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Introduction
Beamforming is a signal processing technique that enhances image quality by apply-
ing appropriate gains and delays to echo signals. The most implemented beamforming 
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Background:  The Eigenspace-based beamformers, by orthogonal projection of signal 
subspace, can remove a large part of the noise, and provide better imaging contrast 
upon the minimum variance beamformer. However, wrong estimate of signal and 
noise component may bring dark-spot artifacts and distort the signal intensity. The 
signal component and noise and interference components are considered uncor-
related in conventional eigenspace-based beamforming methods. In ultrasound 
imaging, however, signal and noise are highly correlated. Therefore, the oblique projec-
tion instead of orthogonal projection should be taken into account in the denoising 
procedure of eigenspace-based beamforming algorithm.

Methods:  In this paper, we propose a novel eigenspace-based beamformer based 
on the oblique subspace projection that allows for consideration of the signal and 
noise correlation. Signal-to-interference-pulse-noise ratio and an eigen-decomposing 
scheme are investigated to propose a new signal and noise subspaces identification. To 
calculate the beamformer weights, the minimum variance weight vector is projected 
onto the signal subspace along the noise subspace via an oblique projection matrix.

Results:  We have assessed the performance of proposed beamformer by using both 
simulated software and real data from Verasonics system. The results have exhibited 
the improved imaging qualities of the proposed beamformer in terms of imaging reso-
lution, speckle preservation, imaging contrast, and dynamic range.

Conclusions:  Results have shown that, in ultrasound imaging, oblique projection is 
more sensible and effective than orthogonal subspace projection. Better signal and 
speckle preservation could be obtained by oblique projection compare to orthogo-
nal projection. Also shadowing artifacts around the hyperechoic targets have been 
eliminated. Implementation the new subspace identification has enhanced the imag-
ing resolution of the minimum variance beamformer due to the increasing the signal 
power in direction of arrival. Also it has offered better sidelobe suppression and a 
higher dynamic range.
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method in commercial and real-time ultrasound imaging systems is delay-and-sum 
(DAS). As a non-adaptive beamforming algorithm, DAS provides low imaging quality in 
contrast and resolution. To improve imaging quality, researchers have proposed adaptive 
beamformers that change the weights of the array elements or aperture using the char-
acteristics of the received signals. The minimum variance (MV) and eigenspace-based 
methods are representative methods in adaptive beamformers.

Most adaptive beamformers are based on the linear constraint minimum variance 
(LCMV) method that was proposed by Capon in 1969 [1]. In LCMV, the weights are cal-
culated based on the principles that the output signal-to-interference-pulse-noise ratio 
(SINR) is maximized, whereas the target signals remain undistorted. MV beamformer 
performance correlates to the signal-to-noise-ratio (SNR) of the signal. At high SNR, the 
MV beamformer offers significant improvements in image resolution. As SNR decreases, 
its performance approaches that of DAS [2]. Sasso and Cohen-Bacire [3] applied a spatial 
smoothing technique to decorrelate signal and noise. Synnevag et al. [4] proposed an MV 
beamformer that used the spatial averaging and diagonal loading techniques to increase 
the covariance matrix estimation accuracy. Izadi et al. [5] investigated the combination 
of coded excitation with the LCMV beamformer, and proposed a weighted Capon beam-
former to increase the SNR without scarifying the contrast. Mohammadzadeh et al. [6] 
utilized the forward–backward minimum variance beamforming to enhance the covari-
ance matrix estimation robustness without comprising imaging resolution. Kim et al. [7] 
used the principal component analysis (PCA) to reduce the computational complexity.

In recent years, eigenspace-based beamformers have been introduced into ultrasound 
imaging. This technique has been developed in earlier studies in radar imaging [8, 9]. 
Eigenspace-based beamformers use the signal subspace to modify the weight vector of 
the MV-based beamformer. The signal subspace is constructed by several selected eigen-
vectors of the input covariance matrix. The remaining eigenvectors correspond to the 
noise subspace. By eliminating the noise subspace, eigenspace-based beamformers obvi-
ously enhance imaging quality. Mohammadzade et al. applied this technique to medi-
cal ultrasound imaging [10]. They proposed the eigenspace-based minimum variance 
(EIBMV) beamformer, which significantly improved imaging contrast without scarifying 
the appreciable imaging resolution of the MV beamformer. The aperture weights of the 
EIBMV beamformer were found projecting the MV weight vector onto the estimated 
signal subspace. Mehdizadeh et al. [11] utilized the cross-spectral metric, (a metric of 
each eigenvector energy), to select the signal subspace dimension. To reduce the EIBMV 
calculation time, Zeng et al. [12] proposed a beamformer in the beam domain instead of 
the array domain.

Conventional eigenspace-based beamforming methods assumed that the signal compo-
nent and interference and noise component are not correlated and used the orthogonal 
subspace projecting [10–15]. However, this assumption does not coincide with the reality 
that interference and noise are highly correlated with signal in medical ultrasound imag-
ing. Scattering is the resource of generating both of information and noise. Also most of 
the noise consists of echoes of the transmitted pulse. Because of these reasons, the noise is 
actually highly correlated with the signal [15]. In other word, the no-correlation assump-
tions may not be valid in ultrasound imaging [16]. In this case, oblique projection is pre-
ferred to project the received echo onto a signal subspace along the noise direction that 
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is oblique to the signal subspace. The oblique projection is regarded as proper method 
to extract desire signal while suppressing noise and interference. The oblique projection 
technique has been developed in earlier studies [17–19]. The performance of oblique pro-
jection in estimating the signal, suppressing the noise and interference and enhancing the 
SINR, greatly extended its application in array processing. [20, 21].

In this paper, we take oblique projection concept into the account of ultrasound imag-
ing. To this end, a new beamformer that we call oblique eigenspace-based MV (OESMV) 
is proposed. The OESMV used oblique projection instead of orthogonal projection. To 
construct the oblique projection matrix, proper subspaces should be identified. To do so, 
we propose a new subspaces identification algorithm by investigating eigen-decomposi-
tion technique and signal-to-interference-pulse-noise ratio (SINR) concept. The weight 
vector will be estimated by projecting the LCMV weight vector onto the oblique projec-
tion matrix.

Mathematic Background
Signal and array model

In a uniformly spaced linear array of M elements, the received signal at the time instance 
k is given by

where k is the time instant, x(k) = [x1(k), . . . , xM(k)]T ∈ CM× 1 is the array received 
signal, s(k) is the signal wave form, �a is the steering vector, and �n(k) is the sum of inter-
ference and the noise components. For each time instant (k), appropriate delays were 
applied to each channel to focus a certain interest point. In this way, the steering vec-
tor is defined as a = [1, 1, . . . , 1]T ∈ CM× 1, where (.)T denotes the transpose; the beam-
former output y(k) ∈ C1×1 is given by

where xd (k) is the time-delayed version of signals x(k),�j(k); the appropriated time 
delay is applied to the channel j at time instant k. w(k) = [w1(k), . . . ,wM(k)]T ∈ CM× 1 
is the weight vector.

Minimum variance beamformer

Substituting (1) into (2), the output signal-to-interference-pulse-noise ratio (SINR) is 
given as [22],

where σ 2
s  is the signal power, Rn is the noise and interference covariance matrix, w is the 

weight vector, and a is the steering vector. The optimum weight vector can be achieved 
by maximizing the SINR. It can be given by minimizing the output interference-pulse-
noise power subject to the receiving signal without distortion.

(1)x(k) = s(k)�a+ �n(k)

(2)y(k) = wH(k)xd(k) =

M∑

j=1

w∗
j xj

(
k −�j(k)

)

(3)SINR =
σ 2
s

∣∣wHa
∣∣2

wHRnw
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Equation (4) can be solved by utilizing the Lagrange method. The optimal weight vec-
tor is computed as

In practice Rn is not available. A common estimation for the covariance matrix is given 
by

Spatial or temporal averaging is required to provide robust covariance matrix estima-
tion. Spatial smoothing technique [3] is usually used to decorrelate the signal and noise. 
By applying the spatial smoothing technique, the covariance matrix is found by

where L is the subarray length, M − L + 1 is the number of overlapping subarrays, and 
x
p
d(k) =

[
x
p
d(k), x

p+1
d (k), . . . , x

p+ L− 1
d (k)

]T
 is the signal vector of the pth subarray. L is 

constrained to be smaller than M/2. Increasing L leads to signal and noise decorrela-
tion; however, it may decrease signal intensity. The diagonal loading method is used to 
preserve the signal intensity and increase covariance matrix estimation robustness. In 
this regularization technique, a constant is added to the covariance matrix diagonal vec-
tor as R = R̂+ ∈ I, where I is the identity matrix and R is the diagonal loaded covariance 
matrix. ϵ is the diagonal loading factor, and its amount is usually set to be μ times the 
power in the received signals [2, 4],

where trace (R̂) is the sum of diagonal elements of the matrix R̂, and μ is constant.

Eigenspace‑based minimum variance beamformers

By eigen decomposition technique, the input covariance matrix can be decomposed to 
the signal covariance matrix and noise and interference covariance matrix [9–14].

where Λ is the eigenvalue matrix, �1 ≤ �2 ≤ · · · ≤ �L are eigenvalues, and e1 is the lth 
eigenvector. The weight vector of the eigenspace-based MV methods is obtained by pro-
jecting the weight vector of the MV methods onto the signal subspace of the covariance 
matrix.

(4)min wHRnw, subject to wHa = 1.

(5)wMV =
R−1
n a

aHR−1
n a

.

(6)Rn = xdx
H
d

(7)R̂(k) =
1

M − L+ 1

M−L+1∑

p=1

x
p
d(k)x

p
d(k)

H

(8)∈= µ ∗ trace (R̂)

(9)R = EΛEH =

L∑

l=1

�lele
H
l = EsΛsE

H
s + EnΛnE

H
n = Rs + Rn

(10)wESBMV = EsE
H
s wMV .
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where EsEH
s , the signal subspace, contains the signal eigenvectors. In EIBMV [10], the 

signal subspace is constructed by the eigenvector contributions, which correspond 
to the large eigenvalues. The large eigenvalues are identified by the straightforward 
thresholding.

where λl is the eigenvalue corresponding to eigenvector that is used to construct the sig-
nal subspace, λmax is the maximum eigenvalue, and ∂ is a real positive multiplier. In prac-
tice, ∂ is chosen from 0.1 to 0.5. Another simple way to construct the signal subspace 
is to choose the eigenvectors whose related eigenvalues are α times the smallest eigen-
value. α is always chosen from 10 to 50.

In [11], the rank of signal subspace is chosen by identifying the largest J eigenvalues 
for which the sum of their cross-spectral metric is β times smaller than the total output 
signal power.

Proposed Method
To further improve imaging contrast and resolution in eigenspace-based beamforming, 
we propose a novel beamforming method by employing the oblique projection. In this 
section, we modify an oblique projection matrix for ultrasound beamforming. To con-
struct the oblique projection matrix, proper signal and noise subspaces must be known. 
To this end, a signal and noise subspace identification method is proposed. The weight 
vector of the OESMV is given by oblique projecting the MV weight vector onto the sig-
nal subspace along the noise subspace. Through the following subsections, subspace 
identification algorithm and oblique projection are described in details.

Subspace identification

The large eigenvalues mainly correspond to the signal. However, there should be noise 
within the large eigenvalues. To identify the noise subspaces, we investigated the SINR 
concept. The eigenvectors of covariance matrix can be classified to three sets: the eigen-
vectors with largest eigenvalues and with high SINR set, the eigenvectors with largest 
eigenvalues and with low SINR set and the eigenvectors with small eigenvalues set.

In Eq. (3), the numerator represents the output signal power in DOA, and the domi-
nator is the output interference-pulse-noise power. The weight vector, in numerator 
and dominator are not necessarily the same. Capon [1], considered the same signal and 
noise weight vectors. He calculated the weight vector, for which minimized the output 
interference-pulse-noise power subject to has the same direction of direction of arrival 
(DOA) (e.g. wH a =  1). For first time, we consider signal subspace in numerator and 
noise subspace in dominator. The output SINR in (3), can be expressed as

(11)�l > ∂�max

(12)�l > α�min

(13)SINR =
Psy

Pny
=

σ
2
s

∣∣wH
s a

∣∣2

wH
n Rnwn



Page 6 of 19Aliabadi et al. BioMed Eng OnLine  (2016) 15:127 

where Psy is the output signal power, Pny is the output noise power, ws is the signal weight 
vector, and wn is the noise weight vector. Rn can be estimated by Eqs. (8)–(9). To deter-
mine noise eigenvectors we calculate the SINR′ over largest eigenvalues. For the lth 
eigenvectors, the SINR′ is defined as

where w′
s, the signal weight vector is obtained by projection the wMV to lth large 

eigenvector.

w′
n(l) is given by projecting the wMV onto the lth noise subspace. The lth noise sub-

space is a union of the small eigenvectors and lth large eigenvector.

The noise and interference eigenvectors produce low energy in DOA. In other word, 
eTn a and 

∣∣w′
na
∣∣2
∣∣∣w′H

n a
∣∣∣
2
 suppose to be small values [12–16, 23]. On the other hand, noise 

eigenvectors increase the output interference-pulse-noise power 
(
w′H

n (l) Rnw
′
n(l)

)
. Con-

sequently, the noise and interference eigenvectors provide a low SINR’.
To identify the signal subspace, we first select the largest eigenvalues by straightfor-

ward threshold according to (11). Then refined the selected eigenvectors by omitting 
the eigenvectors for which their output SINR’ estimated by (14), is η times smaller than 
maximum of SINR’:

where max (SINR’) is the maximum value of SINR’ over all calculated SINR’ for each 
imaging point. η is constant between 0 and 1. Therefore the signal subspace, contains the 
eigenvector with large eigenvalue and with high SINR’;

where [et, et+1,…, eL] are the eigenvectors with largest eigenvalues and [eq1, eq2,…]are the 
eigenvectors which satisfy (17). ⊕ denotes the exclusive or (XOR) operator. Remained 
eigenvectors are corresponded to the noise and interference. The noise eigenvectors cor-
respond to two categories: the small eigenvalues and the eigenvectors with lowest SINR’. 
The noise basis vector can be given as

where [e1, e2,…, et−1] are the eigenvectors with smallest eigenvalues. ∪ denotes the union 
operator. It is easy to prove that Es and En are orthogonal, then

The subspaces of the oblique projection can be either orthogonal or non-orthogonal. 
To consider the signal and interference and noise correlation, we define a non-orthogo-
nal subspace for oblique projection. In following we describe the identification method. 

(14)SINR′(l) =
σ
2
s

∣∣∣w′H
s (l)a

∣∣∣
2

w′H
n (l)Rnw′

n(l)
,

{
l
∣∣�l ≥ ∂�max

}

(15)w′
s(l) = [el][el]

TwMV.

(16)w′
n(l) = [e1, e2, . . . , et−1, el][e1, e2, . . . , et−1, el]

TwMV

(17)SINR′(l) < ηmax (SINR′).

(18)Es = [et, et+ 1, . . . eL,] ⊕ [eq1, eq2, . . .].

(19)En = [e1, e2, . . . , et−1] ∪ [eq1, eq2, . . .].

(20)EsE
T
s + EnE

T
n = I
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Since the eigenvectors are linearly independent, any subspace of input covariance matrix 
can be spanned by its eigenvectors. Alternatively, any subspace may be identified as the 
set of some linear combination of eigenvectors. To respect the correlation between sig-
nal and noise, we define a non-orthogonal noise subspace by linearly combination of sig-
nal and noise eigenvectors. The non-orthogonal noise subspace is defined as

where J is all-ones matrix. τ is defined as correlation constant and its absolute 
Es ∈ Cn×m . The orthogonal signal subspace of Es ∈ Cn×m and orthogonal noise basis 
matrix of En ∈ Cn× k are linearly independent and disjoint (m + k ≤ n). Consider the 
orthogonal projection matrix Ps = EsEs

T, we have

Therefore, Ên ∈ Cn× k and Es ∈ Cn× kEs ∊ Cn × mare linearly independent and disjoint 
but not orthogonal. We have used Es and Ên to construct the oblique projection matrix.

Oblique projection of signal subspace

Consider two to full-rank complex matrices Ês ∈ Cn×m and En ∈ Cn× k as signal and 
noise basis matrices respectively; then the oblique projection operator QSN onto signal 
subspace along the noise subspace is defined as [18]:

where QNorthogonal
 is the orthogonal complement projection matrix of the noise.

where I is the identity matrix; where I is the identity matrix. The QSN has the following 
properties.

Finally, the OESMV weight vector is obtained by projecting the MV weight vector 
onto the oblique projection matrix.

(21)Ên = EnJk,1 − τEsJm,1

(22)PsEs = Es

(23)PsÊn = Ps
(
EnJk,1 − τEsJm,1

)
= τsJm,1 �= 0

(24)QSN = Es(E
T
s QNorthogonal

Es)
−1ETs QNorthogonal

(25)QNorthogonal
= I− (Ê

T

n Ên)
−1Ê

T

n

(26)QSN = Q2
SN (idempotent matrix)

(27)QT
SN �= Q−1

SN

(
asymmetric matrix

)

(28)QSNEs = Es

(29)QSN Ên = 0

(30)wOESMV = QSNwMV
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Both proposed eigenvector selection and oblique projection techniques, suppress the 
noise and interference component in direction of arrival. Thus by applying this algo-
rithm, the OEBMV is able to provide a high output SINR.

Implementation summary of algorithm

	 1.	 Here we give a brief summary of OESMV beamformer algorithm:
	 2.	 Calculate the time delay for each channel.
	 3.	 Compute the sample covariance matrix (R), using Eqs. (7)–(8).
	 4.	 Select the eigenvectors corresponding to the large eigenvalues, using Eq. (11).
	 5.	 Calculate SINR’ for each eigenvalues got by procedure 3, using Eq. (14).
	 6.	 Omit the eigenvectors with low SINR’ using Eq.  (17). Compute Es, the orthogonal 

signal subspace using Eq.  (18) and En, the orthogonal noise subspace according to 
Eq. (19).

	 7.	 Estimate the non-orthogonal noise subspace 
(
Ên

)
 with a proper choice of τ, the cor-

relation constant, according to Eq. (21).
	 8.	 Construct QSN the oblique projection matrix, by employing Es and Ên got by proce-

dures (3) and (7) respectively.
	 9.	 Compute the OESMV weight vector and beamformer output using Eq. (30) and (2).
	10.	 The final beamformed image is obtained by repeating the above algorithm for each 

imaging point and can be illustrated by different dynamic ranges.

Experiments and Results
We compared the performance of the OESMV with the DAS, LCMV, and EIBMV 
beamformers via simulation and real phantom studies. Since the one-steering-angle 
plane-wave imaging suffered from low SNR [23], we have evaluated the performance of 
proposed method in this worse case. For all experiments, spatial smoothing and diag-
onal loading techniques were implemented for adaptive beamformers. The DAS was 
implemented with rectangular apodization.

Simulation study

Field II software [24, 25], was used to simulate the plane wave imaging for a linear 
array with 128 elements spaced at one-half wavelength (element width  =  92.4  µm, 
height = 5 mm, kerf = 61.6 µm). The central and sampling frequencies were set to 5 and 
100 MHZ, respectively.

Point target simulation

Point target simulation was implemented to evaluate the imaging resolution and the side 
lobe suppression performance of the OESMV. In Fig. 1, nine points are located at the 
depth from 20 to 40  mm along the x = −3  mm, x =  0  mm, and x = +3  mm lateral 
direction.

To obtain the best resolution, a subarray size of L = 64 was used for spatial smoothing, 
and the loading factor μ was set to be (10 × L)−1. Figure 1 shows the resulting images 
over 80  dB dynamic range. In Fig.  1b, the LCMV offered a better resolution than the 
DAS in Fig.  1a. Both the LCMV and DAS beamformer provided low performance in 
side lobe suppression. As Fig. 1c illustrates, the EIBMV exhibited much better side lobe 
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suppression than the DAS and LCMV beamformers. However, the EIBMV provided an 
imaging resolution similar to the LCMV with maximum threshold (∂ = 0.9). As shown 
in Fig. 1d, the OESMV offered a significant better lateral and axial resolution than that 
with both the LCMV and the EIBMV. This performance achieved due to eliminating 
the eigenvectors with largest eigenvalue and with the low SINR’ and using the projec-
tion. Also, applying the oblique projection, suppresses the artifacts alongside the axial 
direction of point targets. Applying the spatial smoothing technique creates this kind of 
artifact. The OESMV preserved the intensity of the hyperechoic targets. The normalized 
intensity of the target positioned at (x, z) =  (0, 40) mm was −8.42 dB by the OESMV, 
−8.42 dB by EIBMV, and −8.49 dB by LCMV.

Figure 2a, b show the lateral deviation of target points positioned at (x, z) = (0, 20) mm 
and (x, z) = (0, 40) mm with 80 dB dynamic range. The OESMV illustrated a beam pattern 
with significantly lower side lobes and narrower main lobe while preserving main lobe 
intensity. Figure 2c, d show the lateral profile of the beamformers at depth z = 20 mm 
and z =  40  mm with larger dynamic range. As can be seen the OESMV stretched the 
dynamic range significantly. Increasing the dynamic range is achievable for image visu-
alization [26]. The performance of the imaging resolution and side lobe suppression were 
measured by the full-width at half-maximum (FWHM), peak-side-lobe (PSL) and floor 
level indexes [13]. The PSL is defined as the difference of the peak value of the first side 
lobe and main lobe. Table 1 gives the quantitative results. The FWHM of the OESMV 
was much better than that with the other beamformers (i.e. 10 times the EIBMV and the 
LCMV). The PSL results showed that the first side lobe level was obviously suppressed. 
The OESMV reached a much lower floor level compare with the EIBMV (i.e. −400 dB 
versus −151 dB). Based on the PSL and floor level results, OESMV provided a B-mode 
image with higher contrast and higher dynamic ranges than the EIBMV and the LCMV.

Cyst simulation

A phantom cyst was simulated to evaluate the noise suppression, contrast enhancement, 
and dynamic range of the OESMV. The cyst had a 4 mm radius and was centered at (x, 
z) = (0, 35) mm. A subarray size of L = 48 was used in spatial smoothing, and the load-
ing factor μ was set to be (10 × L) − 1. 350,000 scatterers have been generated by dis-
placing randomly-distributed and zero-mean Gaussian amplitude.
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Fig. 1  The beamformed response for simulated point targets, with 80 dB dynamic range. a The DAS, b the 
LCMV, c the EIBMV (∂ = 0.9) and d the OESMV (∂ = 0.9, η = 0.05, τ = 0.2)
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Fig. 2  Lateral deviation of simulated point targets at the depth. a and c z = 20 mm, b and d z = 40 mm. a, b 
are shown with -80 dB and c, d with -400 dynamic ranges

Figure 3 shows the results with the 80 dB dynamic range. The DAS and LCMV beam-
formers illustrated poor contrast in Figs.  3a, 5b. As shown in Fig.  3c, by eigenvalue 
decomposition, the EIBMV removed a large part of the noise and the interference 
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components. However, the cyst margin was still not very clear. As Fig.  3d illustrates, 
a larger threshold ∂ provided a clearer edge due to more noise suppression. How-
ever, this performance was achieved at the cost of creating more dark-spot artifacts in 
speckle region. As shown in Fig. 3e, the OESMV achieved sharper and better defined 
cyst boundaries compared with the image obtained by EIBMV. This significant clear cyst 
with sharp edges is obtained due to the removing eigenvectors with low SINR’ from sig-
nal subspace and the interference suppression by oblique projection. The oblique pro-
jection is able to preserve the desire signal intensity. As can be seen in Fig. 3e, OESMV 
provided a speckle pattern similar to that shown in Fig. 3c.

Figure  4 shows the variation of mean intensities of the OESMV, EIBMV, MV, and 
DAS beamformers on the lateral section at the axial axis center. The mean amplitude 
inside the cyst was significantly reduced by the OESMV due to more accurate noise and 

Table 1  Full-width at  half-maximum (FWHM) and  peak-side-lobe (PSL) results for  beam-
formers

FWHM full width at half maximum; PSL peak value of the first side lobe

Beamformer FWHM FWHM PSL PSL
(x, z) = (0, 20) (x, z) = (0, 40) (x, z) = (0, 20) (x, z) = (0, 40)

DAS 0.2 0.5 −12.84 −19.34

LCMV 0.04 0.03 −20.93 −38.93

EIBMV 0.04 0.03 −67.3 −106.6

OESMV 0.003 0.003 −325.1 −331.5

Lateral distance (mm)

A
xi

al
 d

is
ta

nc
e 

(m
m

)

-7 0 7

30

35

40

Lateral distance (mm)
-7 0 7

Lateral distance (mm)
-7 0 7

Lateral distance (mm)

A
xi

al
 d

is
ta

nc
e 

(m
m

)

-7 0 7

30

35

40

Lateral distance (mm)
-7 0 7

a

d e

b c

Fig. 3  The beamformed response for the simulated cyst with a 80 dB dynamic range. a The DAS, b the LCMV, 
c the EIBMV (∂ = 0.03), d the EIBMV (∂ = 0.13) and e the OESMV (∂ = 0.03, η = 0.05, τ = 0.2)
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interference suppression, whereas the speckle intensity on both edges was better pre-
served than with EIBMV.

To show the dynamic range improvement by the OESMV, Fig. 5a, b illustrate the beam-
formed results of the EIBMV and the OESMV with a 200 dB dynamic range, respectively. 
As can be seen, the OESMV imaging quality was preserved for high dynamic range. This 
means that OESMV extended the dynamic range.

The contrast ratio (CR) and the contrast-to-noise ratio (CNR) were calculated as the 
quantitative measurement of the contrast. The speckle SNR was also calculated to assess 
the speckle statistics [14, 27],

(31)CR = 20log

(
ϕbck

ϕcyst

)
,

(32)CNR =

∣∣ϕcyct − ϕbck
∣∣

√
σ 2
cyst + σ 2

bck

,

(33)SNR =
ϕbck

σ 1
bck
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Fig. 4  Lateral deviation of simulated cyst at the depth z = 35 mm
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where ϕcyst and ϕbck are the mean amplitude (before log-compression) in the region of 
interest (ROI) of the cyst and speckle, respectively. In Fig. 3a, the ROI of the cyst and the 
speckle are indicated by a white circle. σcyst

2   , σbck
2   are the relevant variances. Table 2 gives 

the CR, CNR, and SNR results for beamformers. Via eigen decomposition, the EIBMV 
provided a contrast enhancement of 34 and 27 dB over the DAS and the LCMV, respec-
tively. The EIBMV with a larger threshold produced a higher CR of 10 dB, but a lower 
CNR and SNR. This is because it suppressed more noise inside the cyst, but shadowed 
the background. The OESMV eliminated the noise component inside the cyst better 
than EIBMV did, which led to larger CR. The larger SNR and CNR also showed that the 
OESMV beamformer could preserve the speckle pattern better than EISMV could, with 
the added benefit of reducing noise.

Phantom study

Real data for the phantom imaging was carried out by employing the Verasonics ultra-
sound system (Verasonics Inc., Redmond, WA, USA) and multipurpose phantom 
(Model 040GSE CIRS, Inc., Norfolk, VA, USA), which contains hyperechoic targets and 
an anechoic cyst. The L11-4v (Philips Healthcare, Andover, MA, USA) linear probe, 
which consists of 128 elements with 0.3 mm pitch and 0.27 mm element width, was used 
for 1 acquisition plane wave imaging. Central and sample frequencies were set to be 6.25 
and 26 MHz, respectively. The fractional bandwidth of the transducer was 60%, and the 
excitation pulse was a two-cycle sinusoid at the central frequency.

Point target phantom imaging

A wire targets with 0.1 mm diameters were positioned at the depths of z = 40 mm. To 
achieve the maximum resolution with a LCMV beamformer, a subarray size of L = 64 
was used in spatial smoothing, and the loading factor μ was (10 × L)−1. Unlike simula-
tion point target imaging, there was speckle in the target backgrounds.

The LCMV beamformer illustrated a higher resolution than the DAS in Fig. 6b. As can 
be seen in Fig. 6c, the EIBMV improved side lobe suppression by eliminating the contri-
bution of small eigenvalues. The OESMV beamformer removed the low SINR eigenvec-
tors and offered a better imaging resolution in Fig. 6d. The EIBMV and the OESMV both 
emphasized the points but also darkened the speckle and generated shadows surround-
ing the hyperechoic targets. These problems evolved due to straightforward threshold-
ing with a large threshold (∂). To overcome this problem, we suggested setting a small 
threshold ∂ to mitigate the cancellation of the desired signal. The noise and interference 
suppression can then be derived by setting an appropriated SINR’ threshold (η) and a 

Table 2  CR, CNR and speckle SNR results of the simulated cyst

Beamformer CR CNR SNR

DAS −16.9228 1.3907 1.6377

LCMV −24.2736 1.4591 1.5563

EIBMV OESMV (∂ = 0.03) −50.8593 1.4110 1.4133

EIBMV OESMV (∂ = 0.13) −60.9006 1.1616 1.1622

OESMV (∂ = 0.03, η = 0.05, τ = 0.2) −77.8621 1.4432 1.4447
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proper correlated constant (τ). In this way, OESMV improved the imaging resolution of 
MV-based beamformers by increasing the output SINR. As Fig. 6e shows, by setting a 
small ∂, the effectiveness of speckle shadowing was reduced but the EIBMV worked the 
same as the LCMV beamformer. In Fig. 6f, the OESMV represents a superior imaging 
resolution compared to LCMV and EIBMV without compromising speckle statistics.

Figure 7 shows the lateral profile of beamformers at the hyperechoic target position. 
The DAS had the widest main lobe. By a large straightforward threshold (∂ = 0.16), the 
EIBMV and OESMV provided a narrower mainlobe than the LCMV. To preserve the 
speckle, ∂ should be set to a small value. In this way, the EIBMV with a small ∂ (∂ = 0.01) 
provided a beam pattern that fully matched the LCMV. But the OESMV offered a nar-
row main lobe even with a small ∂ (∂ = 0.01, η = 0.05, τ = 0.12). This means that the 
OESMV improved the resolution of the MV-based beamformer without comprising the 
speckle.
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Fig. 6  The beamformed response for the real wire phantom with 80 dB dynamic range. a The DAS, b the 
LCMV, c the EIBMV (∂ = 0.16), d the OESMV (∂ = 0.16, η = 0.05), e the EIBMV (∂ = 0.01), and f the OESMV 
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Cyst phantom imaging

An anechoic cyst phantom with a 6.7 mm diameter was centered at (x, z) = (0, 45) mm. 
Figure 8 shows the beamformed images with 80 dB dynamic range.

The DAS and the LCMV beamformer suffered low image contrast. The EIBMV sup-
pressed noise inside the cyst by signal subspace projection and enhance the contrast in 
Fig. 8c. Noise was further reduced inside the cyst, by increasing ∂ in Fig. 8d; however, 
the EIBMV darkened the speckle with a large ∂. The OESMV offered an image in Fig. 8e, 
with a clean cyst that had sharp boundaries, and a similar speckle pattern to the image 
in Fig. 8c.

For quantitative assessment, the CR, CNR and SNR were estimated. The ROI at 
the inside of the cyst was indicated by white circles. Referring to Table 3, the EIBMV 
increased the noise cancelling inside the cyst and improved the CR for 4 dB by increas-
ing the threshold; however, the CNR and SNR were decreased. The OESMV provided a 
CR enhancement by 24 dB upon that with the EIBMV with small threshold (∂ = 0.26) 
and by 20  dB upon that with the EIBMV with large threshold (∂ =  0.37). Also, the 
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Fig. 8  The beamformed response for the real cyst with 80 dB dynamic range. a The DAS, b the LCMV, c the 
EIBMV (∂ = 0.26), d the EIBMV (∂ = 0.3) and e the OESMV (∂ = 0.26, η = 0.05, τ = 0.11)

Table 3  CR, CNR and speckle SNR results of the real cyst

Beamformer CR CNR SNR

DAS −8.4068 0.9656 1.6102

LCMV −8.7140 0.9431 1.5559

EIBMV (∂ = 0.26) −50.8231 0.8022 0.8046

EIBMV (∂ = 0.37) −54.0310 0.6803 0.6816

OESMV (∂ = 0.26, η = 0.05, τ = 0.11) −74.5097 0.9119 0.9111
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OESMV provided a CNR and SNR enhancement by 0.01 and 0.01 dB respectively, upon 
that with the EIBMV with small threshold (∂ = 0.26) and by 0.13 and 0.13 dB respec-
tively, upon that with the EIBMV with large threshold (∂ = 0.37). The higher CR, CNR 
and SNR results means that the OESMV suppressed noise inside the cyst better than 
EIBMV did, whereas preserving speckle statistics.

Discussion
As an effective subspace method, oblique projection has been applied to medical ultra-
sound imaging successfully. We have proposed an eigenspace-based beamformer using 
oblique projection of signal subspace. Moreover, the eigen-decomposition and SNR 
analysis were investigated to provide a signal and noise subspaces identification algo-
rithm. Real and simulation experiment results confirmed that the proposed beamformer 
displayed higher performance in imaging resolution, imaging contrast, speckle preser-
vation, and dynamic range compared with the DAS, LCMV, and EIBMV beamformers. 
Point and wire target imaging in Figs. 1 and 6 showed the imaging resolution enhance-
ment. The rejection of the low SINR’ components in the direction of the arrival provided 
higher output SINR, resulting in higher imaging resolution. Also, applying the oblique 
projection suppresses the noise and interference components significantly. As shown in 
Figs. 2 and 7, the OESMV provided a beam pattern with a narrower main lobe and sig-
nificantly lower side lobes than that with LCMV and EIBMV. For anechoic cyst phantom 
imaging, as illustrated by Figs. 3, 5 and 8, the OESMV suppressed noise inside the cyst 
more than the EIBMV did, whereas restored signal intensity, resulting in a clearer cyst, 
and a better speckle pattern. Higher CR, CNR, and speckle SNR by the OESMV were 
reported upon the DAS, LCMV, and EIBMV beamformers.

Unlike the conventional eigenspace-based beamformers, the proposed subspace iden-
tification omits the largest eigenvalue from subspace, if it provides a low SINR’ in direc-
tion of arrival. This ability contributes to significant sidelobes suppression. The largest 
eigenvalue of those signals which originating from anechoic region or off-axis signal, 
provides a low SINR’. On contrary, the eigenvalue of those signals backcombing from 
hyperechoic targets, provides a high SINR’. Therefore the proposed subspace identifica-
tion, is able mitigate the off-axis components while preserving the desire signal. On the 
other hand oblique projection technique, by projection the weight vector onto signal 
subspace along the direction which is parallel to noise and interference direction could 
provide better sidelobe suppression than that with orthogonal projection. As can be seen 
in Figs. 2 and 4, the OESMV overcompensates for the sidelobe effects in the anechoic 
regions, which significantly reduces the background level and gives the impression of 
empty space while preserved signal intensity.

To obtain an optimal image quality, the parameters (∂), (τ) and (η), should probably be 
adjusted for different scenarios. For example a low correlation constant (τ) and a small 
straightforward threshold (∂) recommended to preserve the signal intensity and speckle 
pattern. Increasing correlation constant (τ), provide a higher sidelobe suppression. How-
ever, this performance is achieved at the cost of signal distortion. For future work (τ) can 
be determined adaptively according to the received echo properties. By straightforward 
thresholding, both EIBMV and OESMV may bring dark spots on the speckle pattern. For 
large ∂, the OESMV may overestimate the noise at the cost of the speckle removal. To 
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prevent speckle darkening, ∂ should be adjusted to a small value so that suppress noise 
inside the cyst. Afterward, by optimally adjusting the parameters (τ) and (η), the cyst 
edge will be distinguishable without scarifying the speckle. For too small ∂, even with a 
large (η), the OESMV could not eliminate the remaining noise. As similar problem, by 
straightforward thresholding, the Eigenspace-based beamformers suffered from shadow-
ing alongside the hyperechoic targets and cysts. For this case the, to prevent the speckle 
darkening ∂ should be adjusted to a small value. Even with a small ∂, the OESMV is able 
to provide a high resolution performance by rejecting the low SNIR’ component in the 
direction of the arrival. As shown in Fig. 6f the OESMV could provide high-quality imag-
ing resolution while preserving the speckle pattern surrounding the hyperechoic targets.

Eigenspace-based beamformers suffered from high computation complexity of O(L3) 
[12]. They have two major computational parts. One is the eigen decomposition and the 
other one is MV weight estimation. The OESMV added extra complexity to compute the 
SINR’ for each large eigenvalue. As an alternative way, the eigen-decomposition could 
be applied to DAS beamformer to decrease the calculation time. In this way, it is unnec-
essary to compute the inverse covariance matrix; the computation complexity will be 
reduced from O(L3) to O(L2). However, the DAS beamformer may degrade the imaging 
resolution quality.

Conclusions
In conclusion, proposed signal and noise identification method and employing the 
oblique projection instead of orthogonal projection, have provided an accurate noise 
cancellation, which leads to increase plane wave Ultrasound image quality. According to 
the significant enhanced FWHM and PSL results, MV-beamformers imaging resolution 
was improved by increasing the SINR. The significant lowered side lobes, led to provide 
a plane wave B-Mode image with high dynamic range. The significant CR, CNR, and 
SNR results showed that OESMV improved the imaging contrast while preserving the 
speckle statistics. The OESMV beamformer also is able to solve the shadowing problem 
surrounding the hyperechoic targets.

Abbreviations
DAS: delay and sum; MV: minimum variance; LCMV: linear constraint minimum variance; SNR: signal to noise ratio; EIBMV: 
eigenspace based minimum variance; OESMV: oblique eigenspace based minimum variance; SINR: signal to interference 
pulse noise ratio; DOA: direction of arrival; FWHM: full width at half maximum; PSL: peak side lobe; CR: contrast ratio; CNR: 
contrast to noise ratio.

Authors’ contributions
SA carried out the medical ultrasound beamforming studies, proposed a new idea and drafted the manuscript. He also 
wrote the Matlab codes of proposed beamformer and carried out all of experiment results. YW and JY as supervisor 
discussed about method and revised the manuscript. JZ prepared the Matlab code of several current beamformers and 
participated in the experiments. WG and SZ discussed about method and helped to do experiments. All authors read 
and approved the final manuscript.

Author details
1 Department of Electronic Engineering, Fudan University, Shanghai 200433, China. 2 Key Laboratory of Medical Imaging 
Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai 200433, China. 

Acknowledgements
This work was supported by the National Basic Research Program of China (2015CB755500), and the National Natural 
Science Foundation of China (61271071, 61471125).

Competing interests
The authors declare that they have no competing interests.



Page 18 of 19Aliabadi et al. BioMed Eng OnLine  (2016) 15:127 

Approval and consent to participate
Since our study does not contain the data of human participants, human data or human tissue or animal, “Approval and 
Consent to Participate” is “Not Applicable”.

Availability of data and supporting materials
For this research we have carried out the simulated and real phantom radio frequency (RF) data (as raw data) by employ-
ing the Field II software and Verasoncs system. For researchers wishing to continue this research, the implementation 
setup has been described in relevant sections in details, (P 6 L25, P7 line 16, P8 L22–P9 L4 and P9 L24) to make regener-
ate RF data. Also implementation of software (Matlab manuscript file), is regular and easy to implement by flowing the 
implementation summary of algorithm in page 5. “Please contact author for data requests.”

Since we don’t use the human or animal data, the “Availabity of Data and Supporting Material” with exact format 
similar that is mentioned in “Editorial policies” this kind of data “Not Applicable”.

Consent for publication
Since our study does not contain any individual person’s data, the “Consent for Publication” is “Not applicable”.

Funding
This work was supported by the National Basic Research Program of China (2015CB755500), and the National Natural 
Science Foundation of China (61271071, 61471125).

Received: 9 July 2016   Accepted: 10 November 2016

References
	1.	 Capon J. High resolution frequency-wavenumber spectrum analysis. Proc IEEE. 1969;57:1408–18.
	2.	 Synnevåg J-F, Austeng A, Holm S. Benefits of minimum variance beamforming in medical ultrasound imaging. IEEE 

Trans Ultrason Ferroelectr Freq Control. 2009;56(9):1868–79.
	3.	 Sasso M, Cohen-Barcie C. Medical ultrasound imaging using the fully adaptive beamformer. Proc IEEE Int Conf 

Acoust Speech Signal Process. 2005;2:489–92.
	4.	 Synnevåg J-F, Austeng A, Holm S. Adaptive beamforming applied to medical ultrasound imaging. IEEE Trans Ultra-

son Ferroelectr Freq Control. 2007;54(8):1606–13.
	5.	 Izadi SA, Mahloojifar A, Asl BM. Weighted Capon beamformer combined with coded excitation in ultrasound imag-

ing. J Med Ultrason. 2015;42:477–88.
	6.	 Asl BM, Mahloojifar A. Contrast enhancement and robustness improvement of adaptive ultrasound imaging using 

forward-backward minimum variance beamforming. IEEE Trans Ultrason Ferroelectr Freq Control. 2011;58(4):857–67.
	7.	 Kim K, Park S, Kim J, Park SB, Bae M. A fast minimum variance beamforming using principal component analysis. IEEE 

Trans Ultrason Ferroelectr Freq Control. 2014;61(6):930–45.
	8.	 Cheng-Chou L, Ju-Hong L. Eigenspace-based adaptive array beamforming with robust capabilities. IEEE Trans 

Antennas Propag. 1997;45(12):1711–6.
	9.	 Jung-Lang Y, Chien-Chung Y. Generalized eigenspace-based beamformers. IEEE Trans Signal Process. 

1995;43(11):2453–61.
	10.	 Asl BM, Mahloojifar A. Eigenspace-based minimum variance beamforming applied to medical ultrasound imaging. 

IEEE Trans Ultrason Ferroelectr Freq Control. 2010;57(11):2381–90.
	11.	 Mehdizadeh S, Johansen T, Holm S. Eigenspace based minimum variance beamforming applied to ultrasound 

imaging of acoustically hard tissues. IEEE Trans Med Imaging. 2012;31(10):1912–21.
	12.	 Zeng X, Wang Y, Yu J. Beam-domain Eigen space-based minimum variance beamformer for medical ultrasound 

imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60(12):2670–6.
	13.	 Zeng X, Chen C, Wang Y. Eigenspace-based minimum variance beamformer combined with Wiener postfilter for 

medical ultrasound imaging. Ultrasonics. 2012;52(8):996–1004.
	14.	 Zhao J, Wang Y, Yu JH, Gou W, Li T, Zheng Y. Subarray coherence based postfilter for eigenspace based minimum 

variance beamformer. Ultrasonics. 2016;65:23–33.
	15.	 Nilsen CIC, Holm S. Wiener beamforming and the coherence factor in ultrasound imaging. IEEE Trans Ultrason Fer-

roelectr Freq Control. 2010;57(6):1329–46.
	16.	 Wang YH, Li PC. SNR-dependent coherence-based adaptive imaging for high-frame-rate ultrasonic and photoa-

coustic imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61(8):1419–32.
	17.	 Kayalar S, Weinert HL. Oblique projections: formulas, algorithms, and error bounds. Math Control Signals Syst. 

1989;2(1):3345.
	18.	 Behrens RT, Scharf LL. Signal processing applications of oblique projection operators. IEEE Trans Signal Process. 

1994;42(6):1413–24.
	19.	 Behrens RT, Scharf LL. Corrections to signal processing applications of oblique projection operators. IEEE Trans 

Signal Process. 1996;44(5):1300.
	20.	 McCloud ML, Scharf LL. A new subspace identification algorithm for high-resolution DOA estimation. IEEE Trans 

Antennas Propag. 2002;50(10):1382–90.
	21.	 Boyer R, Bouleux G. Oblique projections for direction-of-arrival estimation with prior knowledge. IEEE Trans Signal 

Process. 2008;56(4):1374–87.
	22.	 Monzingo RA, Miller TW. Introduction to adaptive arrays. New York: Wiley; 1980.
	23.	 Zhao J, Wang Y, Zeng X, Yu J, Yiu BYS, Yu ACH. Plane wave compounding based on a joint transmitting-receiving 

adaptive beamformer. IEEE Trans Ultrason Ferroelectr Freq Control. 2015;62:1440–52.



Page 19 of 19Aliabadi et al. BioMed Eng OnLine  (2016) 15:127 

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

	24.	 Jensen JA. Field: a program for simulating ultrasound systems. Med Biol Eng Comput. 1996;34:351–4.
	25.	 Jensen JA, Svendsen NB. Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound 

transducers. IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39(2):262–7.
	26.	 Matrone G, Savoia AS, Caliano G, Magenes G. The Delay multiply and sum beamforming algorithm in ultrasound 

B-mode medical imaging. IEEE Trans Med Imaging. 2015;34(4):940–9.
	27.	 Xu M, Yang X, Ding M, Yuchi M. Spatio-temporally smoothed coherence factor for ultrasound imaging. IEEE Trans 

Ultrason Ferroelectr Freq Control. 2014;61:182–90.


	Eigenspace-based beamformer using oblique signal subspace projection for ultrasound plane-wave imaging
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Introduction
	Mathematic Background
	Signal and array model
	Minimum variance beamformer
	Eigenspace-based minimum variance beamformers

	Proposed Method
	Subspace identification
	Oblique projection of signal subspace
	Implementation summary of algorithm

	Experiments and Results
	Simulation study
	Point target simulation
	Cyst simulation

	Phantom study
	Point target phantom imaging
	Cyst phantom imaging


	Discussion
	Conclusions
	Authors’ contributions
	References




