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Background
In recent years, numerous studies on encryption of medical images, such as computed 
tomography (CT) and magnetic resonance imaging (MRI), have been reported [1–6], 
although most of them did not consider compression during encryption. The storage, 
transmission, and retrieval of massive bio-information should meet several compul-
sory requirements [7]: (1) high efficiency for rapid transmission and prompt retrieval; 
(2) strict information security to guarantee users’ privacy; and (3) high data fidelity to 
preserve the pathological information. It requires decreasing the quantity of data to 
be transmitted (compression) and protecting such data against unauthorized access 
(encryption). Therefore, simultaneous compression and encryption technology of 
medical images that are represented as three-dimensional (3D) volumes has additional 
meanings.
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Existing simultaneous compression and encryption algorithms are typically applied 
to ordinal images rather than medical images, because they refer to lossy compres-
sion. Alfalou et al. proposed a series of representative algorithms for the simultaneous 
compression and encryption of 3D images. The latest and most effective algorithm is 
based on spectral fusion and discrete cosine transform (DCT) [8]. However, the decryp-
tion error increases rapidly along with the increase of the number of images, indicat-
ing that it cannot handle large amounts of images simultaneously. Emerging algorithms 
for simultaneous encryption and compression are based mainly on compressed sensing 
(CS), which can activate compression during the sampling process [9]. An example being 
Valerio et  al., who proposed a multiclass encryption by CS to withstand the common 
attack [10, 11]. To further enhance security, CS-based encryption algorithms were con-
structed by combining the chaos map and some optical encryption techniques, such as 
double random phase encryption (DRPE), fractional Fourier transform (FrFT), and frac-
tional Mellin transform (FrMT) [12–19].

The medical images are different from other images because of their particular prop-
erties. There are legal and strict regulations applied to medical multimedia information 
due to the health of a patient depending on the correctness and accuracy of this informa-
tion [20]. The quality of the decrypted and compressed data must be adequate to allow 
for a correct diagnosis when it is reconstructed. However, the existing algorithms did 
not meet this requirement because most of them have not been applicable to 3D images 
intrinsically represented by tensors. Conventional CS theory relies on data representa-
tion in the form of one-dimensional vectors. Application of CS to higher dimensional 
data representation is typically performed by conversion of the data to very long vectors 
that must be measured using very large sampling matrices, thus destroying the intrinsic 
structure and imposing a huge memory burden.

Recently, Cesar et al. propose a tensor CS (TCS) based on higher order singular value 
decomposition (HOSVD) that introduces a direct reconstruction formula to recover 
a tensor from a set of multi-linear projections, which are obtained by multiplying the 
data tensor by a different sensing matrix in each mode [21]. This HOSVD-based TCS 
achieved more accurate and efficient reconstruction results when compared to other 
existing sparsity-based TCS methods [22–24]. Indeed, we believe that, if it was used to 
design TCS-based encryption of 3D images better performance would occur.

We further introduce alternating least squares (ALS) into HOSVD-based TCS [21], 
and control the measurement matrices by 3D Lorenz [25–27]. Such a simultaneous 
compression and encryption algorithm for 3D medical images has two main advantages: 
(1) the preservation of intrinsic structures of the tensor data for the purpose of reducing 
the decryption error and increasing the compression ratio; (2) the keys consist of those 
generated by tensor decomposition, and 3D Lorenz. Particularly, the order of the tensor 
product used in the TCS can be used as additional keys to make unauthorized decryp-
tion harder.

This paper is organized as follows: in “Theory” section, the related notation, definition 
and basic results used throughout the paper, are introduced; in “Proposed encryption” 
section, the encryption and decryption algorithms are proposed; in “Numerical simu-
lation results” section, several numerical results based on 3D lung CT images are pro-
vided, to corroborate our theoretical results and evaluate the stability and robustness 
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of our proposed scheme, in “Conclusion” section, the main conclusions drawn from the 
present work are outlined.

Theory
HOSVD

The higher-order singular value decomposition (HOSVD) provides a generalization of 
the low-rank approximation of matrices to the case of tensors [28–30]. To facilitate the 
distinction between scalars, vectors, matrices and higher dimensional tensors, the type 
of a given quantity will be reduced by its representation: scalars are denoted by lower-
case letters (a), vectors are written as capitals (a), matrices corresponding to bold-face 
capitals (A) and tensors are written as calligraphic letters (A).

A tensor is a multidimensional array with the number of modes represented by the 
tensor order. For instance, tensor A ∈ RM1×···×Md has order d and the dimension of its 
i-th mode is Mi.

1.	 Mode-i product: A mode-i product of a tensor A and a matrix Φ ∈ RMi×m is 
denoted by A×i Φ and is of size m× (M1 · · ·Mi−1 ·Mi+1 · · ·Md) matrix.

2.	 Mode-i unfolding: The mode-i unfolding A(i) of A arranges the mode-i fibers to be 
the columns of the resulting matrix.

3.	 HOSVD: The decomposition and reconstruction of A can be written as the product:

where Φi ∈ RMi×mi, and W is a complex (m1 ×m2 × · · · ×md)-tensor of which the 
subtensors obtained by corresponding singular values.

4.	 Tucker-TCS: in [21], a more stable, robust and accuracy tensor reconstruction of CS 
is proposed:

where “†” stands for the MP pseudo-inverse of a matrix. We assume that the following 
sets of compressive multi-way measurements Z(n) are available:

3D Lorenz

Mohmad et al. [25, 26] propose a 3D discrete Lorenz system, which has a high order and 
also low complexity when implemented in digital hardware. The discrete Lorenz attrac-
tor employed here is given by the following difference equations
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





Uk+1 = g1(A(Vk − Uk))+ Uk

Vk+1 = g2(BUk − Vk − 20UkWk)+ Vk

Wk+1 = g3(5UkVk − CWk)+Wk
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where U, V, W are three state variables, A, B, C are parameters, and g1, g2, g3 are gains 
(step size). The calculating method of (5) is finite difference.

Proposed encryption
The proposed system can be split into encryption and decryption algorithms as illus-
trated in Fig. 1. The compression and decompression procedures are embedded in the 
encryption and decryption, respectively.

Encryption

For the initial 3D image A ∈ RM1×M2×M3, the encryption process consists of the follow-
ing steps:

1.	 Initialize randomly the three Gaussian sensing matrices Φ
(0)
i ∈ RMi×mi 

(mi < Mi, i = 1, 2, 3). To accurately decrypt A, the optimal Φi should satisfy:

Φ1 Φ2 Φ3

Sensing matrices

Encrypted and compressed tensor

3D Lorenz

Tensor product

Decrypted 3D 
images

Encryption

Decryption

Original 
3D images

Compression

Decompression

ALS-TCS

Φ1* Φ2* Φ3*

Inverse 3D Lorenz

Φ1* Φ2* Φ3*

 
Fig. 1  Illustration of the proposed simultaneous compression and encryption system of 3D images
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	 As in [28], this problem can be converted to

	 To solve this problem, it is sufficient to find Φi’s satisfying ΦT
i Φi = I. The recon-

struction algorithm as Eq. (2) of HOSVD-based TCS achieved a more accurate solu-
tion than that as Eq. (1) of HOSVD. To further improve the reconstruction accuracy, 
we use an alternating least squares (ALS) approach to solve Eq. (7).

2.	 For k = 0, iterate Eqs.  (8)–(11) until Φi converges or the maximum iteration is 
achieved:

where �mi = diag
{

σ1, . . . , σmi

}

 is the diagonal matrix containing the mi largest sin-
gular value σ1 ≥ σ2 ≥ · · · ≥ σmi of Zi, and Umi and Vmi

 are matrices whose columns 
are the leading mi left and right singular vectors of Zi, respectively. Let

 Then the optimal Φ∗
1, Φ∗

2 and Φ∗
3 are obtained.

3.	 Compute the compressed core tensor

4.	 Unfold W into its n-mode W(n). The mode n is a private key which has three possible 
values: 1, 2 and 3.

5.	 Φ1, Φ2 and Φ3 are synchronously constructed by 3D Lorenz as Eq. (5).

where EΦi ∈ RMi×mi. Hence the compression ratio is given by:

The details of how to synchronize the image by 3D Lorenz system are introduced 
below. One data sample ϕi,k is inserted into U, which gives
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where ϕi,k is the k-th element of φi(φi is the vectorization of Φi, i.e. φi = vec(Φi)). The ini-
tial conditions U0, V0, W0, parameters A, B, C, and g1, g2, g3 are known by both trans-
mitter and receiver. The transmitted signal is the U state variable, and the objective is 
to retrieve ϕi,k from this signal at the receiver. Feedback is used to update the state vari-
ables at the receiver to synchronize the system and allow decryption of subsequent data 
values.

After ϕ̃i,k is obtained, the receiver state equations can be updated, thus achieving syn-
chronization with the transmitter.

Decryption

The decryption process consists of the following steps:

1.	 EΦi are inverse transformed by 3D Lorenz:

 L−1(·) is computed during Eq. (16).
2.	 W(n) and the obtained DΦi are multiplied in the correct order to recover A′. There 

are three feasible ways to achieve this:

 where ‘⊗’ represents the Kronecker product.
3.	 Then, fold A′

(n) into A′ according to the private key n.

It is obvious that besides the secret keys of measurement matrices, the unfolding 
model n (order of tensor product) can be used as an additional key.

Numerical simulation results
Numerical simulations were conducted with Matlab2011 on a work station with an Intel 
Core i7 CPU and 64 GB RAM. The decryption error and compression ratio of the pro-
posed system are introduced in “Decryption accuracy and compression ratio” section, 
the histograms are analyzed in “Histograms and statistical analysis” section, the secret 
keys are illustrated in “Rate-distortion” section, and the robustness is stated in “Secret 
keys” section.
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Uk+1 −Uk
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Decryption accuracy and compression ratio

Our experiments are conducted on lung CT sequences in lung image database consor-
tium (LIDC) [31]. Each frame of one CT sequence is preprocessed to have 512 × 512, 
where 512 frames were chosen. The CT sequence together is represented by a 
512 × 512 × 512 tensor and has 134,217,728 voxels in total. The randomly constructed 
Gaussian measurement matrix for each mode is now of size 512×mi (i = 1, 2, 3). Thus, 
the compression ratio is given by:

The quantitative measure of the decryption error is the peak signal noise ratio (PSNR), 
which is based on the root mean square error (RMSE) between the decrypted data and 
ground truth and can be represented as:

To further evaluate the performance of decryption, the structural similarity index 
(SSIM) is used as another indicator.

In this section, we compare the proposed algorithm with state of the art algorithms to 
show its superiority. These algorithms are presented briefly as follows:

1.	 As demonstrated previously [13], an encryption based on 2D_CS in the FrMT 
domain (algorithm 1) stands out for its efficient, robust, and secure encryption per-
formance. In this algorithm, the 2D CS is based on a 2D wavelet, measuring matrices 
with Logistic map and a 2D NSL0 reconstruction algorithm. Notably, although the 
security of FrMT is better than that of FrFT, its decryption accuracy is less than the 
later. In order to verity the decryption accuracy and compression ratio of our tensor-
based algorithm, we replaced FrMT with FrFT in algorithm 1.

2.	 Additionally, we chose an encryption algorithm based on HOSVD-TCS [21] with 
FrFT (algorithm 2).

3.	 Also, as previously shown [8], an encryption algorithm based on spectral fusion and 
DCT obtained a better PSNR when compared with previous compression-encryp-
tion implementations. Accordingly, this became algorithm 3.

A visual evaluation of the decryption results under frames 117, 138 and 159 of one 
CT sequence at the compression γ = 0.125 is shown in Figs. 2, 3, 4, 5, 6. As shown in 
Fig. 3, all the tissues within the lung volume are clear. Our clinical experts did not find 
distinct differences between the decrypted and the original CT images. The quantitative 
summaries of the above algorithms are shown in Tables 1, 2 and Fig. 7, where the advan-
tages of the proposed algorithm are highlighted. It is evident that the advantages of the 
proposed algorithm over the other methods increase with the compression ratio. Case 
in point is in algorithm 3, where improving the compression ratio requires a large num-
ber of frames. However, the PNSR rapidly decreases with the increase of the number of 
frames. Thus, the algorithm cannot handle large number of frames.

γ =
m1m2m3

512× 512× 512

(20)PSNR = 20 log10
255

RMSE
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We also compared the computation times (the average computation time of the exper-
iments with all compression ratio and noise level) required in each case. The comparison 
shows that algorithm  3 provides a much faster computation (Table  3), while the pro-
posed algorithm requires slightly longer computation time because it contains a proce-
dure of iteration. Fortunately, this iteration is much simpler than those of algorithms 1 
and 2.

Fig. 2  Original CT frames. a Frame 117, b Frame 138, c Frame 159
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Histograms and statistical analysis

Histograms

The histograms of two CT sequences and the encrypted images of their composed parts 
are shown in Figs. 8 and 9, respectively. The intensity distribution of the histograms of 
the encrypted images is completely dissimilar from that of the histogram of the origi-
nal CT, which indicates that an intruder cannot perceive any useful information based 
on statistical properties. The histograms of the two original CT sequences are evidently 

Fig. 3  Decrypted frames by the proposed algorithm. a Frame 117, b Frame 138, c Frame 159
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different from each other, whereas the histograms of their corresponding encrypted 
images are similar. The security analysis effectively illustrates the robustness of the pro-
posed method.

Statistical analysis

Statistical properties of the images can also be evaluated by the computation of the cor-
relation between two adjacent pixels. By selecting randomly P pixels of the image, the 
correlation coefficient is computed as:

Fig. 4  Decrypted frames by algorithm 3. a Frame 117, b Frame 138, c Frame 159
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where x is the value of a selected pixel and y is the value of the correspondent adjacent 
pixel, D(x) is the mean square error.

It is expected that an image will have a correlation coefficient close to 1 before 
being submitted to the encryption; it is desirable that the correlation coefficient of a 
ciphered image be as close to 0 as possible. In Table 4, where the simulation results for 

(21)rxy =
cov(x, y)

√

D(x)D(y)

Fig. 5  Decrypted frames by algorithm 2. a Frame 117, b Frame 138, c Frame 159
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P = 125,000 are shown, we verify that the above described premise is satisfied. This indi-
cates that the proposed encryption scheme is secure against statistical attacks.

Normalized entropy

The normalized entropy [6] of the ciphered image is defined as

(22)H̄ =

∑P−1
i=0

Ni
N log N

Ni

log2 P

Fig. 6  Decrypted frames by algorithm 1. a Frame 117, b Frame 138, c Frame 159
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Table 1  PSNR at different compression ratio of the CT sequence

Methods Compression ratio

(256)
3

(512)3
= 0.125

(352)
3

(512)3
= 0.33

(384)
3

(128)3
= 0.42

(416)
3

(512)3
= 0.54

(448)
3

(512)3
= 0.67

(480)
3

(512)3
= 0.82

Algorithm 1 6.72 11.26 12.22 19.29 24.00 30.49

Algorithm 2 31.12 36.12 38.00 40.34 43.01 47.28

Algorithm 3 24.55 27.78 28.74 30.03 32.30 34.67

Proposed algo-
rithm

37.76 43.17 45.56 48.43 51.95 57.26

Table 2  Comparison of SSIM between the proposed algorithm and state to the art meth-
ods

Methods Compression ratio

(256)
3

(512)3
= 0.125

(352)
3

(512)3
= 0.33

(384)
3

(128)3
= 0.42

(416)
3

(512)3
= 0.54

(448)
3

(512)3
= 0.67

(480)
3

(512)3
= 0.82

Algorithm 1 0.1406 0.2198 0.3060 0.4378 0.6090 0.8000

Algorithm 2 0.8293 0.9004 0.9195 0.9157 0.9259 0.9312

Algorithm 3 0.7474 0.8664 0.8945 0.9165 0.9314 0.9474

Proposed algo-
rithm

0.9122 0.9468 0.9508 0.9533 0.9544 0.9549

Fig. 7  PSNR (dB) comparison of the four algorithms at compression ratio values ranging from 0.125 to 0.98

Table 3  Comparison of  computation time (s) between  the proposed algorithm and  state 
to the art methods

Methods Computation time (s)

Algorithm 1 896

Algorithm 2 188

Algorithm 3 164

Proposed algorithm 220



Page 14 of 20Wang et al. BioMed Eng OnLine  (2016) 15:118 

where P is the number of different values that the pixels of the ciphered image can 
assume, Ni is the amount of pixels of the ciphered image that assume value i, and N is 
the total amount of pixels of the ciphered image. During the experiments, we found that 
the ciphered pixels’ intensity of all the algorithms mentioned in the paper are almost 
equiprobable, so their normalized entropy are all approximate to 1.

Rate‑distortion

Rate-distortion (RD) is an important indicator to evaluate the performance of com-
pression. In a previous study [32], the following mathematical model of CS RD was 
constructed:

The proposed TCS-based algorithm falls into the CS category, so the model in Eq. (23) 
applies for our algorithm. Because there are some differences between traditional vector-
based CS and the proposed tensor-based CS, we recalculate some parameters as follows:

(23)DCS(R) = γ
µ

µ− 1
σ 2
θ 2

−2R

(24)DTCS(R) = γ ′ µ′

µ′ − 1
σ 2
Φ2

−2R

Fig. 8  Histograms of 3D images and encrypted parts of CT No. 1. a Original CT sequence No.1. b Histogram 
of original CT. c Histogram of ciphertext

Fig. 9  Histograms of 3D images and encrypted parts of CT No. 2. a Original CT sequence No.1. b Histogram 
of original CT. c Histogram of ciphertext

Table 4  Correlation coefficients of  the original volume (rxy) and  the corresponding 
ciphered volume (r̃xy); (v), (h) and (d) are related to vertical, horizontal and diagonal adja-
cency respectively

rxy(v) r̃xy(v) rxy(h) r̃xy(h) rxy(d) r̃xy(d)

0.9838 −0.0006 0.9863 −0.0002 0.9958 0.0005
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where γ ′ = K
m1m2m3

, µ′ =
M1M2M3

K , σΦ is the singular value of the measurement matrix 
and R is the rate. It is important to note that in 3D case, there is σΦ1

≈ σΦ2
≈ σΦ3

 
because the three matrices obey a uniform Gaussian distribution. The RD diagram at 
several compression ratio points is shown in Fig. 10.

Secret keys

Key space

The keys of the proposed algorithm consist of those generated by the three measure-
ment matrices with 3D Lorenz and the unfolding mode n of the core tensor W. The Key 
that are used on Φi with 3D Lorenz are the initial values for the three state variables, the 
U0, V0 and W0, the parameters A, B and C, and gi for each of the state equations. As 
shown in [25], the key length is 39 decimal digits, with a key space of 1039. The order of 
the tensor product can be used as an additional key, which has 18 combinations (which 
will be introduced in detail in “Key sensitivity”).

The total key space of the proposed algorithm is larger than 1039 · 18 >> 230, which is 
large enough to withstand a brutal attack.

Key sensitivity

The key sensitivity of measurement matrices with 3D Lorenz has been analyzed in detail 
to demonstrate their advantages [15, 24–26]. Here we emphasize the key sensitivity of 
the order of the tensor product. Although W(n) is easy to be distinguished from DΦn, the 
ciphertexts are still difficult to decode due to both W(n) and DΦn having three models. 
Hence there are a totally of 18 combinations of all W(n) and DΦn. Equation  (16) indi-
cates that only three combinations are correct, with 15 wrong combinations listed in the 
following:

Fig. 10  RD diagram at varying compression ration
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DΦ1 ·W(1) ·
(

DΦ3 ⊗ DΦ2

)T , DΦ2 ·W(1) ·
(

DΦ1 ⊗ DΦ3

)T , DΦ2 ·W(1) ·
(

DΦ3 ⊗ DΦ1

)T , 
DΦ3 ·W(1) ·

(

DΦ1 ⊗ DΦ2

)T , DΦ3 ·W(1) ·
(

DΦ2 ⊗ DΦ1

)T , DΦ1 ·W(2) ·
(

DΦ2 ⊗ DΦ3

)T , 
DΦ1 ·W(2) ·

(

DΦ3 ⊗ DΦ2

)T , DΦ2 ·W(2) ·
(

DΦ1 ⊗ DΦ3

)T , DΦ3 ·W(2) ·
(

DΦ1 ⊗ DΦ2

)T , 
DΦ3 ·W(2) ·

(

DΦ2 ⊗ DΦ1

)T , DΦ1 ·W(3) ·
(

DΦ2 ⊗ DΦ3

)T , DΦ1 ·W(3) ·
(

DΦ3 ⊗ DΦ2

)T , 
DΦ2 ·W(3) ·

(

DΦ1 ⊗ DΦ3

)T , DΦ2 ·W(3) ·
(

DΦ3 ⊗ DΦ1

)T , DΦ3 ·W(3) ·
(

DΦ2 ⊗ DΦ1

)T .
The average MSE of the 15 wrong combinations is 7.2895 × 103. It is clear from the 

MSE values of the different combinations that the proposed system is sensitive to the 
order of the tensor product.

The 3D Lorenz system is similar to that in [26]. The 3D image is encrypted with initial 
conditions U0 = 0.1, V0 = 0, W0 = 0, and parameters A =  10, B =  28, C =  8/3, and 
g1 = g2 = g3 = 0.01. The maximum Lyapunov value according to the parameters and ini-
tial conditions is 0.8024 (larger than 0), the system is chaotic. The 3D distribution of the 
Lorenz system is also depicted in Fig. 11. Table 5 gives the sensitivity of each parameter. 
Any change in a parameter greater than its sensitivity will prevent an eavesdropper from 
decrypting message.

Resistance against attacks

Common attacks include known-plaintext attack and chosen-plaintext attacks. It has 
been proven [10, 11] that despite the linearity of its encoding, CS may be used to pro-
vide a limited form of data protection. The TCS used in the paper is a multi-linear (non-
linear) extension of the traditional CS, which further enhances the anti-attack ability. 
Although the attackers have access to some plaintext-ciphertext pair, they will be unable 
to reproduce the system without knowledge of the order of tensor product. Further-
more, the 3D Lorenz, which was introduced in the system, has the ability to withstand 
these common attacks [25, 26]. Therefore, the proposed system based on TCS with 3D 
Lorenz has the ability to resist these common attacks.

We ran an experiment on known-plaintext attack to evaluate the anti-attack perfor-
mance. The decryption result of known-plaintext attack with the keys generated from a 
chosen CT sequence, which was treated as fake tensor, is displayed in Fig. 12. The frame 

Fig. 11  3D distribution of Lorenz system
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256 of the original and fake CT sequences are shown in Fig.  12a, b, respectively. The 
attack result using fake decryption keys with all correct parameters is shown in Fig. 12c. 
It can be seen that the retrieved image is noise-like signal. We first analyze the number 
of pixels rate: all pixels assumed to be an even distribution, because the retrieved image 

Fig. 12  Decryption result of known-plaintext attack with the keys generated from a chosen CT sequence.  
a Original image. b Image used for attack. c Decrypted image with fake decryption keys
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was noise-like signal. The unified average changing intensity was also used to evaluate 
the difference among the original and decrypted images:

We used the gray level to represent intensity, ranging from 0 to 255. Because the inten-
sity value per pixel of the tensor was up to ξ = 80, we assume that there is a substantial 
difference between the original and retrieved images.

Conclusions
In this paper, we proposed an algorithm of simultaneous encryption and compression, 
as applied to 3D CT volumes. This scheme has the advantages of TCS and 3D Lorenz. 
Its outstanding advantage is that it achieves a high precision of decryption at a big com-
pression ratio. The security of the proposed algorithm conformed to the requirements of 
the common encryption technology. Moreover, the unfolding mode, which is a unique 
feature of the tensor product, can be used as an additional secrete key other than tradi-
tional encryption algorithms to make unauthorized decryption harder.
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