m

od
.

0.
00

28
 ±

 0
.0

00
3

0.
00

06
 ±

 0
.0

00
2

0.
00

16
 ±

 0
.0

01
3

0.
00

05
 ±

 0
.0

00
2

0.
00

08
 ±

 0
.0

00
6

0.
00

77
 ±

 0
.0

12
8

0.
01

67
 ±

 0
.0

27
5

Page 18 of 29Borbély and Szolgay ﻿BioMed Eng OnLine (2017) 16:21

Execution time

To assess overall performance, execution times were compared between OpenSim’s IK
method and our proposed algorithm on different platforms and are shown in Table 2.

Measurement results show that the optimization approach of OpenSim performed the
calculation of a single iteration in 145 ms on average. Because of the application specific
nature of the proposed algorithm, its running times considering different implementa-
tions (MATLAB/C), data precisions (double/float) and platforms (PC/ARM Cortex-
M) all showed a significant increase in execution performance compared to OpenSim,
the worst result being about 5 ms on average for a single iteration.

As expected, the C implementation is more than two orders of magnitude faster than
the MATLAB version on the PC, yielding execution times per iteration about 10 μs
with all precision variants (double, float and float mod.). Opposed to this, running
times on embedded platforms showed more scattered results. The difference between
double and float is more expressed in these cases while application of the FPU accel-
erates float computations even further (hard float entries in Table 2). Regarding the
modified algorithm variant it can be seen that even the extra continuity check adds some
amount to the execution time per iteration, the possibility to use float precision brings
more speed advantage, especially with the FPU enabled. These findings are true for both
tested MCUs with the observation that ARM’s M7 architecture is about twice as fast as
M4 when running the presented algorithm with the same core clock.

Discussion
Evaluation results of the tested algorithms show that each approach provides proper
accuracy for most common arm movement analysis scenarios. One important aspect
however is that while OpenSim provides a useful general tool for biomechanical analy-
sis including fields beyond inverse kinematics (e.g. inverse and forward dynamics), the

Table 2  Execution times

Each row represents a separate test environment for the reference (OpenSim) and proposed inverse kinematics algorithm.
Table values show mean ± standard deviation for a single iteration across all valid trials (59 for OpenSim, 100 otherwise) and
the speed increase of each tested setup with respect to OpenSim

Test environment Execution time per iteration (ms) Speedup wrt. OpenSim

OpenSim 145.0532 ± 10.0669 1x

MATLAB 2.3656 ± 0.6689 61x

PC double 0.0111 ± 0.0013 13011x

PC float 0.0088 ± 0.0008 16416x

PC float mod. 0.0097 ± 0.0013 14982x

ARM M4 double 4.8777 ± 0.3554 30x

ARM M4 soft float 2.7327 ± 0.0928 53x

ARM M4 hard float 0.9713 ± 0.0214 149x

ARM M4 soft float mod. 2.7394 ± 0.0930 53x

ARM M4 hard float mod. 0.9740 ± 0.0216 149x

ARM M7 double 2.3124 ± 0.1704 63x

ARM M7 soft float 1.4293 ± 0.0504 101x

ARM M7 hard float 0.4462 ± 0.0117 325x

ARM M7 soft float mod. 1.4296 ± 0.0505 101x

ARM M7 hard float mod. 0.4478 ± 0.0115 324x

Page 19 of 29Borbély and Szolgay ﻿BioMed Eng OnLine (2017) 16:21

calculation of joint angles from the actual experimental data is rather demanding com-
putationally. As the output of this step gives the basis for all other analysis methods
in the software, the amount of time needed for the overall processing pipeline highly
depends on the efficiency of this algorithm. As Table 2 shows, the average amount of
time needed for OpenSim’s IK algorithm to perform a single iteration would allow about
7 Hz operation that falls behind the generally accepted practice in human movement
recording of at least 50 Hz. This property excludes OpenSim from tight integration with
systems requiring real-time movement kinematics, however that is not the software’s
original target application anyway (up to version 3.3 at least).

Considering the algorithm proposed in the study Tables 1 and 2 show a significant
improvement in performance in both accuracy and execution time when compared to
OpenSim’s IK method. The main reason for this difference is the algorithm’s applica-
tion specific nature with the utilization of both the internal structure of the used upper
limb model and inertial sensing of movement to determine limb segment orientations
directly. As the MATLAB version showed proper accuracy and sufficiently short exe-
cution time on the PC, implementation of the algorithm in ANSI C was reasonable to
assess its “real” performance without the overhead of a general prototyping tool that
MATLAB essentially has. Because accuracy results are the same or very similar across
specific variants of the C implementation (i.e. using double/float precision), only exe-
cution time differences are discussed later in the text.

Running times of the algorithm’s C implementation showed more than four orders of
magnitude speedup on the tested Intel® Core® i5-540M processor compared to Open-
Sim’s IK algorithm on a more recent and higher performance server CPU with Xeon®
architecture, yielding about 10 μs execution time per iteration for all variants. How-
ever this is an impressive improvement, running the algorithm on PC would still pose
problems from practical aspects of possible applications (e.g. total size and mobility of
the measurement system or communication overhead between the measuring and pro-
cessing device), so the real benefit of this speed increase lies in the “spare” performance
that opened the way to testing the algorithm in resource constrained embedded envi-
ronments. Evaluation of the proposed method on high performance MCUs showed that
all implementation variants that provided good accuracy (double and [soft/hard]
float mod.) had acceptable execution times on both architectures (M4 and M7) for
real-time operation, considering 100 Hz as sufficient sampling frequency for human
movement analysis. Based on these results, the specific implementation variant should
be chosen taking the overall design requirements of the actual practical application into
account (i.e. wearable measurement devices like the one presented in [45]) as in most
cases the algorithm should fit into a system containing other computationally demand-
ing processes (like sensor fusion algorithms) with power consumption being a critical
part of the design for example.

An other practical advantage of the described algorithm is that it enables subject-inde-
pendent joint angle reconstruction during the measurements. This means that by taking
advantage of the offset-independent nature of orientation sensing, no scaling is required
for the proper calculation of inverse kinematics (opposed to OpenSim) as long as the
IMUs are capable to produce good approximations of limb segment orientations.

Page 20 of 29Borbély and Szolgay ﻿BioMed Eng OnLine (2017) 16:21

It needs to be emphasized however that the application specific nature of the algo-
rithm and its dependency on the used upper limb model induce some practical con-
siderations, because having a method that works in a strictly controlled simulation
environment does not guarantee its applicability in a real situation. A fundamental thing
to consider is whether data provided by real sensors reflect arm segment orientations
needed by the algorithm accurately. As this was a key requirement from the beginning
of algorithm design, the prototype markers were defined in local bases of the joints that
can be directly expressed in terms of sensor orientations (for details, see Additional
files 1, 2). As an additional benefit, the definition of an anatomical calibration proce-
dure—often needed when inertial sensors are used for human movement recording—
can be avoided as the proposed algorithm does not use segment length information for
joint angle reconstruction. What cannot be avoided however is the accurate estimate of
sensor orientations, as the whole process depends highly on the precision of this step.
Although there is no ultimate solution to the problem of inertial sensor fusion yet, there
are continuous algorithmic efforts to reach higher accuracy and reliability (for differ-
ent highlighted approaches, see "Background" section). But even in cases when the sen-
sors provide accurate orientation information of the measured limb, care must be taken
when determining the limb’s reference orientation based on the measurements. The rea-
son for this is mainly inter-subject variability in the sense that even the model defines
the reference posture clearly, it cannot be assumed that any actual subject will repro-
duce the same posture very accurately that can lead to offset errors during the meas-
urement. Furthermore, the assumption was made during algorithm development that
the measured movement always remains within the valid joint angle ranges defined in
the model. As long as this assumption holds (as in the case of simulated movement pat-
terns presented in this study), the algorithm should not have problems with proper joint
angle reconstruction. However, if outliers are present in the experimental data (e.g. ref-
erence posture errors, inaccuracies in the measurement or the sensor fusion algorithm
or extreme anatomical ranges of a subject) undefined output states can occur. This may
be handled with a simple saturation technique on the algorithm level but rather should
be prevented by applying proper experimental design and calibration methods. In a
practical setup this involves proper sensor placement and various steps before the meas-
urements including zero motion offset compensation, hard and soft iron error compen-
sation in the magnetometer and determining relative sensor orientations with respect to
the measured segments [46, 47] for example.

Conclusions
With keeping the upper mentioned considerations in mind the proposed algorithm is
capable for real-time reconstruction of standardized anatomical joint angles even in
embedded environments, opening the way to complex applications requiring accurate
and fast calculation of model-based movement kinematics. Although the presented
algorithm is special to the selected upper limb model, the introduced approach by stra-
tegically placing the prototype markers can further be applied to other biomechanical
models in the future. As a result, the proposed method brings the possibility to widen
the application areas of OpenSim with complex models and making its overall analy-
sis pipeline more efficient by accelerating the calculation of inverse kinematics and

Page 21 of 29Borbély and Szolgay ﻿BioMed Eng OnLine (2017) 16:21

providing the possibility to perform this step even on the measurement device in cases
when accurate inertial movement sensing is applicable.

Abbreviations
LoS: line of sight; MEMS: micro-electro-mechanical system; IMU: inertial measurement unit; API: application program-
ming interface; IK: inverse kinematics; XML: extensible markup language; ANSI: American National Standards Institute;
MCU: microcontroller unit; FPU: floating point unit; PC: personal computer; RMS: root mean square.

Authors’ contributions
Both authors prepared the study and interpreted the results. In addition, BJB developed the mathematical background,
designed and implemented the software components required for the validation of the proposed algorithm and drafted
the manuscript. Both authors revised the manuscript and gave their final approval for publication. Both authors read and
approved the final manuscript.

Acknowledgements
The authors would like to sincerely thank Endre László for his technical assistance and for proof reading the manuscript.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
All data generated or analyzed during this study are included in this published article and its supplementary information
files.

Funding
This work was financially supported by the Central Funding Program of Pázmány Péter Catholic University under project
number KAP15-055-1.1-ITK.

Appendices
Appendix 1: Definitions

To facilitate algorithm description in the text, notations in Table 3 will be used to iden-
tify each degree of freedom and the rotation axes and angle values for them, where each
rotation axis (raxis_id) should be considered as a row vector.

Furthermore, the following definitions are introduced:

Additional files

Additional file 1. OpenSim version of the used upper limb model.
Additional file 2. Marker sets defined for the study.
Additional file 3. Joint angle reconstruction figures for all simulated trajectories.

Table 3  Axis and angle notations

The table lists identifiers derived from the model file and notations of rotation axes and angles for all relevant degrees of
freedom used for algorithm formulation

Anatomical joint Degree of freedom Identifier Rotation axis Rotation angle

Shoulder Elevation plane elv relv θelv

Thoracohumeral (elevation) angle sh_elv rsh_elv θsh_elv

Axial rotation sh_rot rsh_rot θsh_rot

Elbow Elbow flexion el_flex rel_flex θel_flex

Forearm rotation pro_sup rpro_sup θpro_sup

Wrist Deviation dev rdev θdev

Flexion flex rflex θflex

Proximal-distal r1 pdr1 rpdr1 θpdr1

Proximal-distal r3 pdr3 rpdr3 θpdr3

http://dx.doi.org/10.1186/s12938-016-0291-x
http://dx.doi.org/10.1186/s12938-016-0291-x
http://dx.doi.org/10.1186/s12938-016-0291-x

Page 22 of 29Borbély and Szolgay ﻿BioMed Eng OnLine (2017) 16:21

1.	 An orthonormal basis with a selected rotation axis in its main axis will be noted as
Baxis_id_0, where axis_id_0 is the identifier of the axis (e.g. for a basis with relv
in its main axis the basis will be Belv). If the basis is not formed by orthogonalization
of rotation vectors in the model (as in the case of the shoulder), Baxis_id_0 is defined
as

2.	 The rotation axis raxis_id expressed in the basis Baxis_id_0 is defined as

3.	 Given a unit length vector r ∈ R3, Rodrigues’ formula gives the rotation matrix about
r of an arbitrary angle θ ∈ [−π ,π [as

4.	 The matrix representation of an axis-angle rotation formed from a unit axis raxis_id
and angle θaxis_id expressed in the basis Baxis_id_0 is given as follows:

 where rBaxis_id_0

axis_id = [x y z], s = sin
(
θaxis_id

)
, c = cos

(
θaxis_id

)
 and C = 1− C .

5.	 The ith element of vector v is denoted as v(i). Similarly, the (i, j)th element of matrix
R is denoted as R(i,j), where i is the row index and j is the column index. Indexing
complete rows and columns is denoted as R(i,:) and R(:,j), respectively.

Appendix 2: QR orthogonalization

The general formula of QR orthogonalization is shown below, where A is a regular
matrix, Q is an orthogonal matrix, R is an upper triangular matrix, S is the sign diagonal
matrix of R and B is the resulting orthogonal matrix.

(12a)Baxis_id_0 =



raxis_id_0

r2
r3



T

where

(12b)r2 =
raxis_id_0 ×

(
raxis_id_0 − [1 0 0]

)
∥∥raxis_id_0 ×

(
raxis_id_0 − [1 0 0]

)∥∥ and

(12c)r3 =
raxis_id_0 × r2∥∥raxis_id_0 × r2

∥∥

(13)r
Baxis_id_0

axis_id = raxis_idBaxis_id_0

(14)
exp

(
θ r̂
)
= I3 + sin (θ)̂r + (1− cos (θ))̂r2

where r̂ : R3
→ R3 def

= r̂ v = r × v

(15)

R
Baxis_id_0
raxis_id (θaxis_id) = exp

�
θaxis_id �rBaxis_id_0

axis_id

�

≡



xxC + c xyC − zs xzC + ys
yxC + zs yyC + c yzC − xs
zxC − ys zyC + xs zzC + c




(16)A = QR

(17)
S =





sii = 1 if rii > 0
sii = −1 if rii < 0
sij = 0 if i �= j

Page 23 of 29Borbély and Szolgay ﻿BioMed Eng OnLine (2017) 16:21

Appendix 3: Auxiliary calculations for the shoulder

The orientation of the humerus is determined by four consecutive rotations in the shoul-
der in the order of elevation plane, elevation angle, -elevation plane and axial rotation
degrees of freedom (for axis and angle notations, see Table 3). Based on axis definitions
in the model, rotations about relv and rsh_rot can be estimated with an elementary rota-
tion about the second axis of Bsh_orth while the estimation of the rotation about rsh_elv
can be done with an elementary rotation about Bsh_orth’s third axis as shown in ().

Using these definitions, the symbolic expression of the compound rotation matrix that
represents the actual orientation in the shoulder can be calculated as shown in (20). For
the convenience of calculation, this step was performed with MATLAB’s Symbolic Math
Toolbox using the script shown in Appendix 4.

 where A = cos(θsh_elv) cos
2(θelv)+ sin2(θelv),

B = (1− cos(θsh_elv)) cos(θelv) sin(θelv), and
C = cos(θsh_elv) sin

2(θelv)+ cos2(θelv).

(18)B = QS

(19a)R
Bsh_orth
relv (θelv) =




cos(θelv) 0 sin(θelv)
0 1 0

− sin(θelv) 0 cos(θelv)




(19b)R
Bsh_orth
rsh_rot(θsh_rot) =




cos(θsh_rot) 0 sin(θsh_rot)
0 1 0

− sin(θsh_rot) 0 cos(θsh_rot)




(19c)R
Bsh_orth
rsh_elv(θsh_elv) =



cos(θsh_rot) − sin(θsh_elv) 0
sin(θsh_elv) cos(θsh_rot) 0

0 0 1




(20)

Rshoulder

= R
Bsh_orth
relv (θelv) R

Bsh_orth
rsh_elv (θsh_elv) R

Bsh_orth
relv (−θelv) R

Bsh_orth
rsh_rot (θsh_rot)

=




A cos(θsh_rot)− B sin(θsh_rot) − cos(θelv) sin(θsh_elv) A sin(θsh_rot)+ B cos(θsh_rot)

sin(θelv) sin(θsh_elv) sin(θsh_rot) cos(θsh_elv) cos(θelv) sin(θsh_elv) sin(θsh_rot)

+ cos(θelv) sin(θsh_elv) cos(θsh_rot) − sin(θelv) sin(θsh_elv) cos(θsh_rot)

B cos(θsh_rot)− C sin(θsh_rot) sin(θelv) sin(θsh_elv) B sin(θsh_rot)+ C cos(θsh_rot)




Page 24 of 29Borbély and Szolgay ﻿BioMed Eng OnLine (2017) 16:21

Appendix 4: MATLAB code for the compound rotation matrix of the shoulder

% anonymous function to generate rotation matrix about the second axis of

% the actual basis

R_2nd =@(theta) [cos(theta) 0 sin(theta) ;

0 1 0 ;

-sin(theta) 0 cos(theta)];

% anonymous function to generate rotation matrix about the third axis of

% the actual basis

R_3rd =@(theta) [cos(theta) -sin(theta) 0 ;

sin(theta) cos(theta) 0 ;

0 0 1];

% symbolic variables for the joint coordinates (rotation angles)

syms elv_angle shoulder_elv shoulder_rot;

% generate the individual rotation matrices

R_elv_angle = R_2nd(elv_angle);

R_shoulder_elv = R_3rd(shoulder_elv);

R_elv_angle_minus = R_2nd(-elv_angle);

R_shoulder_rot = R_2nd(shoulder_rot);

% calculate the compound rotation matrix

R_shoulder = R_elv_angle * R_shoulder_elv * R_elv_angle_minus * R_shoulder_rot;

Appendix 5: Auxiliary calculations for the elbow

The orientation of the forearm is defined by two consecutive rotations in the order of
elbow flexion and forearm rotation. If expressed in Bpro_sup, the rotation matrix about
rel_flex can be estimated as RBpro_sup

rel_flex (θel_flex) while rotation about rpro_sup cor-
responds to the elementary rotation about the first axis of Bpro_sup [denoted as
R
Bpro_sup
rpro_sup (θpro_sup)]. Multiplication of these matrices yields the compound rotation

matrix in the elbow as shown in (21) (the corresponding MATLAB script can be found
in Appendix 6).

(21)

Relbow
= R

Bpro_sup
rel_flex (θel_flex) R

Bpro_sup
rpro_sup (θpro_sup)

=




�
1− cos(θel_flex)

�
x2+ A sin(θpro_sup)− A cos(θpro_sup)+

cos(θel_flex) B cos(θpro_sup) B sin(θpro_sup)
z sin(θel_flex)− D cos(θpro_sup)− − D sin(θpro_sup)−

C E sin(θpro_sup) E cos(θpro_sup)
−y sin(θel_flex)− G sin(θpro_sup)+ G cos(θpro_sup)−

F H cos(θpro_sup) H sin(θpro_sup)




where

r
Bpro_sup

el_flex = [x y z]
A = y sin(θel_flex)− F
B = z sin(θel_flex)+ C
C = xy

�
cos(θel_flex)− 1

�

D =
�
1− cos(θel_flex)

�
y2 + cos(θel_flex)

E = x sin(θel_flex)+ yz
�
cos(θel_flex)− 1

�

F = xz
�
cos(θel_flex)− 1

�

G =
�
1− cos(θel_flex)

�
z2 + cos(θel_flex)

H = x sin(θel_flex)− yz
�
cos(θel_flex)− 1

�

Page 25 of 29Borbély and Szolgay ﻿BioMed Eng OnLine (2017) 16:21

Appendix 6: MATLAB code for the compound rotation matrix of the elbow

% anonymous function to generate rotation matrix about the first axis of

% the actual basis

R_1st =@(theta) [1 0 0 ;

0 cos(theta) -sin(theta) ;

0 sin(theta) cos(theta)];

% symbolic variables for axis coordinates (spatial) and

% joint coordinates (rotation angles)

syms x y z elbow_flexion pro_sup;

% auxiliary variables for the axis-angle rotation matrix

c = cos(elbow_flexion);

s = sin(elbow_flexion);

C = 1 - c;

% generate the individual rotation matrices

R_pro_sup = R_1st(pro_sup);

R_elbow_flexion = [x*x*C+c , x*y*C-z*s , x*z*C+y*s ;

y*x*C+z*s , y*y*C+c , y*z*C-x*s ;

z*x*C-y*s , z*y*C+x*s , z*z*C+c];

% calculate the compound rotation matrix

R_total = R_elbow_flexion * R_pro_sup;

Appendix 7: Auxiliary calculations for the wrist

The orientation of the hand is defined in the model by four consecutive rotations in the
order of deviation, flexion, proximal-distal r1 and proximal-distal r3. Although deviation
and flexion are used here as intermediate rotations, naming convention of actively con-
trolled joint coordinates and intermediate rotations is inconsistent in the model file at
this point because active joint coordinates of the wrist are called deviation and flexion,
too. To prevent ambiguity, angle values of controlled joint coordinates of the wrist will
be denoted as θdev_c and θflex_c further in the text. Intermediate wrist rotations are
distributed among two rows of carpal bones with different rotation angles depending on
the actual values of θdev_c and θflex_c as follows:

1.	 Deviation and flexion are defined in the lunate body with rotation angle values of
θdev = θdev_c and θflex = 0.5 ∗ θflex_c.

2.	 Proximal-distal r1 and proximal-distal r3 are defined in the capitate body with rota-
tion angle values of θpdr1 = 1.5 ∗ θdev_c if θdev_c is negative and θpdr1 = θdev_c oth-
erwise, and θpdr3 = 0.5 ∗ θflex_c.

3.	 The angle limits for the controlled coordinates are: θdev_c ∈ [−10◦, 25◦] and
θflex_c ∈ [−70◦, 70◦].

If expressed in Bpdr3, the rotation matrices about rdev and rflex can be estimated as
R
Bpdr3

rdev (θdev) and RBpdr3

rflex (θflex), while rotation matrices for rpdr1 and rpdr3 can be
expressed as RBpdr3

rpdr1 (θpdr1) and an elementary rotation about the first axis of Bpdr3 ,

Page 26 of 29Borbély and Szolgay ﻿BioMed Eng OnLine (2017) 16:21

denoted by RBpdr3

rpdr3 (θpdr3). Similarly to the shoulder and elbow joints, the compound
rotation matrix in the wrist can be written as follows:

One difficulty however is that this formulation contains three axis-angle rotations out of
four that makes Rwrist a very complex symbolic expression with no closed form algebraic
solution for the individual rotation angle values.

This problem was handled using a decomposition approach from the literature. As it is
shown by Piovan and Bullo in [48], three Euler angles about arbitrary axes can be deter-
mined from a rotation matrix if the rotation axes are known and the following condition
is fulfilled:

where R is the rotation matrix and {r1, r2, r3} are the column vector rotation axes. If we
assume that r1, r2, r3 and R satisfy (23), Euler angle values {θ1, θ2, θ3} can be calculated as
follows:

• • θ2 is one of the two solutions to

 where a = −rT1 r̂
2
2r3, b = rT1 r̂2r3 and c = rT1

(
R − I3 − r̂22

)
r3.

• • if RT r1 �= ±r3, then the angles θ1 and θ3 are uniquely determined by

 where v1 = exp
(
θ2r̂2

)
r3, w1 = Rr3, v3 = exp

(
−θ2r̂2

)
r1, w3 = RT r1.

As the inverse of any rotation matrix equals its transpose and the model defines the
equality of θflex = θpdr3, (22) can be rewritten into

Having R̃wrist = Rwrist, (24) can be used to express θflex from (27) as follows (all rBaxis_id_0

axis_id
here are considered as column vectors):

(22)Rwrist
= R

Bpdr3

rdev (θdev) R
Bpdr3

rflex (θflex) R
Bpdr3

rpdr1 (θpdr1) R
Bpdr3

rpdr3 (θpdr3)

(23)
∣∣∣rT1

(
R − r2 r

T
2

)
r3

∣∣∣ ≤
√

1−
(
rT1 r2

)2
√
1−

(
rT3 r2

)2

(24)(θ2)1,2 = atan2(b, a)± atan2
(√

a2 + b2 − c2, c
)

(25)θ1 = atan2
(
wT
1 r1 × v1, v

T
1 w1 −

(
vT1 r1

)(
wT
1 r1

))

(26)θ3 = −atan2
(
wT
3 r3 × v3, v

T
3 w3 −

(
vT3 r3

)(
wT
3 r3

))

(27)

Rwrist



1 0 0
0 cos (θflex) sin (θflex)
0 − sin (θflex) cos (θflex)


 = R

Bpdr3

rdev (θdev) R
Bpdr3

rflex (θflex) R
Bpdr3

rpdr1 (θpdr1).

Page 27 of 29Borbély and Szolgay ﻿BioMed Eng OnLine (2017) 16:21

where x, y and z are defined as

Received: 16 August 2016 Accepted: 30 November 2016

References
	1.	 Zheng H, Black ND, Harris ND. Position-sensing technologies for movement analysis in stroke rehabilitation. Med

Biol Eng Comput. 2005;43(4):413–20. doi:10.1007/BF02344720.
	2.	 Wu CY, Lin KC, Chen HC, Chen IH, Hong WH. Effects of modified constraint-induced movement therapy on move-

ment kinematics and daily function in patients with stroke: a kinematic study of motor control mechanisms.
Neurorehabil Neural Repair. 2007;21(5):460–6. doi:10.1177/1545968307303411.

	3.	 Zhou H, Hu H. Human motion tracking for rehabilitation—a survey. Biomed Signal Process Control. 2008;3(1):1–18.
doi:10.1016/j.bspc.2007.09.001.

	4.	 Stephenson JL, Lamontagne A, De Serres SJ. The coordination of upper and lower limb movements during gait in
healthy and stroke individuals. Gait Posture. 2009;29(1):11–6. doi:10.1016/j.gaitpost.2008.05.013.

	5.	 O’Donoghue P. Research methods for sports performance analysis. Abingdon: Routledge; 2010.
	6.	 Yang N, Zhang M, Huang C, Jin D. Motion quality evaluation of upper limb target-reaching movements. Med Eng

Phys. 2002;24(2):115–20. doi:10.1016/S1350-4533(01)00121-7.
	7.	 Vandenberghe A, Levin O, De Schutter J, Swinnen S, Jonkers I. Three-dimensional reaching tasks: effect of reaching

height and width on upper limb kinematics and muscle activity. Gait Posture. 2010;32(4):500–7. doi:10.1016/j.
gaitpost.2010.07.009.

	8.	 Borbély BJ, Straube A, Eggert T. Motor synergies during manual tracking differ between familiar and unfamiliar
trajectories. Exp Brain Res. 2013;232(3):1–13. doi:10.1007/s00221-013-3801-0.

	9.	 Vignais N, Marin F. Analysis of the musculoskeletal system of the hand and forearm during a cylinder grasping task.
Int J Ind Ergon. 2014;44(4):535–43. doi:10.1016/j.ergon.2014.03.006.

	10.	 Song D, Lan N, Loeb GE, Gordon J. Model-based sensorimotor integration for multi-joint control: development of a
virtual arm model. Ann Biomed Eng. 2008;36(6):1033–48. doi:10.1007/s10439-008-9461-8.

	11.	 Park MS, Chung CY, Lee SH, Choi IH, Cho TJ, Yoo WJ, Park BSMY, Lee KM. Effects of distal hamstring lengthening on
sagittal motion in patients with diplegia. Hamstring length and its clinical use. Gait Posture. 2009;30(4):487–91.
doi:10.1016/j.gaitpost.2009.07.115.

	12.	 Arnold EM, Ward SR, Lieber RL, Delp SL. A model of the lower limb for analysis of human movement. Ann Biomed
Eng. 2010;38(2):269–79. doi:10.1007/s10439-009-9852-5.

(28)

(θflex)1,2 = atan2(b, a)± atan2
�√

a2 + b2 − c2, c
�
,

where

a = −

�
r
Bpdr3

dev

�T�
�rBpdr3

flex

�2
r
Bpdr3

pdr1

b =

�
r
Bpdr3

dev

�T
�rBpdr3

flex r
Bpdr3

pdr1

c =

�
r
Bpdr3

dev

�T

�Rwrist



1 0 0
0 cos (θflex) sin (θflex)
0 − sin (θflex) cos (θflex)


− I3 −

�
�rBpdr3

flex

�2

r

Bpdr3

pdr1

= x cos (θflex)+ y sin (θflex)+ z

x =

�
r
Bpdr3

pdr1

�T �
0,
�
r
Bpdr3

dev

�T �Rwrist
(:,(2,3))

�T

y =

�
r
Bpdr3

pdr1 (3)
,−r

Bpdr3

pdr1 (2)

���
r
Bpdr3

dev

�T �Rwrist
(:,(2,3))

�T

z =

�
r
Bpdr3

pdr1 (1)
,−r

Bpdr3

pdr1 (2)
,−r

Bpdr3

pdr1 (3)

�





�Rwrist
(1,1)

�Rwrist
(2,1)

�Rwrist
(3,1)

0 0 0
0 0 0




+



−1 0 0
0 1 0
0 0 1


 r

Bpdr3

flex

�
r
Bpdr3

flex

�T

 r

Bpdr3

dev

http://dx.doi.org/10.1007/BF02344720
http://dx.doi.org/10.1177/1545968307303411
http://dx.doi.org/10.1016/j.bspc.2007.09.001
http://dx.doi.org/10.1016/j.gaitpost.2008.05.013
http://dx.doi.org/10.1016/S1350-4533(01)00121-7
http://dx.doi.org/10.1016/j.gaitpost.2010.07.009
http://dx.doi.org/10.1016/j.gaitpost.2010.07.009
http://dx.doi.org/10.1007/s00221-013-3801-0
http://dx.doi.org/10.1016/j.ergon.2014.03.006
http://dx.doi.org/10.1007/s10439-008-9461-8
http://dx.doi.org/10.1016/j.gaitpost.2009.07.115
http://dx.doi.org/10.1007/s10439-009-9852-5

Page 28 of 29Borbély and Szolgay ﻿BioMed Eng OnLine (2017) 16:21

	13.	 Veeger DHEJ. “ What if”: the use of biomechanical models for understanding and treating upper extremity musculo-
skeletal disorders. Man Ther. 2011;16(1):48–50. doi:10.1016/j.math.2010.09.004.

	14.	 Gustus A, Stillfried G, Visser J. Human hand modelling: kinematics, dynamics, applications. Biol Cybern.
2012;106:741–55. doi:10.1007/s00422-012-0532-4.

	15.	 Bolsterlee B, Veeger DHEJ, Chadwick EK. Clinical applications of musculoskeletal modelling for the shoulder and
upper limb. Med Biol Eng Comput. 2013;51(9):953–63. doi:10.1007/s11517-013-1099-5.

	16.	 Luinge HJ, Veltink PH. Measuring orientation of human body segments using miniature gyroscopes and accelerom-
eters. Med Biol Eng Comput. 2005;43(2):273–82. doi:10.1007/BF02345966.

	17.	 Sabatelli S, Galgani M, Fanucci L, Rocchi A. A double stage Kalman filter for sensor fusion and orientation tracking in
9D IMU. In: Sensors applications symposium (SAS). New York: IEEE; 2012. p. 1–5.

	18.	 Madgwick SOH, Harrison AJL, Vaidyanathan A. Estimation of IMU and MARG orientation using a gradient descent
algorithm. IEEE Int Conf Rehabil Robot. 2011;2011:5975346. doi:10.1109/ICORR.2011.5975346.

	19.	 Mahony R, Hamel T, Pflimlin JM. Nonlinear complementary filters on the special orthogonal group. IEEE Trans Autom
Control. 2008;53(5):1203–18. doi:10.1109/TAC.2008.923738.

	20.	 Tian Y, Wei H, Tan J. An adaptive-gain complementary filter for real-time human motion tracking with MARG sensors
in free-living environments. IEEE Trans Neural Syst Rehabil Eng. 2013;21(2):254–64. doi:10.1109/TNSRE.2012.2205706.

	21.	 Olivares A, Górriz JM, Ramírez J, Olivares G. Accurate human limb angle measurement: sensor fusion through
Kalman, least mean squares and recursive least-squares adaptive filtering. Meas Sci Technol. 2011;22(2):25801.

	22.	 Cutti AG, Giovanardi A, Rocchi L, Davalli A, Sacchetti R. Ambulatory measurement of shoulder and elbow kinematics
through inertial and magnetic sensors. Med Biol Eng Comput. 2008;46(2):169–78. doi:10.1007/s11517-007-0296-5.

	23.	 Kontaxis A, Cutti AG, Johnson GR, Veeger HEJ. A framework for the definition of standardized protocols for measur-
ing upper-extremity kinematics. Clin Biomech. 2009;24(3):246–53. doi:10.1016/j.clinbiomech.2008.12.009.

	24.	 de Vries WHK, Veeger HEJ, Cutti AG, Baten C, van der Helm FCT. Functionally interpretable local coordinate
systems for the upper extremity using inertial & magnetic measurement systems. J Biomech. 2010;43(10):1983–8.
doi:10.1016/j.jbiomech.2010.03.007.

	25.	 Parel I, Cutti AG, Fiumana G, Porcellini G, Verni G, Accardo AP. Ambulatory measurement of the scapulohumeral
rhythm: intra- and inter-rater reliability of a protocol based on inertial and magnetic sensors. Gait Posture.
2012;35:636–40. doi:10.3233/978-1-60750-080-3-164.

	26.	 Holzbaur KRS, Murray WM, Delp SL. A model of the upper extremity for simulating musculoskeletal surgery and
analyzing neuromuscular control. Ann Biomed Eng. 2005;33(6):829–40. doi:10.1007/s10439-005-3320-7.

	27.	 Wu G, Van Der Helm FCT, Veeger HEJ, Makhsous M, Van Roy P, Anglin C, Nagels J, Karduna AR, McQuade K, Wang
X, Werner FW, Buchholz B. ISB recommendation on definitions of joint coordinate systems of various joints for
the reporting of human joint motion—Part II: Shoulder, elbow, wrist and hand. J Biomech. 2005;38(5):981–92.
doi:10.1016/j.jbiomech.2004.05.042. [arXiv:111].

	28.	 Vicon Oxford Foot Model. https://www.vicon.com/products/software/oxford-foot-model. Accessed 7 Nov 2016.
	29.	 Motive: body software for OptiTrack. http://www.optitrack.com/products/motive/body/. Accessed 7 Nov 2016.
	30.	 van den Bogert AJ, Geijtenbeek T, Even-Zohar O, Steenbrink F, Hardin EC. A real-time system for biomechanical

analysis of human movement and muscle function. Med Biol Eng Comput. 2013;51(10):1069–77. doi:10.1007/
s11517-013-1076-z.

	31.	 Delp SL, Loan JP, Hoy MG, Zajac FE, Topp EL, Rosen JM. An interactive graphics-based model of the lower extremity
to study orthopaedic surgical procedures. IEEE Trans Biomed Eng. 1990;37(8):757–67. doi:10.1109/10.102791.

	32.	 Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG. OpenSim: open-source
software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54(11):1940–50.
doi:10.1109/TBME.2007.901024.

	33.	 Muceli S, Farina D. Simultaneous and proportional estimation of hand kinematics from EMG during mirrored
movements at multiple degrees-of-freedom. IEEE Trans Neural Syst Rehabil Eng. 2012;20(3):371–8. doi:10.1109/
TNSRE.2011.2178039.

	34.	 Jiang N, Vest-Nielsen JL, Muceli S, Farina D. EMG-based simultaneous and proportional estimation of wrist/hand
dynamics in uni-lateral trans-radial amputees. J Neuroeng Rehabil. 2012;9(1):42. doi:10.1186/1743-0003-9-42.

	35.	 Jiang N, Muceli S, Graimann B, Farina D. Effect of arm position on the prediction of kinematics from EMG in ampu-
tees. Med Biol Eng Comput. 2013;51(1–2):143–51. doi:10.1007/s11517-012-0979-4.

	36.	 Borbély BJ, Szolgay P. Estimating the instantaneous wrist flexion angle from multi-channel surface EMG of forearm
muscles. In: 2013 IEEE biomedical circuits and systems conference, BioCAS. New York: IEEE; 2013. p. 77–80.

	37.	 Blana D, Kyriacou T, Lambrecht JM, Chadwick EK. Feasibility of using combined EMG and kinematic signals for
prosthesis control: a simulation study using a virtual reality environment. J Electromyogr Kinesiol. 2015;29:21–7.
doi:10.1016/j.jelekin.2015.06.010.

	38.	 Borbély BJ, Szolgay P. A system concept for emg classification from measurement to deployment. In: 2016 15th
international workshop on cellular nanoscale networks and their applications (CNNA). 2016. p. 121–122.

	39.	 Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015;61:85–117. doi:10.1016/j.neu-
net.2014.09.003. [arXiv:1404.7828].

	40.	 Holzbaur KRS, Murray WM, Delp SL. Upper extremity kinematic model, Simtk resource. https://simtk.org/home/up-
ext-model. Accessed 6 Jul 2016.

	41.	 Delp SL, Loan P, Krystyne B. SIMM 7.0 for windows user’s manual. 2013. http://www.musculographics.com/down-
load/SIMM7.0UserGuide.pdf. Accessed 6 Jul 2016.

	42.	 Hicks J. OpenSim documentations: how scaling works. http://simtk-confluence.stanford.edu:8080/display/Open-
Sim/How+Scaling+Works. Accessed 6 Jul 2016.

	43.	 Hicks J. OpenSim documentations: how inverse kinematics works. http://simtk-confluence.stanford.edu:8080/dis-
play/OpenSim/How+Inverse+Kinematics+Works. Accessed 6 Jul 2016.

	44.	 Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes in the art of scientific computing. 2nd ed. New
York: Cambridge University Press; 1992. p. 359–62.

http://dx.doi.org/10.1016/j.math.2010.09.004
http://dx.doi.org/10.1007/s00422-012-0532-4
http://dx.doi.org/10.1007/s11517-013-1099-5
http://dx.doi.org/10.1007/BF02345966
http://dx.doi.org/10.1109/ICORR.2011.5975346
http://dx.doi.org/10.1109/TAC.2008.923738
http://dx.doi.org/10.1109/TNSRE.2012.2205706
http://dx.doi.org/10.1007/s11517-007-0296-5
http://dx.doi.org/10.1016/j.clinbiomech.2008.12.009
http://dx.doi.org/10.1016/j.jbiomech.2010.03.007
http://dx.doi.org/10.3233/978-1-60750-080-3-164
http://dx.doi.org/10.1007/s10439-005-3320-7
http://dx.doi.org/10.1016/j.jbiomech.2004.05.042.
http://arxiv.org/abs/111
https://www.vicon.com/products/software/oxford-foot-model
http://www.optitrack.com/products/motive/body/
http://dx.doi.org/10.1007/s11517-013-1076-z
http://dx.doi.org/10.1007/s11517-013-1076-z
http://dx.doi.org/10.1109/10.102791
http://dx.doi.org/10.1109/TBME.2007.901024
http://dx.doi.org/10.1109/TNSRE.2011.2178039
http://dx.doi.org/10.1109/TNSRE.2011.2178039
http://dx.doi.org/10.1186/1743-0003-9-42
http://dx.doi.org/10.1007/s11517-012-0979-4
http://dx.doi.org/10.1016/j.jelekin.2015.06.010
http://dx.doi.org/10.1016/j.neunet.2014.09.003.
http://dx.doi.org/10.1016/j.neunet.2014.09.003.
http://arxiv.org/abs/1404.7828
https://simtk.org/home/up-ext-model
https://simtk.org/home/up-ext-model
http://www.musculographics.com/download/SIMM7.0UserGuide.pdf
http://www.musculographics.com/download/SIMM7.0UserGuide.pdf
http://simtk-confluence.stanford.edu:8080/display/OpenSim/How+Scaling+Works
http://simtk-confluence.stanford.edu:8080/display/OpenSim/How+Scaling+Works
http://simtk-confluence.stanford.edu:8080/display/OpenSim/How+Inverse+Kinematics+Works
http://simtk-confluence.stanford.edu:8080/display/OpenSim/How+Inverse+Kinematics+Works

Page 29 of 29Borbély and Szolgay ﻿BioMed Eng OnLine (2017) 16:21

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

	45.	 Borbély BJ, Tihanyi A, Szolgay P. A measurement system for wrist movements in biomedical applications. In: 2015
European conference on circuit theory and design (ECCTD). New York: IEEE. p. 1–4.

	46.	 Bonnet S, Bassompierre C, Godin C, Lesecq S, Barraud A. Calibration methods for inertial and magnetic sensors. Sens
Actuators A Phys. 2009;156(2):302–11. doi:10.1016/j.sna.2009.10.008.

	47.	 Vanegas M, Stirling L. Characterization of inertial measurement unit placement on the human body upon repeated
donnings. In: 2015 IEEE 12th international conference on wearable and implantable body sensor networks (BSN).
New York: IEEE; 2015. p. 1–6.

	48.	 Piovan G, Bullo F. On coordinate-free rotation decomposition: Euler angles about arbitrary axes. IEEE Trans Robot.
2012;28(3):728–33. doi:10.1109/TRO.2012.2184951.

http://dx.doi.org/10.1016/j.sna.2009.10.008
http://dx.doi.org/10.1109/TRO.2012.2184951

	Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations
	Abstract
	Background:
	Methods:
	Results:
	Conclusions:

	Background
	Purpose of the study

	Methods
	Upper limb model
	Orientation from joint coordinates
	Markers, scaling and inverse kinematics

	Prototype markers
	Orthonormal bases
	Marker placement

	Algorithm description
	Shoulder
	Elbow
	Wrist

	Algorithm validation
	Simulated movement patterns
	Inverse kinematics with OpenSim
	Algorithm implementation
	Evaluation platforms
	Performance metrics
	Data exclusion from OpenSim trials

	Results
	Accuracy
	Execution time

	Discussion
	Conclusions
	Authors’ contributions
	References

