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Background
As a poroelastic material, bone often bears cyclic loads that might come from walking, 
running, or other daily activities [1]. These activities enable bones to “feel” and “adapt”, 
this is the mechanism called bone mechanotransduction. Intraosseous pressure gra-
dients may result in some fluid stimuli effects (fluid flow, fluid shear stress (FSS), and 
streaming potentials), which may enable bone cells to initiate the process of adapting 
bone mass and structure to the environment [2]. This process may be the basic mech-
anism of bone mechanotransduction. Although the constituents and ultrastructure of 
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bone interstitial fluid pathways remain poorly understood because of technical difficul-
ties, interstitial fluid flow in bone tissue has been suggested to serve an important role in 
bone adaptation and metabolism [2].

Research for the intraosseous fluid stimuli should be conducted at the osteon level [1]. 
Osteon is the basic bone structure unit with a cylindrical structure, which is made of 
lamella around a Haversian canal. The Haversian canal contains blood vessel(s), nerve, 
and some spaces occupied by bone fluid. The wall of a Haversian canal is covered with 
cells, and behind the cells is the entrance to the bone canaliculi [3]—the passageways 
between lacunae and the Haversian canal. The space in the lacunae and the canaliculi 
is called lacunar–canalicular porosity (PLC). Mechanical load induced interstitial bone 
fluid flow is known to occur in this porosity [3–6]. This porosity also provides an ideal 
milieu for transfer of exogenous and endogenous signals via mechanical, electrical, and 
chemical mechanisms [7].

The PLC dimension is characterized by the radius of the canaliculus (order = 0.1 μm) 
[3]. The canaliculi have been regarded as the passageway that allows nutrients, oxygen, 
and wastes to be exchanged between blood vessels within the Haversian canal and oste-
ocytes [8]. The canaliculus is the canal associated with slower relaxation of excess pore 
pressure and may also serve an important mechanosensory role [8] by providing the 
channels through which osteocytes can sense FSS [3, 4].

FSS plays an important role in modulating cell functions, and several laboratory systems 
have applied FSS to cells [9]. Theoretical models have been established to investigate intra-
osseous fluid flow behavior and FSS in homogeneous porous bone specimens [6, 10, 11] or 
in single osteon [12–17]. However, the osteon has different properties in longitudinal and 
radial directions, and the fluid flow in canaliculi is not directly coupled with mechanical 
loading [1]. Thus, a transverse isotropic poroelastic hollow osteon model [18–23] is devel-
oped to simulate osteonal poroelastic behavior. However, these theoretical models do not 
directly link the mechanical loading at the osteon scale to the scale of canalicular fluid flow.

Many theoretical models [6, 16, 24–26] have been established to deduce the canali-
cular fluid flow behavior, but its mechanism remains poorly understood because it is 
difficult for obtaining reliable experimental information in vivo at the nanoscale. Some 
authors have identified the canalicular fluid flow evaluated from Darcy’s law or Brink-
man’s equation [6, 27]. To amend the above zero charge flux assumption, a highlighted 
model (by using the linearity of the Stokes–Brinkman differential equation) on the basis 
of an up-scaling approach has been proposed to quantify electroosmotic and hydro elec-
trochemical effects [28–31]. Canalicular fluid flow associates with hydraulic, chemical, 
and electrical phenomena. Hydraulic flow and shear stress are generally the most rel-
evant fluid stimuli effects induced by pressure differences in the interstitial bone fluid 
[32]. The aforementioned models are complicated and expatiatory, but those physical 
effects are not truly coupling in the motion equation of solutions (e.g., in Sansalone et al. 
[32] “Hydraulic, osmotic, and electroosmotic contributions to the fluid transport were 
split and treated independently using the linearity of the Stokes–Brinkman differential 
equation”). In other words, fluid motion equations might no longer work for those cou-
pled physical effects. Chemical, osmotic, and electroosmotic phenomena are hysteresis 
band effects induced by canalicular fluid flow. The first physical effects of canalicular 
fluid flow behavior are fluid pressure gradient, velocity, and viscous force.



Page 263 of 273Wu et al. BioMed Eng OnLine 2016, 15(Suppl 2):149

Therefore, we will establish a hierarchical model to directly evaluate the first physical 
effects of canalicular fluid transport behavior, which allows the linking of cyclic mechan-
ical loading on osteon to the fluid flow in the canaliculi. The lacunar–canalicular pri-
mary porosity scale is proposed to relax the pore pressure associated with FSS because 
of mechanical loading. A homogenization canaliculated porosity approach may avoid 
multiscale parameters of permeability. We specifically develop a canaliculi model on the 
basis of our previous osteon model [33–36] to link the external loads to the canalicular 
fluid velocity, pressure, flow rates, and shear stress. The model can also be used to ana-
lyze the structure of the proteoglycan matrix in the fluid space surrounding the osteo-
cytic process in the canaliculus.

Methods
Biot’s poroelastic theory is used to account for fluid–solid interactions in osteon tissue. 
According to Wu et al. [36], the osteon system is modeled as a hierarchical hollow annu-
lar cylinder structure (as shown in Fig. 1) and two types of boundary cases for the osteon 
wall are proposed (as shown in Fig. 2). In this hierarchical structure, the canaliculi are 
assumed to be straight tubes and evenly distributed in the osteon wall, which run across 
the lamella and stop at the cement line. The viscous canalicular fluid flow and shear 

Fig. 1  The Hierarchical model for osteon system. a and b are the inner (Haversian canal surface) and outer 
osteon radius, respectively, and h is height



Page 264 of 273Wu et al. BioMed Eng OnLine 2016, 15(Suppl 2):149

stress on the canalicular wall are induced by the fluid pressure difference and the effect 
of lacuna is neglected. 

According to Wu et  al. [36], the solutions of whole pore pressure distribution 
pm = p0m(r)eiωt (ω is the angular frequency of loading, m = 1 is for case I and m = 2 is for 
case II) in the osteon wall is given by:

where, M11 = Er(Ez − Erµ
2
z)(1+ µr)

−1(Ez − Ezµr − 2Erµ
2
z)

−1 is an elastic component 
of the stiffness tensor. Er and Ez are radial and longitudinal Young modulus, μr and μz are 
radial and longitudinal drained Poisson’s ratio, In and Kn are the first kind and the sec-
ond kind modified Bessel function of order n respectively, and cm is constant and can be 
found in Ref. [33]. The constant C is given by Wu et al. [1, 33–36].

where i =
√
−1, μ and k are dynamic viscosity and intrinsic permeability, respectively.

According to the established canaliculi model in Wu et al. [36], the solutions for pres-
sure p′ and longitudinal velocity component u in the canaliculi are presented as:

where, ρ is the fluid density, and μ is the dynamic viscosity. The canalicular radius is R 
and lengthened l (l = b − a). The constant β is given by.

(1)pm =
MM11

(

αcm + α′εz0
)

M11 +Mα2

[

I0(Cr)K1(Cb)+ K0(Cr)I1(Cb)

I0(Ca)K1(Cb)+ I1(Cb)K0(Ca)
− 1

]

eiωt ,

(2)C =
√

iωµ
(

M11 +Mα2
)

/(kMM11).

(3)p′(z′) =
[

p0(a)+
p0(b)− p0(a)

l

(

z′ − a
)

]

eiωt ,

(4)u(r′) =
p0(a)− p0(b)

iωρl

[

1−
I0
(

βr′
)

I0(βR)

]

eiωt .

(5)β =
√

iω/µ

Fig. 2  The osteon outer wall in case I and case II are assumed to be elastic restrained (A) and displacement 
confined (B) respectively
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According to Weinbaum et al. [6] and You et al. [37], the fluid flow rate, Q, and shear 
stress, τw, on the canalicular wall or osteocyte process membrane are given by:

Thus finally, we can obtain the FFR and FSS:

where m = 1, 2 are for case I and II, respectively.
The approximate transverse isotropic poroelastic constants for osteon and some nec-

essary geometrical constants are grouped in Table  1. We select 0.04–0.3% [1, 33–35] 
as the strain range to investigate its relationship to the canalicular fluid velocity, pres-
sure, flow rates, and shear stress. A physiological frequency range of 1–20 Hz [27] was 
selected to study the role of loading frequency. The canalicular radius ranged from 0.1 to 
1 μm [38, 39].

Results
Role of loading factor: axial strain amplitude εz0 and frequency

As shown in Fig. 3, the FFR amplitudes (|Q|, FFRAs) and FSS amplitudes (|τw|, FSSAs) of 
the two cases are proportional to the loading amplitude (εz0) and frequency (ω). When 
one of the two parameters (εz0 or ω) is fixed, both the FFRA and FSSA have a linear rela-
tionship with the other parameter. Both the FFRA and FSSA produced in case II are also 
larger than those of case I.

Dominating role: the strain rate

The amplitude of the strain rate, ε̇z, can be defined by the relationship of 
ε̇z=

∣

∣iωεz0e
iωt

∣

∣=εz0ω [1, 18–22, 33–35] and flowing formulas for each case are obtained 
according to Eqs. (8), (9):

(6)Q =
∫ R

0

2πr′u(r′)dr′,

(7)τw = µ
∂u(r′)

∂r′

∣

∣

∣

∣

r′=R

.

(8)Qm =
2π

iωρl
p0m(b)

[

R

β

I1(βR)

I0(βR)
−

R2

2

]

eiωt

(9)τwm =
µβ

iωρl
p0m(b)

I1(βR)

I0(βR)
eiωt

(10)|Qm| =
∣

∣

∣

∣

2π

ω2ρl
p∗0m(b)

[

R

β

I1(βR)

I0(βR)
−

R2

2

]∣

∣

∣

∣

ε̇z; m = 1, 2,

Table 1  Geometrical and material characteristics used in the model [36]

Er (GPa) μr Ez (GPa) μz M (GPa) a (μm) b (μm)

15.9 0.328 20.3 0.25 38 50 150

α α′ k (m2) μ (Pas) R (m) ρ (Kg m−3)

0.132 0.092 10−18 10−3 1–10× 10−7 1000
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where p∗
0m(b) = p0m(b)

/

εz0,p∗0m(b) = p0m(b)
/

εz0. As shown in formulas (21)–(22), the 
FFRAs and FSSAs of the two cases are proportional to the amplitude of strain rate (ε̇z).

As shown in Fig.  4, the FFRAs and FSSAs of the two cases change little with the 
increase in frequency from 1 to 21  Hz with the strain rate fixed. Both the FFRA and 
FSSA depend more on the strain rate than on the loading frequency in a physiological 
loading state. Hence, the key role governing the fluid flow behavior and the FSS is the 
strain rate.

Time responses of FFR and FSS

Figure 5 demonstrates the evolution of strain load with time. Based on Fig. 6, the evolu-
tions of FFR and FSS with time are illustrated in Fig. 5. With the cyclic load, the induced 
FFR and FSS in the canaliculi are also cyclic, as shown in Fig. 6. Both the FFR and FSS in 
case II are larger (approximately 6.7 times) than those of case I. 

Effects of canalicular radius

Figure  7 illustrates the evolution of FFRA and FSSA with the canalicular radius. As 
shown in Fig. 7a and c, the FFRAs of both cases have a nonlinear increasing relationship 
with the canaliculus radius. The FSSAs of the two cases are proportional to the canalicu-
lar radius. 

(11)|τwm| =
∣

∣

∣

∣

µβ

ω2ρl
p∗0m(b)

I1(βR)

I0(βR)

∣

∣

∣

∣

ε̇z; m = 1, 2,
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Fig. 3  Fluid flow rate amplitude (|Q|, FFRA) and fluid shear stress amplitude (|τw |, FSSA) as a function of the 
loading amplitude (εz0) and frequency (ω) at R = 5 × 10−7 m and k = 10-18 m2. a Fluid flow rate amplitude as 
a function of the loading amplitude. b Fluid shear stress amplitude as a function of the loading amplitude. c 
Fluid flow rate amplitude as a function of the frequency. d Fluid shear stress amplitude as a function of the 
frequency
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Role of permeability

The role of permeability is examined in Fig. 8 and plotted with the strain loading rate 
fixed at ε̇z = 0.001 s−1. According to [19] and [40], this parameter lies between 10−23 and 
10−18 m2. We chose 10−18 m2 as a reference case to obtain the above results. The FFRAs 
and FSSAs of both cases experience a monotonic decrease with permeability from 10−23 
to 10−18 m2, as shown in Fig. 8.

Fig. 4  FFRA and FSSA as a function of the loading frequency at R = 5 × 10−7 m, k = 10-18 m2 and with the 
strain rate fixed at ε̇z = 0.0005, 0.001, and 0.003 s−1. a FFRA as a function of the frequency for case I. b FSSA as 
a function of the frequency for case I. c FFRA as a function of the frequency for case II. d FFSA as a function of 
the frequency for case II

Fig. 5  History of strain loads at ω = 1Hz and ε̇z = 0.0005, 0.001, and 0.003 s−1, the operator Re () gives the 
real part of the complex number
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Discussion
We present a theoretical model to describe the fluid flow and shear stress in the canali-
culi of an osteon under axial harmonic loading. The current model links the mechanical 

Fig. 6  Time responses of FFR (a Case I; c Case II) and FSS (b Case I; d Case II) at R = 5 × 10−7 m, k = 10-18 m2

Fig. 7  Evolutions of FFRA (a, c) and FSSA (b, d) with canalicular radius at k = 10-18 m2
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loading at the osteon scale to the scale of canalicular fluid pressure, velocity, flow rates, 
and shear stress, which may have a significant stimulus to bone mechanotransduction.

We have developed the analytical solutions of the FFR and FSS as theoretical basis, and 
we aim to see the effects of the variation in boundary conditions and material param-
eters on the FFR and FSS. Loading boundary and the material parameters are the two 
major groups of factors that influence the FFR and FSS induced in the canaliculi. The 
linear increase of loading factors—strain amplitude and frequency—leads to the linear 
increase of FFRA and FSSA (see Fig. 4). However, the strain rate is the real loading factor 
for governing the canalicular fluid flow behavior (see Fig. 5). Although the actual fluid 
flow rates have not been measured in vivo, in vivo bone strains have been directly meas-
ured in humans (1200–1900  με [39]) during vigorous physical activities. The selected 
strain range of 0.04–0.3% cannot provide enough FSS (0.2–6 Pa, [23, 39]) for the cell to 
respond. However, some studies [41–43] indicate that a threshold of between 5 and 10% 
strain may generate this response. Therefore, the strain amplitude should be increased in 
the present investigation. A physiological frequency range of 1–20 Hz [38] is selected to 
examine its effect on FFR and FSS. The frequency has a substitutable role as the strain 
amplitude does on the FFR and FSS. This phenomenon could explain why Fritton et al. 
[44] observed that low-magnitude high-frequency mechanical loading appeared to have 
the same effect on maintaining bone mass. Live bones experience different physiological 
loading amplitudes for different frequencies, and loading amplitude has been reported 
to decrease as the frequency increases [44]. The loading amplitude and frequency are 
thus coupled in a physiological state. Therefore, the defined parameter, εz0∙ω (strain rate 
amplitude), is reasonable and crucial, and it can be considered a representative loading 
parameter under a physiological state.

Canalicular fluid flow behavior depends not only on loading conditions, but also on 
geometric characteristics and material parameters. Figure 8 shows that the FFRAs and 
FSSAs increase as the canalicular radius increases. A large canalicular radius means the 
cross section where mass flux flows through is large, thereby increasing the FFRA. Per-
meability can be regarded as the macroscopic indicator of fluid flow at the microscopic 
level [19]. Published studies on determining the value of k mainly differ in terms of the 
bone scale. For heterogeneous structures, the local permeability value is related to a par-
ticular location on the osteon sample, and several experiments are required to obtain a 

Fig. 8  Effects of permeability with parameter values of R = 1 × 10−7 m, ε̇0 = 0.001 s−1. Case I (solid line); case 
II (dotted line). a FFRA as a function of the permeability. b FSSA as a function of the permeability
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representative or average value [45]. We selected the value 10−18 m2 as a reference case 
for the osteon associated to microscopic lacuno–canalicular.

The boundary conditions of case I allow fluid passage from the inner osteon wall and 
none across the outer elastic constrained wall. It can be assumed that the environmen-
tal liquid around the osteon can automatically produce physiological pressure on the 
cement surface to balance the pore pressure [33]. This boundary condition suggests that 
pore pressure is equal to the pressure of physiological liquid around the osteon. In case 
II, the fluid can freely passage from the inner wall but none across the outer wall, which 
is almost impossible or unrealistic for the osteon, while, it might be applicable and help-
ful for geomechanic engineering problems. In this case, the osteon cement surface is 
supposed to be perfectly rigid without fluid flowing through this surface (impermeable). 
This displacement boundary is an essential condition to obtain the analytical solutions. 
This assumption, which has been used in previous studies, may be rough and strong 
[18–23]. Superficially, case I seems closer to the physiological state than case II. Besides, 
as shown in Fig. 7, both the FFR and FSS induced in case II are larger (approximately 6.7 
times) than those of case I.

In the model of Literature [6], the porous matrix medium is treated as isotropic mate-
rial, while ours is transversely isotropic (osteon). They describe the fluid annulus sur-
rounding the osteocytic process by a Brinkman equation for a fiber filled medium, while 
in our model its Navier–Stokes momentum equation. In our model, we disregarded the 
effects of fluid exchange in the lacuna and fiber matrix and focus on the first physical 
effects of canalicular fluid transport behavior—shear stress. Though their model seems 
more accurate, it is complicated and do not linking of cyclic mechanical loading on 
osteon scale to the fluid flow in the canaliculi scale. There are some unaddressed con-
troversies in the view of morphology and anatomy. Such as theory must be a osteocyte 
processes fiber lays in the canaliculi and how many fibers each canaliculi contains? These 
issues have a large extent affecting the modelling method.

Strain-derived interstitial fluid stimuli, such as FSS [6] and fluid pressure gradient [46], 
serve an important function in bone mechanotransduction. Some other phenomena, 
such as piezoelectricity [47, 48], streaming potential [36, 49, 50], and chemotransport 
[51] in the PLC have also been postulated as mechanotransduction mechanisms for pos-
itive bone adaptation. Hence, further works, such as calculating these coupled physical 
effects generalized in the canaliculi and their role in cell response, need to be conducted.

The Hierarchical modeling processes have several limitations: (1) The proposed osteon 
boundary cases are the idealization of physiological conditions. (2) Every canaliculus 
is assumed to straightly run across the osteon wall and neglect the effect of lacuna. (3) 
A homogenized distribution of the canaliculus leads the permeability to be a constant. 
(4) One-dimensional (only longitudinal velocity component) canalicular fluid flow is 
considered.

Conclusions
This hierarchical model firstly provides the analytical estimate of canalicular fluid flows 
in an axial loaded osteon. At the canaliculus scale, the fluid flow is described by a Stokes 
equation and its directly stimuli effect—FSS is focused on. This approach will enhance 
the evaluation of canalicular fluid flow related to bone mechanotransduction, and could 



Page 271 of 273Wu et al. BioMed Eng OnLine 2016, 15(Suppl 2):149

also potentially account for other geological engineering problems. Despite the limita-
tions of this study, the following conclusions are drawn:

I.	 The amplitudes of FFR and FSS are proportional to the strain amplitude and fre-
quency. However, the key loading factor governing the FFR and FSS is the strain rate 
and it can be considered as a representative loading parameter in a physiological 
state.

II.	The larger canalicular radius is, the larger FFRA and FSSA generalized, and the FSSA 
is proportional to the canalicular radius.

III.	At the osteon scale, both the FFRAs and FSSAs experience a monotonic decrease as 
permeability increases.

IV.	Both the FFR and FSS produced in case II (displacement confined osteon outer wall) 
are larger (approximately 6.7 times) than those of case I (elastic restrained osteon 
outer wall).
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FSS: fluid shear stress; FFR: fluid flow rate; PLC: lacunar–canalicular porosity; FFRA: fluid shear stress amplitude; FSSA: fluid 
flow rate amplitude; FFRAs: fluid shear stress amplitudes; FSSAs: fluid flow rate amplitudes.
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