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of Psychology, Technische tion process after an amputation with both perceived technological and psychological
Bg‘ﬁggi amsatist' aspects playing an important role. However, available psychometric questionnaires fail
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article which measure satisfaction with the prosthesis. The results of a first study are used to

determine the basic parameters of the statistical model. These distributions represent
hypotheses about factor loadings between manifest items and latent factors of the
proposed psychometric questionnaire.

Methods: A study was conducted and analyzed to form hypotheses for the prior
distributions of the questionnaire’s measurement model. An expert agreement study
conducted on 22 experts was used to determine the prior distribution of item-factor
loadings in the model.

Results: Model parameters that had to be specified as part of the measurement
model were informed prior distributions on the item-factor loadings. For the current 70
items in the questionnaire, each factor loading was set to represent the certainty with
which experts had assigned the items to their respective factors. Considering only the
measurement model and not the structural model of the questionnaire, 70 out of 217
informed prior distributions on parameters were set.

Conclusion: The use of preliminary studies to set prior distributions in latent trait
models, while being a relatively new approach in psychological research, provides
helpful information towards the design of a seven factor questionnaire that means to
identify relations between technical and psychological factors in prosthetic product
design and rehabilitation medicine.
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Background

Traditional product development uses several established methods and tools to organize
its development phases and implement design aspects relevant. In rehabilitational prod-
uct design like prosthetics, it is crucial to consider the needs of the users because they
are literally connected to their prosthesis and will be accordingly affected by bad design
decisions.

Able-bodied persons can complete tasks normally with the help of their limbs and
sensorimotor body functions and the loss of body parts through amputation can cause
severe physiological and psychological trauma [1]. In a rehabilitation context, psycho-
logical phenomena such as phantom limb pain or the rubber hand/foot illusion [2] show
that adapting to a product which replaces a lost body part is a challenge to the body’s
sensorimotor integrity. Therefore, approaches to include the user in the development of
prosthetics by using methods like the quality function deployment [3] or concept simu-
lators [4] have been proposed [5, 6].

Current state of prosthetic satisfaction research

How do currently available questionnaires deal with the difficulties mentioned above?
The most commonly used questionnaires in prosthetics deal with impairments on the
user’s quality of life and the psychosocial adjustments to life with a prosthesis [7, 8]
as well as their impact on product satisfaction. They partially explore the presence of
phantom limb pain and processes involving the body image [9] but their scales are not
well suited to provide useful information for product development or the “human in the
loop” approach. User satisfaction with the prosthesis if measured on one dimension,
shows a positive correlation between product satisfaction and activity restrictions [10]
which indicate an effect on satisfaction caused by multiple independent sources. This
article proposes a questionnaire based on the latent trait model described in [11-13]
aimed at prosthesis users. It shares similarities to other theoretical sources of amputee
needs [9] but differs with regard to the implementation and interaction of technical and
psychological factors.

Probabilistic inference

To facilitate understanding of the methodology of this paper, this section provides a
short introduction to probabilistic inference. As opposed to frequentist inference, prob-
abilistic inference involves the formulation and testing of hypotheses by establishing
probability distributions of the values the variables and parameters in question can take
on. This process begins with the formulation of a prior distribution. In a given area of
research, an effect variable A has on variable B might be common knowledge because
it has been found and replicated in a number of studies. Sometimes the found effect is
smaller or larger than before but the distribution of these previously found effects can
and should be integrated into the current analysis. Instead of assuming no knowledge
about the effect under investigation when we start gathering data we can establish the
prior distribution as probabilistic information about the size of the effect parameter.
Given what we know up until this point in time we then start gathering and interpret-
ing data, arriving at another distribution of values. In probabilistic terms, the parameter
distribution of our data is called the likelihood. Bayes’ theorem offers the mathematically
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appropriate way to combine both distributions to arrive at a posterior estimate. Given
both our prior knowledge about the proposed effect and the new data, the posterior dis-
tribution is the best estimate of the effect we are interested in investigating. Besides its
purely data-analytical application current research provides evidence that some form of
probabilistic inference underlies human perception and decision making. This is even
true up to a point where sensorimotor events can best be described by using Bayesian
inference [14]. In a scenario like in this paper where a complex statistical analysis takes
place and there are many parameters to determine, Bayesian inference has a different
set of requirements than frequentist inference would impose on the data. In addition,
it makes obtaining a credible estimate of parameter values inside a statistical model
relatively straightforward. Especially the notion and common confusion about confi-
dence intervals becomes an issue in this study: If one is interested in designing a reli-
able measurement tool such as the proposed questionnaire, one needs to understand
the probability of one item influencing one factor with relative certainty or learn about
the most likely values of a regression parameter between one factor and another. In this
scenario a regression parameter between factors describes how much the value of one
factor increases or decreases depending on the value of another one. Frequentist analy-
sis does not provide that information in an easily interpretable manner. “Highest Cred-
ibility Intervals” or “Highest Density Intervals” (HDI) [15] on the other hand do. In this
paper, we utilize prior knowledge about parameters of the model by means of an expert
study. But even experts cannot judge with absolute certainty, just like we cannot be com-
pletely certain about how large the value of a factor loading really is. This uncertainty
is reflected in the width of an HDI, making the spectrum of probable values extremely
large or relatively narrow. By gaining prior information about the parameter values of
the proposed latent trait model, we try to state hypotheses about the psychometric eval-
uation of this questionnaire more precisely than before, making inferences drawn from

data more reliable.

Psychometric evaluation via Bayesian inference

In order to psychometrically validate the latent trait model, two methodological steps
are followed: firstly, the items are each assigned to one factor and the resulting model
is tested by means of confirmatory factor analysis. Secondly, for each factor formed out
of a linear combination of its corresponding items, the relationships between factors is
assessed via linear regression.

By applying Bayesian inference methodology, one is able to assign prior distributions
to each of the assessed parameters described above. Prior knowledge about each item’s
factor loading as well as the regression coefficients between factors can be described by
a prior distribution, implying hypotheses about the quantitative nature of the parameter.
When there is a lack of prior information, one uses what is known as an uninformative
prior distribution, characterized by a centered mean and high standard deviation in a
distribution. There is an ongoing debate in statistical science about whether the use of
informed priors is valid in scientific research, but just as in regular hypothesis testing,
it is favorable to include every available source of prior information [16] into a statisti-
cal model. In order to assess the legitimacy of the chosen prior distributions, one can
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cross-validate the statistical model by comparing it to a completely uninformed alterna-
tive to see if one’s choice of prior distributions affected the outcome of the analysis [15].

Methods and expert evaluation

An expert study was included into the process of informing prior distributions in the
latent trait model. It was conducted at the Technische Universitat Darmstadt, Germany,
in 2013.

Assessment of expert agreement on item-factor classification

This first study assessed the level of agreement reached by 22 experts in the field of pros-
thetics when assigning each item (85 at the time) to a factor of the framework described
[11-13] in a web-based sorting game. The experts did not answer the items on a scale
as a prosthesis user would but rather had to assign them to the latent factor they felt
the items belonged to the most. The factors in question were satisfaction (SAT), feeling
of security (FoS), body schema integration (BSI), support (SUP), socket (SOC), mobil-
ity (MOB) and outer appearance (OUT), in addition to one rejection factor in case the
expert felt like the item should be excluded from the item pool. The main result indi-
cated a fair amount of agreement (AC1 index = 0.39) [17], with some factors rated
noticeably more consistently than others. A measure of shared ratings was calculated
which described the amount of times an item had been rated to belong to another factor
than the one the majority of raters had assigned it to. The factors body schema integra-
tion, socket and outer appearance were rated quite distinguishably, with average shared
ratings (ASR) of 4.97, 6.83 and 3.87% with other factors. On the other end of the shared
rating measure, the factor Support showed the highest ASR with 19.87%. It also showed
a very high shared rating with Mobility, which itself had an ASR of 10.86 percent. Feel-
ing of security resulted in 11.32% ASR. While these results so far indicated some clearly
distinguishable and some more difficult factors, the factor Satisfaction (13.99% ASR)
showed a fairly high level of shared ratings with every other factor except for feeling of
security. This measure serves purely as an account of how distinctive experts perceived
the items of each factor to be with regards to other factors. The measure does not inform
any model parameters in the future confirmatory factor analysis but it might correlate
with a factor’s variance explained by its contributing items. 15 items were excluded from
the item pool because the experts’ ratings were too diverse which made a clear factor
classification impossible or because the items were rejected by a majority of experts.
Raw data of this study (i.e. the frequency with which experts rated one item on different
factors) were taken into account to form prior distributions about the item-factor clas-
sifications and their respective factor loadings.

Transition from study results to prior distributions

The expert study provides information about how the measurement model underly-
ing our questionnaire should be constructed. Item-factor classification is achieved via
majority agreement in the preliminary study and forms the basis of the confirmatory fac-
tor analysis. Factor loadings between the manifest items and their corresponding latent
factors are informed as follows. The preliminary study contains information about the
factor loadings: an item X is assigned to a factor Y by the majority of experts which is
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assumed to load positively on that factor. The mean for a prior distribution of a factor
loading will be set to the percentage of expert agreement on the item to its factor. For
example, if an item has been assigned to its majority factor by 17 out of 22 experts, the
mean of its factor loading distribution will be M = 0.77. The distribution’s standard devi-
ation will be set to (1 — M)/2, in this case (1 — 0.77)/2, SD = 0.115. This way, whether an
item was rated more unanimously than others will be shown in its prior factor loading
and the uncertainty about the prior. All other coefficients, like measurement errors from
items to their respective factors, will be implemented using uninformative priors.

Results

Item-factor classifications

The item-factor classifications were implemented through majority agreement in the
preliminary study. For example, an item with 14 assignments towards satisfaction and
less assignments to every other factor would be designated a satisfaction item for the
confirmatory factor analytic setup. Items that did not achieve single majority or those
which were predominantly rejected by the experts were excluded from the item pool.
A list of item-factor classifications can be found in Table 1, with Table 2 providing a
preliminary translation of the German items into English. The translations are sugges-
tions which will be cross-validated in the future. In the final questionnaire assessment
with prosthetic users, items will be measured on a 5-point Likert scale ranging from
“No agreement” to “Complete Agreement” with an option to omit answering in order to
respect a possible subject sensitivity towards specific items.

Item-factor classifications

The means and standard deviations of prior distributions describing factor loadings
will be set by taking expert agreement into account as described in the Methods sec-
tion. Table 3 shows the complete list of Gaussian prior distributions of factor loadings.
One exception with regards to this technique is item 47. It originally was assigned to
the factor feeling of security by all the experts, creating a point estimate prior of M = 1,
SD = 0. These values provide an unsuitable setup for a factor analysis. Factor loadings of
exactly 1 are illogical because they imply a direct representation of the latent variable by
one manifest variable. If such a variable existed, the whole process of creating the latent
variable would be redundant. Therefore, we choose to provide item 47 with a distribu-
tion resembling the mean prior of other items on the factor feeling of security, equaling

Table 1 Model factors and assigned items

Factor Array of items

SAT 1,3,4,5,31,48,49, 50, 55,69, 70

FoS 6,7,26,27,28,40,42,47,52,64, 66

BSI 30,56,57,58,59,60,61,62,63,65,67

SUP 23,24,32,33,54

SOC 2,8,13,14,15,16,17,18,19, 20, 21, 22, 25, 68
MOB 12,34, 35,36,37,38,39,41,43, 44, 45, 46, 51,53

ouT 9,10,11,29
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Table 2 Preliminary translation of German questionnaire items into English

Item

Statement

- O 00 N OO0 1 A W N —

- O

Aow N
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25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

In everyday life | am satisfied with the fit of my prosthesis

I am satisfied with the fit of my prosthesis to my stump

| am satisfied with the ability to walk when using my prosthesis

I am satisfied with the ability to sit when using my prosthesis

| am satisfied with the ability to walk when using my prosthesis

Keeping my balance while standing is easy for me

Keeping my balance while walking is easy for me

Putting on my prosthesis is easy for me

My prosthesis makes sounds (squeaking, clicking) frequently

| feel uncomfortable because of the sounds my prosthesis makes

| feel socially hindered because of the outer appearance of my prosthesis

I would consider a longer battery life of my prosthesis useful

| often experience pressure marks on my stump

| often experience swellings on my stump

After prolonged periods of wearing my prosthesis | experience problems with its fit

My prosthesis'fitis regularly influenced by sweat inside it

I use a technical aid to improve the fit of my stump in the prosthesis

I have to adjust the socket of my prosthesis to my stump several times a day using additives
I use textiles (sock, liner) to adjust for the reduced volume of my stump

| use a technical aid to counteract the loss of volume of my stump

I regularly experience difficulties in everyday life due to a swollen stump

My prosthesis’socket adjusts itself independently to the shape and volume of my stump
In walking, moving the prosthesis requires more muscle force than moving my unaffected leg

I would like my prosthesis to offer more support in order to reduce the amount of strength required for
walking

I have pain in my phantom limb because of the prosthesis socket

| feel safe and stable during the stance phase of my prosthesis

| feel safe and stable during the swing phase of my prosthesis

I would like to have more stability during swing phase

| feel comfortable with my appearance when I'm in public

| feel like | have a natural gait

I am satisfied with my ability to stretch out the prosthesis

I would like my prosthesis to offer more mechanical/electronic support while extending it
I would like my prosthesis to offer more mechanical/electronic support while flexing it
| frequently adjust my speed while walking

| feel uncomfortable when | cannot change my speed while walking

| experience problems while trying to change my walking speed with my current prosthesis
I want to be able to change my walking speed on my own

I am satisfied with switching from standing to walking

Climbing stairs is difficult for me

| feel insecure about my prosthesis

My prosthesis is designed to climb stairs with it

I regularly stumble while climbing stairs

| can climb stairs by alternating between both feet

| climb stairs by placing the healthy leg on them first and following with the prosthesis
| can bend over with my prosthesis

| can lift heavy objects from the floor

| feel safe and secure while compensating for a loss of balance with my prosthesis

| am satisfied with suspension in initial heel contact

I am satisfied with suspension during extension
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Table 2 continued

Item

Statement

50
51
52
53
54
55
56
57

58
59
60
61
62
63
64
65
66
67
68
69
70

I am satisfied with suspension of my foot prosthesis

I have difficulty moving with my foot prosthesis while walking on uneven ground or up an incline
I regularly get caught on bumps with my foot prosthesis

I lift my foot by using my hip to get enough space to the ground

My prosthesis offers mechanical/electronic support while rolling over from heel to toes

I can adjust my prosthesis adequately regarding the heels of my shoes

When | look at my legs in everyday life, my prosthesis seems so belong to my body

The perception of my prosthesis in daily use is very close to the perception of the corresponding part of
the body

| experience the prosthesis as a part of me

| experience the prosthesis as my new leg

| experience the prosthesis as part of my body

| perceive the prosthesis to be where | would expect the corresponding part of my body
| experience the prosthesis in the place of my former real part of the body

| feel the spatial position of my prosthesis without looking at it

| can feel ground properties with my prosthesis

| experience something touching my prosthesis as touching on the corresponding part of my body
[t seems to me like | can control the prosthesis at all times

| can ease itching at the corresponding part of my body by scratching my prosthesis

I often have blisters on my stump because of an ill-fitting socket

| feel uncomfortable with the weight of my prosthesis in everyday use

| feel uncomfortable with the size of my prosthesis in everyday use

Table 3 Items and their individual factor loading prior distributions (FLPD) with M(SD)

Item FLPD Item  FLPD Item FLPD Item  FLPD Item  FLPD

1 091(0.05) 15 0.77(0.12 29 082(0.09 43 059(0.21) 57 0.91 (0.05)
2 064(0.18) 16 0.82(0.09 30 050(0.25) 44 0.77(0.12) 58 0.82 (0.09)
3 068(0.16) 17 0.59(0.21) 31 055(0.23) 45 0.50(0.25) 59 0.86 (0.07)
4 0.59(0.21) 18 0.77(0.12) 32 045(0.28) 46 0.73(0.14) 60 0.86 (0.07)
5 0.73(0.14) 19 068(0.16) 33 045(0.28) 47 0.72(0.15) 61 0.86 (0.07)
6 068(0.16) 20 064(0.18) 34 0.77(0.12) 48 055(0.23) 62 0.73(0.14)
7 086 (0.07) 21 0.77(0.12) 35 068(0.16) 49 068(0.16) 63 0.64 (0.18)
8 045(0.28) 22 0.86(0.07) 36 068(0.16) 50 059(021) 64 0.55(0.23)
9 077012 23 045(0.28) 37 0.77(0.12) 51 0.55(0.23) 65 0.91 (0.05)
10 068(0.16) 24 0.59(0.21) 38 041(030) 52 0.55(0.23) 66 0.59(0.21)
11 091(0.05) 25 0.77(0.12) 39 0.73(0.14) 53 059(0.21) 67 0.59 (0.21)
12 045(0.28) 26 091(0.05) 40 086(0.08) 54 0.55(0.23) 68 0.82(0.09)
13 095(0.03) 27 0.82 (009 41 055(0.23) 55 045(0.28) 69 041 (0.30)
14 091(0.05 28 0.73(0.14) 42 059(0.21) 56 0.77(0.12) 70 0.64 (0.18)

M = 0.72 and SD = 0.15. Prior distributions on the intercepts in the linear regression of

factor loadings will be left uninformed. Since measurement errors are another type of

parameter which are hard to estimate a priori, they will be handled as proposed by [18]

by using inverse Gamma distributions (0.01, 0.01).
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Latent variable values
The values of the individual latent variables (the seven factors in the model) will be set to

represent uninformative Gaussian priors (M = 0, SD = 100).

Summary of prior information derived from the expert study

In total, a measurement model of 70 manifest items constituting 7 latent variables with
the described connections between factors results in 217 parameters. The preliminary
study established an expert rating to determine which item would be assigned to which
factor. The quantitative nature of their factor loadings was derived from the distribu-
tion of expert votes on each item. Items that were more unanimously ranked obtained
a prior distribution of their factor loadings with higher absolute values than items that
were rated more diversely (70 informed parameters). Structural Equation Modeling also
requires some types of parameters that are hard to judge a priori via preliminary stud-
ies. These include regression intercept parameters and measurement error variances
between items and factors (140 parameters) and the resulting values of a participant on
each factor (7 parameters). As described previously, these 147 parameters will be set to

resemble uninformed prior distributions.

Conclusion

Using prior knowledge to inform parameter estimation in complex models

The methodology of this paper involved using prior knowledge gathered from a pre-
liminary study to inform parameter estimation for the latent trait model of the prosthe-
sis satisfaction questionnaire. To do so and use a probabilistic instead of a frequentist
approach grants the advantage of not having to deal with many of the limitations and
requirements of regular structural equation modeling. Estimations of required sample
sizes using frequentist methodology, for example, would quickly rise up to circa 500 sub-
jects or more, depending on the number of parameters the researcher wishes to include.
Especially when dealing with specific target groups, this can turn out to be a problem.
Using probabilistic methodology, low sample sizes do not imply problems like this while
high sample sizes do not guarantee a statistically significant result, as is the issue with
traditional p values. Every participant of the upcoming questionnaire will merely reduce
uncertainty in the parameter estimation without changing its outcome thereby decreas-
ing the risk of creating a false alarm. When developing prosthetic devices, basing deci-
sions on incorrect results (i.e. not including prior information in the structural modeling
of human factors) increases the likelihood of reduced satisfaction with the product or
even harm to the user. Therefore, one conclusion of this paper is that switching to prob-
abilistic inference when it comes to research in the field of prosthetics is a promising
approach to gather clearer information about the perception and behavior of prosthe-
sis users. Whether our informed model provides better results than a competing unin-
formed model or the frequentist approach will need to be determined.

Model design and limitations

Using informed prior distributions is one point of criticism of Bayesian inference. Could
the priors chosen be ill-informed? How much impact does an informed prior, regard-
less of its objective applicability, have on the outcome? In the case of this paper, the
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parameter distributions were informed by using prior knowledge that was not directly
gathered from these parameters, i.e. through pilot studies involving the exact upcoming
questionnaire. Consequently, every bit of information gathered through the preliminary
study should be examined cautiously. The item-factor classifications and factor loading
priors appear to be the most objective source of prior knowledge since expert studies are
a common technique when it comes to confirmatory statistical models. To correct for
possible biases in said extraction, the resulting model will be tested against a compet-
ing, uninformed model to investigate the validity of the chosen prior distributions. If the
data do not provide enough likelihood to overcome uninformed prior distributions in a
noticeable way (i.e. parameters different from zero remain credibly different from zero,
no matter the prior), then adjustments to the model have to be considered. Addition-
ally, there are still 147 uninformed prior distributions on parameters in the model. These
uninformed parameters might, even though it is not likely, overshadow the statistical
power of the informed parameters rendering the differentiation between informed and
uninformed models trivial.

Future research

The next step of validating the proposed model is to gather empirical data and check
the assumptions made in the parameter prior distributions for validity. This will include
a comparison with a competing model in which the informed distributions described
here will be left uninformed. In order to gather a wider array of subjects, a cross-vali-
dated translation of the currently German set of items will be compiled. Furthermore, an
identification of the structural model is still required as this study makes no assumption
about the regression parameters between resulting latent factors. Once evaluated, the
model can be enhanced to respect different user stereotypes, granting individual param-
eter values to participants with different medical sources of amputation or demographic
factors. Special interest also lies in the question of if and how body schema integration
can be achieved through psychological interventions or technological improvements or
how expert knowledge acquisition can improve socket fit, both factors being proposed
important influences on overall satisfaction.
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