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Abstract 

Background:  Accurate segmentation of blood vessels plays an important role in the 
computer-aided diagnosis and interventional treatment of vascular diseases. The sta-
tistical method is an important component of effective vessel segmentation; however, 
several limitations discourage the segmentation effect, i.e., dependence of the image 
modality, uneven contrast media, bias field, and overlapping intensity distribution of 
the object and background. In addition, the mixture models of the statistical methods 
are constructed relaying on the characteristics of the image histograms. Thus, it is a 
challenging issue for the traditional methods to be available in vessel segmentation 
from multi-modality angiographic images.

Methods:  To overcome these limitations, a flexible segmentation method with a fixed 
mixture model has been proposed for various angiography modalities. Our method 
mainly consists of three parts. Firstly, multi-scale filtering algorithm was used on the 
original images to enhance vessels and suppress noises. As a result, the filtered data 
achieved a new statistical characteristic. Secondly, a mixture model formed by three 
probabilistic distributions (two Exponential distributions and one Gaussian distribution) 
was built to fit the histogram curve of the filtered data, where the expectation maximi-
zation (EM) algorithm was used for parameters estimation. Finally, three-dimensional 
(3D) Markov random field (MRF) were employed to improve the accuracy of pixel-wise 
classification and posterior probability estimation. To quantitatively evaluate the perfor-
mance of the proposed method, two phantoms simulating blood vessels with different 
tubular structures and noises have been devised. Meanwhile, four clinical angiographic 
data sets from different human organs have been used to qualitatively validate the 
method. To further test the performance, comparison tests between the proposed 
method and the traditional ones have been conducted on two different brain mag-
netic resonance angiography (MRA) data sets.

Results:  The results of the phantoms were satisfying, e.g., the noise was greatly sup-
pressed, the percentages of the misclassified voxels, i.e., the segmentation error ratios, 
were no more than 0.3%, and the Dice similarity coefficients (DSCs) were above 94%. 
According to the opinions of clinical vascular specialists, the vessels in various data sets 
were extracted with high accuracy since complete vessel trees were extracted while 
lesser non-vessels and background were falsely classified as vessel. In the comparison 
experiments, the proposed method showed its superiority in accuracy and robustness 
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for extracting vascular structures from multi-modality angiographic images with com-
plicated background noises.

Conclusions:  The experimental results demonstrated that our proposed method was 
available for various angiographic data. The main reason was that the constructed mix-
ture probability model could unitarily classify vessel object from the multi-scale filtered 
data of various angiography images. The advantages of the proposed method lie in the 
following aspects: firstly, it can extract the vessels with poor angiography quality, since 
the multi-scale filtering algorithm can improve the vessel intensity in the circumstance 
such as uneven contrast media and bias field; secondly, it performed well for extracting 
the vessels in multi-modality angiographic images despite various signal-noises; and 
thirdly, it was implemented with better accuracy, and robustness than the traditional 
methods. Generally, these traits declare that the proposed method would have signifi-
cant clinical application.

Keywords:  Multi-modality angiographic images, Vessel segmentation, Multi-scale 
filtering, Statistical mixture model, Markov random field

Background
Nowadays, cardio- and cerebro-vascular diseases have greatly threatened human health. 
Since the use of imaging techniques such as computed tomography angiography (CTA) 
and magnetic resonance angiography (MRA) in minimally invasive surgery, high qual-
ity image segmentation has become an important area of interest. A detailed review has 
been made on threshold based, pattern recognition based, and deformable models based 
segmentation algorithms which were used for medical images [1, 2]. The main tendency 
of these algorithms with their principle ideas, application field, advantages and disad-
vantages were discussed. Conclusion has been drawn that each segmentation method 
with improvement, or in combination with other technique, could provide better perfor-
mance [3, 4]. Clustering algorithms and supervised classification used for the segmenta-
tion of atherosclerotic plaques were analysed in [5].

For the diagnosis and treatment of vascular diseases, it is critical to accurately extract 
and quantify the blood vessels from the angiographic image. Aimed at the extraction of 
blood vessels, different kinds of segmentation methods have been proposed, e.g.: multi-
scale filtering [6–9], deformable models [10], statistical models [11–13], and hybrid meth-
ods [14, 15]. Multi-scale filtering can enhance the intensity of the vessels while suppresses 
that of the background [16] in various angiographic data, however, further processing 
should be conducted in order to label the vessel class out. Deformable models well inte-
grate bottom–up information and top–down priori knowledge, but the segmentation 
quality mainly depends on the model parameters [17, 18]. For statistical models, the ves-
sels in the angiographic data with a given modality are segmented according to the inten-
sity distributions of anatomical structures, by which voxels with overlapped intensities 
will inevitably be misclassified [19]. In order to reduce the probability of error classifica-
tion, hybrid methods have been proposed to take the spatial contextual information into 
account [20], but limitations still exist for multi-modality angiographic images.

So far, statistical models have drawn a lot of attention, and model selection is an 
important issue in this kind of vessel segmentation techniques. To our known, the ear-
liest statistical-based segmentation algorithm for extracting 3D cerebral vessels from 
MRA data was established by Wilson and Noble [19]. They divided the MRA data 
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histogram into three regions, modelled by a mixture model of two Gaussian distribu-
tions and one uniform distribution. Hassouna et  al. [21] improved the mixture model 
with a Rayleigh distribution and three Gaussian distributions to provide an accurate 
fitting of the histogram curve. On the basis of statistical model analysis and improved 
curve evolution, a fast segmentation algorithm for extracting the 3D cerebral vessels was 
presented by Gao et al. [22]. To segment fine cerebral vessels with complicated contexts, 
a statistical method based on maximum a posteriori and Markov random field (MAP–
MRF) with multi-pattern neighbourhood system (MP-NBS) was proposed by Zhou et al. 
[23], where the larger cerebrovascular network can be extracted out automatically. In 
general, statistical segmentation methods need to construct mixture probability distri-
butions and adjust their parameters to fit a certain image histogram, where the vessels 
in a particular position are segmented according to the specific intensity distribution of 
a certain angiography image. To sum up, a given statistical model only deals with a spe-
cific imaging modality on a given anatomical part, which is to say that the statistical seg-
mentation method should change its models to fit a certain medical data. This issue has 
greatly restricted the application of statistical methods.

Being different from the above-mentioned statistical vessel segmentation method, 
in this paper, a flexible method for extracting vessels from various modalities of angio-
graphic images was developed. Up to present, statistical modelling against the data of 
multi-scale filtering response was not been used to vessel segmentation from angio-
graphic data. One reason lies in the complexity of constructing mixture model, and 
the other lies in the error being not easily controlled with parameters estimation. We 
have done this attempt, and our method includes the following several steps. In the first 
step, image data of different modalities were filtered by multi-scale vessel enhancement 
algorithm. The intensity of the vessels was enhanced, whereas the intensity of the back-
ground voxels was suppressed, and the filtered data turned to a new distribution. Then, 
the filtered data was modelled by a new mixture model consisting of reduced distribu-
tion classes. Based on the histogram curve analysis, a Gaussian distribution was used 
to model the high intensity which represents the vessels; while two Exponential distri-
butions were used to model the low and middle intensity regions which represent the 
background voxels. The parameters of the mixture model were estimated by the EM 
algorithm. At last, the vessels were marked out by MAP–MRF algorithm.

The rest of this paper is organized as follows. In “Methods” section, the proposed 
method is described in detail, where the multi-scale filtering based vessel enhancement, 
histogram analysis, the mixture model constructing for histogram curve fitting, param-
eters estimation, and the MAP–MRF segmentation algorithm are presented in succes-
sion. “Experiments” section details the experiments that were conducted on a series of 
phantoms, the MRA data, and the CTA data, where results are also presented. Summa-
ries and future work are discussed in “Results and discussions” section, and the conclu-
sions are drawing in the last section.

Methods
The framework of the proposed method is shown in Fig. 1. Firstly, to attain a relatively 
consistent histogram characteristic from multi-modality input data, multi-scale filtering 
is employed as the pre-processing step. Secondly, a mixture model composed of three 
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distributions was built to fit the histogram curve of the filtered data. The parameters 
of the three distributions were automatically estimated through peak-points detecting 
of the histogram curve, K-means clustering algorithm, and EM algorithm. Finally, the 
blood vessels were segmented by the MAP–MRF algorithm.

Vessel enhancement algorithm

We use the algorithm of three dimensional multi-scale filtering algorithm [6] to 
strengthen the intensity of the vessels while weakening that of the background. Accord-
ing to the eigenvalues of Hessian, the vessel function with multi-scale filtering is 
expressed as: 

where RA, RB and S are the three measures that can be respectively controlled by the 
parameters α, β and c, so that the vessel function be sensitive to the vessel shapes. The 
relationships between these parameters and the eigenvalues are shown in the following:

Here, h1, h2, and h3 are the eigenvalues corresponding to the eigenvectors of three 
orthonormal directions which are robust to the scaling factor. The resultant ratios 
RA and RB would be sensitive to the shapes of the blood vessel structure (e.g., blob-, 
plate-, and line-like structures), while the measure S would be used to suppress image 
noise.

The above-mentioned enhancement algorithm was tested on several angiographic 
data sets. The histogram curves of the original data sets and those of the corresponding 
filtered data sets are compared in Fig. 2. Note that the low, middle, and high intensity 
regions of the filtered data gained from various modality original data exhibit similar 
distribution features.

After processed using multi-scale filtering, the vessels would be enhanced while the 
background tissues would be weakened, such that the resultant histogram curve of the 
filtered data would be fitted by reduced model elements.
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Mixture model construction

Through the comparison of the histogram curves between the original and the filtered 
data in Fig. 2, it can be seen obviously that the vessels occupy the high intensities region 
with a range of gradual change, thus a Gaussian distribution could be used to model 
the vessel class. For the background class, the Exponential distributions showed the best 
fitting performance after several probability distribution functions were tested. There-
fore, two Exponential distributions were used to model the low and middle intensity 
regions of background voxels. As a result, the mixture model for the filtered data can be 
described as a linear combination of the three probability distribution functions:

where the mixture model f(x) is composed of Exponential distributions fE1(x) and fE2(x) 
as well as Gaussian distribution fG(x). The parameters wE1, wE2, and wG are the propor-
tion coefficients whose sum is unity. The three distributions can be defined as follows:

where parameters λ, μ, σ, and the proportion coefficients wEl, wG should be firstly esti-
mated before the classification procedure. To begin with, the intensity range of the fil-
tered data was enlarged to be consistent with the original image data. Then, the filtered 
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data was classified into three parts using the K-means algorithm. For the initialization of 
the K-means algorithm, the histogram curve of the original image was smoothed, and 
the peak points were automatically found out through local extremum method. If there 
were more than three peak points in the original histogram curve, the K-means algo-
rithm would be initialized by the first three peak values. Otherwise, it would be initial-
ized according to the following rule:

where Imax and Imin are the maximum and the minimum intensity values of the filtered 
data. The variables µinit

k_1, µ
init
k_2, and µinit

k_3 are the initial cluster centroids while μk_l, σk_l, 
wk_l,  (l = 1, 2, 3) represent the distribution parameters which were all estimated by the 
K-means algorithm.

As the accuracy of theses parameters plays an important role in the final classification, 
the EM algorithm was used to improve the estimation performances of these param-
eters. The results of the K-means algorithm were used as the initial values for the EM 
algorithm, as shown in Eq. (7):

Then, the parameters were iteratively updated with the EM algorithm as follows:

where N is the total number of the voxels in the filtered data and xj is the correspond-
ing intensity of voxel j. The posterior probability f k(El|xj) and f k(G|xj) are gained by the 
Bayes formula that are explained in Eq. (10)

MAP–MRF based classification

A series of filtered data was modelled by the proposed mixture model, and the com-
bination of two Exponential distributions and one Gaussian distribution shows a good 
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fitting to the histogram curves of the filtered data from the multi-modality angiographic 
images. According to the MAP algorithm, a voxel belongs to the vessel class only if it 
meets the following criteria:

Equation (11) gives the simplest case of binary vessel labelling, in which the voxels of 
the filtered data are labelled as either blood vessels or background according to their 
posteriori probability. However, misclassification still exists when significant vascu-
lar signal losses or the noise has high intensity value because MAP classification only 
depends on the voxel intensity. Therefore, MRF algorithm is introduced for enhanced 
segmentation.

Spatial interaction between neighbouring voxels is modelled by MRF. Assume that X is 
an MRF, observed vector Y is conditionally independent, then MAP–MRF based expres-
sions can be written as

where p(X|Y), being the low level MRF process, is modelled as a mixture model talked 
above; the term p(X), being the high level MRF process, is given by the Gibbs distribu-
tion [24] as follows

where U(x) is the energy function, Ω denotes the space of all possible labelling, and Z is 
a normalizing constant to be the sum of the numerator over all possible configurations 
of x. With the isotropic multi-level logistic (MLL) model [25], U(x) can be expressed as

where η denotes the neighbourhood cube with the size of 3× 3× 3, V (xs, xr) is the 
energy of pair-points in this MP-NBS [23], and the energy function U(xs) is proportional 
to the summation of the weighted V (xs, xr) with respect to βsr. The instances of V (xs, xr) 
used are given below.

The regularization parameter βsr is meant for the strength of the interaction between 
pair-wise neighbouring voxels.

Overall, according to the MAP–MRF approach, the posterior probability of the vessel 
class can be expressed by

Meanwhile, the posterior probability of the background class is given by

(11)wGfG(xj) > wE1fE1(xj)+ wE2fE2(xj)

(12)p(X |Y ) ∝ p(Y |X)p(X)

(13)p(X = x) =
exp(−U(x))

Z
, Z =

∑
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exp(−U(x))

(14)
U(xs) =

∑

r∈η
βsrV (xs, xr) ∀r ∈ η

(15)V (xs, xr) =
{

1, if xs = xr
0, elsewhere

(16)p(X = V |Y = y) ∝ fG(y) exp(−U(V ))

(17)p(X = B|Y = y) ∝
wE1fE1(y)+ wE2fE2(y)

wE1 + wE2
exp(−U(B))
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Finally, the MAP–MRF model is solved by iteratively using the iterated conditional 
modes (ICM) [26], and a voxel belongs to the vessel class only if it meets the following 
rule:

Experiments
The experiment results of the proposed segmentation method are presented in this sec-
tion. In order to quantitatively and qualitatively validate the proposed method, tests 
were conducted on phantoms and various modality angiographic images from MRA, 
and CTA data. Additionally, comparisons with the traditional methods have also been 
discussed at the end of this section.

Experiment of quantitative validation

Since it was not easy to acquire the golden standard of vessels in real clinical data, phan-
toms with known ground truth and complicated background noises were designed to 
quantitatively validate the proposed method. The percentage of the number of misclassi-
fied voxels to that of the total voxels of the phantom was calculated as the segmentation 
error ratio. As a popular metric for evaluating the accuracy of automated or semi-auto-
mated segmentation methods, the Dice similarity coefficients (DSCs) was used to esti-
mate the segmentation performance on the phantom data by comparing their results to 
the ground truth.

Two 3D phantoms were built to simulate the real clinical vessels data, which were 
shown in Fig. 3.

The simulation processes of mixture distributions for target and background were 
referred to our approach by Zhou et al. [23]. The main characteristics lied in follows: (1) 
Considering that the components of the background voxels in the angiographic images 
are often Gauss signals, different levels of Gaussian noises w.r.t. (µ, σ 2,ω) were added 

(18)p(X = V |Y = y) > p(X = B|Y = y)

Fig. 3  Phantoms illustration. a Ground truth. b Slices of the ground truth. c Phantom slices with the noises 
added to the ground truth
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into the two phantoms. (2) The proportion of the ground truth is not limited in our 
method, i.e., the proportions of the target and the background could be randomly set 
by adjusting the size of their volumes. (3) The vessels occupy the high intensities region, 
thus, in the setting of parameters (µ, σ 2, ω), the value μ of the vessel target should be 
greater than that of each Gauss noise.

Among the two phantoms one was a single curving tubular target, and the other con-
sists of a series of tubular targets, where the intensity values of the two vessel objects 
were generated with stochastic ones of 810 and 650 respectively. The diameter of each 
tubular target smoothly changed, like that of a real vessel structure. Three Gauss-
ian noises with the parameters (µ, σ 2,ω) designed as (148, 102, 0.4), (187, 152, 0.4), and 
(228, 602, 0.24) were added into the first phantom while two Gaussian noises with the 
parameters (148, 102, 0.5), and (187, 152, 0.3) were added into the second phantom. The 
data volumes in the two phantoms were 128 × 128 × 128 and 240 × 240 × 240 vox-
els respectively. The 3D view of the ground truth and some slices of the phantoms were 
shown in Fig. 3.

In the first step, the phantoms were pre-processed with the multi-scale filtering algo-
rithm. After that, the vessels were marked out using the proposed segmentation method. 
For the filtered data of the phantoms, the estimated two Exponential distributions and 
one Gaussian distribution curves were presented in Fig.  4a together with their fitting 
curves. Slices of the segmentation results and their 3D views were plotted in Fig.  4b. 
Meanwhile, the segmentation error ratios and the DSCs of the two phantoms were listed 
in Table  1, where Ntotal represents the total voxel number of the phantom, Nover, and 
Nunder are the number of voxels in over segmentation and under segmentation respec-
tively. Thus, the sum of Nover and Nunder is the number of voxels in misclassification. Sg 
is the set of pixels assigned to the targets in the ground truth, Sm is the set of pixels 
assigned to the targets in the segmentation result, and N (·) represents the number of 
pixels in the corresponding region. The DSC provided a measure of how accurate a 
method was, with its value closer to 1 indicating greater accuracy.
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Experiment of clinical validation

This section detailed the qualitative validation that was conducted on four clinical data, 
each of which held a different statistical characteristic. Among the four clinical data, the 
brain MRA data set was offered by Guangzhou General Hospital of the Chinese People’s 
Liberation Army (PLA). The placenta MRA, legs MRA, and the thorax CTA data sets 
were gained from Shenzhen No.2 People’s Hospital. These clinical data sets were shown 
in Fig. 5, and the sizes and elements spacing of these data were listed in Table 2.

The images of different organs from various imaging equipment exhibited different 
statistical characteristics. After using the vessel enhancement algorithm, the histograms 
of the filtered data of these clinical data obtained a new relatively consistent distribution. 
For the filtered data, the vessel class was modelled by a Gaussian distribution, and the 
background class was modelled by two Exponential distributions. The results of distri-
bution curves fitting are shown in Fig. 6.

For clinical validation with respect to the real angiographic data, the Z-axis projections 
as well as the 3D views of the segmentation results were compared to the corresponding 

Table 1  Fitting error ratios and the DSCs for the phantoms

Phantoms I Phantoms II

Fitting error 

(

Nover+Nunder
Ntotal

)

 (%)
0.21 0.11

DSC 

(

2N(Sg∩Sm)
N(Sg)∪N(Sm)

)

 (%)
94.74 96.94

Fig. 5  The clinical data sets. a Brain MRA data. b Placenta MRA data. c Legs MRA data. d Thorax CTA data

Table 2  Data sizes and elements spacing of the clinical data

Data sizes (voxels) Elements spacing (mm)

Brain MRA data 561 × 561 × 361 0.50 × 0.50 × 0.50

Placenta MRA data 512 × 512 × 293 0.40 × 0.40 × 0.70

Legs MRA data 330 × 384 × 66 1.17 × 1.17 × 1.30

Thorax CTA data 512 × 512 × 338 0.36 × 0.36 × 0.4
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maximal intensity projection (MIP) of the original images, as suggested by clinical 
experts on cardio- and cerebro-vascular diseases. Parts of the results are given in Fig. 7.

Experiment of comparison tests

As an amendment to above-mentioned quantitative and clinical validation experiments, 
comparison tests were conducted against the traditional methods. Since our study was 
mainly based on statistical models, three popular model-based segmentation methods 
were chose for the tests. The three algorithms were methods of Wilson et al. [20], Gao 
et al. [22], and Zhou et al. [23]. The mixture models used in the proposed method and 
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Fig. 6  The mixture model fitting results from the angiographic image data of the anatomical parts of the  
a brain, b placenta, c legs, and d thorax

Fig. 7  The MIP of the original images compared to the Z-axis projections and 3D views of the segmentation 
results from the angiographic image of the anatomical parts of the a brain, b placenta, c legs, and d thorax
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the three traditional ones were different from each other, as shown in Table 3. Besides, 
the proposed mixture model was used to fit the filtered data, and the mixture models of 
the other three were used to fit the original data. To get the best segmentation results 
from each of the traditional methods, brain MRA data was used for the tests according 
to their application ranges. During the validation, the three traditional methods were 
implemented using models specified in the original papers and parameters as best as 
possible.

The online brain MRA data-sets (http://www.insight-journal.org/midas/community/
view/21) have previously been used by many researchers to test their vessel segmenta-
tion methods. They were acquired at the element spacing of 0.5 × 0.5 × 0.8 mm3 with 
the data volumes of 448 × 448 × 128 voxels. Comparison tests were conducted on the 
ten data-sets, and the experimental results of a single MRA data from the four segmen-
tation methods are displayed in Fig. 8.

To further verify the effectiveness of the proposed method, comparison tests were 
also conducted on some data sets offered by the aforementioned Guangzhou General 
Hospital of the Chinese PLA. The image acquisition parameters of these data together 
with those of the online brain MRA data sets were listed in Table 4. Because of uneven 
contrast media and bias field, these MRA data sets exhibited a poor image quality. One 
brain MRA data set and its histogram curve are shown in Fig. 9, from which we can see 
this kind of data hold a different statistical property.

Results and discussions
In this paper, multi-scale filtering algorithm was firstly used for vessel enhancement 
and noise suppression before the statistical based classification, where filter parameters 
settings of α, β, c were same for all the data-sets. Suggested by Frangi’s method [6], a 
compromise value of α and β equal to 0.5 would make multi-scale filtering algorithm to 
differentiate tubular-like structures from plate-, and blob-like ones; while the parameter 
c depended on the grey-scale range of the image and was set as half the value of the max-
imum Hessian norm. The filtered data from multi-modality angiographic images turns 
to a relatively consistent statistical distribution after the vessel enhancement algorithm. 
The following statistical model used two Exponential distributions and one Gaussian 
distribution to fitting the relatively consistent statistical distribution, which classified 
the vessels through adjusting model components to fit a certain histogram curve of the 
filtered data. To sum up, as a flexible segmentation method, it performs well in vessel 

Table 3  Mixture models used in the four methods

Method Class

Background Vessel Modelled data/morphology

Wilson et al. Two Gaussian distributions A uniform distribution Brain/TOF-MRA

Gao et al. A Rayleigh and several Gaussian 
distributions

A Gaussian distribution Brain/TOF-MRA

Zhou et al. A Rayleigh and two Gaussian 
distributions

A Gaussian distribution Brain/TOF-MRA

Proposed Two Exponential distributions A Gaussian distribution All anatomical parts, all the 
angiography

http://www.insight-journal.org/midas/community/view/21
http://www.insight-journal.org/midas/community/view/21
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Fig. 8  Segmentation results of one online MRA data set. a0 One slice of the MRA data. b0 MIP of the MRA 
data. c0 Histogram curve of the MRA data. a Method of Wilson et al. b Method of Gao et al. c Method of Zhou 
et al. d The proposed method

Table 4  Data sizes and elements spacing of the images in experiment 3

Data sizes (voxels) Elements spacing (mm)

The online brain MRA data 448 × 448 × 128 0.50 × 0.50 × 0.80

Brain MRA data from the hospital 561 × 561 × 361 0.50 × 0.50 × 0.50
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enhance and histogram fitting for the filtered data and is robust to various angiographic 
images from different human organs and different imaging equipment.

For phantom validation, the method performed well for images despite various signal 
noises. The tubular object was enhanced while background noise was suppressed effec-
tively. The accuracy of the proposed method was tested by several 3D phantoms. The 
phantoms were built to simulate the real angiographic images where different noises 
were added to simulate the background voxels. Compared to the known ground truth, 
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Fig. 9  Segmentation results of a single MRA data set from the hospital. a0 One slice of the MRA data. b0 MIP 
of the MRA data. c0 Histogram curve of the MRA image. a Method of Wilson et al. b Method of Gao et al.  
c Method of Zhou et al. d The proposed method
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the mixture model efficiently fitted the histogram curves of both phantoms with the seg-
mentation error ratios being 0.21 and 0.11%, and the DSCs being 94.74 and 96.94%. See 
Table 1, which strongly confirmed the segmentation quality.

For clinical validation, the proposed method was tested on multi-modality angio-
graphic images from different human organs. The mixture model in our method fitted 
well in each histogram curve of the filtered data. Comparing with the MIP from the orig-
inal images and the segmentation results, the complete vessel trees were extracted while 
lesser non-vessels and background were falsely classified as vessel. The results were sat-
isfactory according to the suggestion of clinical experts. Parts of the results are given in 
Fig. 7.

In comparison tests, the results from traditional statistical based methods and the 
proposed method were presented. Experimental results of a single MRA data from the 
four segmentation methods are displayed in Fig.  8. The mixture model built by Zhou 
et al. obtained the best fitting performance among the three traditional methods accord-
ing to the histogram fitting performance and the Z-axis projection of these segmenta-
tion results. In their method, a Gaussian distribution was used to model the vessel class, 
while a Rayleigh distribution and two Gaussian distributions were used to model the 
background class. At the same time, the mixture model built in this paper fitted well 
for the histogram of the filtered data, and more small vessels were marked out which 
can been seen from the Z-axis projection of its segmentation result. From Figs. 8 and 9 
we can see the mixture model built in Zhou’s method exhibited a good performance in 
histogram fitting for the online MRA data, but not for the second MRA data which con-
tains a different statistical characteristic. In contrast, the mixture model generated from 
our method fitted well for both filtered data whose histograms had a relatively consistent 
statistical property. As a result, the proposed method demonstrated stronger robustness.

For fitting the histogram curves of the original images, and the mixture models devel-
oped by Zhou et al. exhibited the best fitting performance comparing with the traditional 
models. However, different angiographic images correspond to different histogram 
curves. The four clinical data sets from different organs that were described in the part 
of clinical validation experiment were segmented by Zhou et al.’s method, and the model 
fitting results are shown in Fig. 10. As a result, the traditional method is not available to 
classify vessels from angiographic images which hold a different statistical characteristic. 
In other words, the traditional methods are limited in multi-modality application.

On the basis of Zhou et al.’s work, our research focuses on vessel segmentation from 
various angiographic images. In our method, different angiographic images were firstly 
processed by multi-scale filtering algorithm. As shown in Fig.  2, the filtered data sets 
achieved a relatively consistent distribution. For the vessel class, a Gaussian distribution 
was built to model its intensity distribution, while two Exponential distributions for the 
background class. As is shown in Figs. 4, 6, 8, and 9, the above mixture model demon-
strated good model fitting performance for the different filtered data sets. As a result, 
the only known limitation of our approach is that, it is not available for the angiographic 
images when multi-scale filtering is not fitted for their vessel enhancement. However, 
the proposed method still exhibits important clinical application value towards vari-
ous angiographic images, and this kind of exploration ideas is very meaningful in other 



Page 16 of 18Lu et al. BioMed Eng OnLine  (2016) 15:120 

scientific researches. With the aim of contributing to the field of interventional surgery, 
our future works are primarily focused on vascular path planning and 3D augmented 
reality.

Conclusions
In this paper, a flexible segmentation method has been proposed for vessel extraction. 
In the first step, the original image data was filtered with multi-scale filtering algorithm. 
The filtered data obtained a relatively consistent statistical property, and was modelled 
with a mixture model which consisted of two Exponential distributions and one Gauss-
ian distribution. The EM algorithm was used for parameter estimation, while the MAP–
MRF algorithm was used in the Bayesian classification. The proposed method has been 
tested on phantoms as well as the various modality angiographic images from MRA and 
CTA data from different imaging equipment. Each histogram of the filtered data from 
these multi-modality angiographic images could be modelled by relatively consistent 
mixture probability distributions, and the mixture model displayed a good fitting perfor-
mance. The segmentation error ratios of the phantoms were less than 0.3% and the DSCs 
were above 94%. The results of the vessel segmentation procedures have indicated that 
the method in this paper was accurate and robust for vessel segmentation from multi-
modality angiographic images.
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Fig. 10  The model fitting results of the clinical data described in experiment 2 by the method of Zhou et al. 
a Brain. b Placenta. c Legs. d Thorax
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