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Background
Acute respiratory disorders in newborns are an important clinical problem, especially 
in preterm infants [1]. Premature birth interrupts normal in utero lung development, 
resulting in significant alterations in postnatal lung function with consequences in later 
life [2, 3]. Clinical interest in postnatal lung function measurements at the end of the 
19th century resulted in the development of special mechanical spirometers (Fig.  1) 
to measure tidal volume (VT), respiratory rate (RR) and minute ventilation (V’E) [4, 5]. 
These mechanical measuring systems, however, have limitations in newborns, the most 
important being the high ratio of apparatus dead space (VDapp) to tidal volume (VT), 
resulting in CO2-rebreathing and a risk of hypercapnia.

Comprehensive investigations of postnatal lung function, providing insights into neo-
natal respiratory physiology and pathophysiology, were first performed in the 1950s, 
after the development of electronic devices suitable for measuring and recording small 
and fast respiratory signals [6–8]. Besides measuring ventilation, respiratory mechanics 
and lung volume, the non-invasive measurements of the exhaled carbon dioxide (CO2) 
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was at the beginning in the focus of the pulmonary researcher because its crucial role for 
the assessment of the alveolar gas exchanges and airway dead spaces (VD). The measured 
CO2-signal can be recorded as a function of time (time-based capnography, mostly used 
for monitoring purposes) or volume (volumetric capnography), which allows calcula-
tions of alveolar ventilation (V’A) and airway dead spaces.

Since the 1960s different types of commercial capnographs have been developed for 
continuous CO2 measurements in adults, and these devices have been adapted for meas-
urements in neonates [9, 10]. The first capnographs were bulky and cumbersome to use, 
especially when coupled to mass spectrometry [11]. During this time, a new generation 
of capnographs was developed for measurements in infants, with these instruments 
resolving many problems associated with earlier capnographs. Lightweight infrared (IR) 
mainstream sensors with a dead space <1  mL enabled reliable measurements even in 
preterm infants [12–14]. In addition, special low-flow sidestream capnographs were 
developed for dead space free measurements in neonates, making long-term moni-
toring possible [15–17]. Several clinical studies have shown the clinical benefit of the 
time-based capnography in ventilated infants and children, e.g., for non-invasive moni-
toring of the arterial pCO2 [18–20], to verify endotracheal tube placement [21–23], and 
to monitor the integrity of the ventilator circuit including disconnection and accidental 
extubation [24–26]. In spontaneously breathing infants time-based and volumetric cap-
nography has been used for assessment of functional lung alterations related to bron-
chopulmonary dysplasia (BPD) [27–29]. Nevertheless the clinical use of capnography 
in newborns with the equipment available today still has methodological and techni-
cal problems which limits its wide adoption as a routine tool in the neonatal intensive 
care. This survey highlights the current limitations of capnography in these very young 
patients to avoid pitfalls associated with the interpretation of capnographic parameters 
which can lead to false clinical decisions, and to describe further developments.

Eckerlein 1890 Dohrn 1895

Fig. 1  First ventilatory measurements in newborns using custom made mechanical spirometers [4, 5]
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Peculiarities of capnography in small lungs
The lungs and breathing patterns of neonates differ in many respects from those in 
adults. These differences may alter CO2 measurements as well as the interpretation of 
time-based and volumetric capnograms and derived parameters [30, 31]. Furthermore, 
the impact of the patient interface on CO2 measurements in breathed air and on the 
homogeneity of the alveolar ventilation [32] is much higher in neonates than in adults, 
as neonates have a much higher ratio of VDapp to tidal volume [12, 33]. Thus, difficulties 
in capnographic measurements are greater in smaller infants.

Ventilatory parameters

The measured ranges of the CO2 fraction (FCO2) and the corresponding partial pressure 
(PCO2) in exhaled air are identical in neonates and adults. However, CO2 production is 
much lower in neonates (about 15 mL/min) than in adults (about 200 mL/min), and is 
even lower (9 mL/min) in very low birth weight (VLBW) infants, defined as those with a 
birth weight <1500 g [34]. The much lower amount of exhaled CO2 makes capnography 
in neonates more difficult, because there are objective limits in reducing the size of the 
analyzer chamber to realize fast filling when using a mainstream sensor or in reducing 
the magnitude of suction flow by side-stream measurements.

The ratio of tidal volume to body weight of a term infant is about 7  mL/kg, nearly 
the same as in adults. This ratio is slightly lower in preterm infants, 5–6 mL/kg. VLBW 
infants are at higher risk of having respiratory diseases and needing mechanical res-
piratory support and may have tidal volumes <10 mL. This low tidal volume limits the 
accuracy of capnographic measurements in these infants, given that the VDapp of current 
mainstream gas analyzers is about 1 mL. Another limitation is the high respiratory rate 
in these infants. Adults have a breathing rate of 10–12/min, term newborns of 40–45/
min and preterm newborns of 55–60/min. Furthermore, preterm infants with respira-
tory deficiency can have a respiratory rates >60/min with exhalation times of <500 ms 
[35, 36]. Energetically, this is an optimal breathing strategy for infants with stiff lungs, 
as it reduces the work of breathing [37]. However, this breathing strategy results in a 
technical challenge in capnographic measurements using currently available equipment.

Small airways

Both the lungs and airways grow in volume from infancy to adulthood [38], with the 
upper airways contributing significantly to anatomic dead space visible in volumet-
ric capnograms. Measurements on volumetric capnography can be divided into three 
phases, as shown in Fig. 2. Phase I represents the CO2 free interval due to anatomic and 
apparatus dead space; phase II is characterized by a rapid increase in CO2 and repre-
sents the transition between airway gas and alveolar gas; and phase III reflects alveolar 
gas at the alveolar plateau, which is terminated by the most-well known capnographic 
parameter, the end-tidal CO2 (PetCO2) which is commonly lower than the arterial PCO2 
(PaCO2) due to the alveolar dead space ventilation as shown in Fig. 3. In healthy adult 
lungs, CO2 concentration rapidly increases during phase II because the upper airways 
contribute negligibly to gas exchange and sophisticated techniques were developed to 
evaluate and classify time-based and volumetric capnograms [39, 40]. In neonates, air-
way diameters are much smaller and the ratios of inner surface area and volume per 
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unit length are much higher than in adults, resulting in gas exchange between gas and 
tissue in the airways. This may result in an exaggerated and not well defined phase II 
and a reduced or even missing phase III in neonates which hampers the quantitative 
evaluation. Using volumetric capnography Ream et al. [41] found an inverse relationship 
between the slope of the alveolar plateau and infant size. Moreover, in a study by Fouzas 
et al. [5] phase III was found to be likely steeper in infants with than without BPD also 
due to airway obstruction that occurs in this disease process, suggesting that BPD likely 
induces a ventilation/perfusion mismatch in the lungs. Thus, in premature infants and 
infants with respiratory diseases, it is much more difficult to differentiate between phase 
II and III in the volumetric capnogram and to define an alveolar plateau. This result is 
supported by modeling studies by Schwardt et  al. [42] and Neufeld et  al. [43], which 
demonstrated an association between a morphometric reduction in airway cross-section 
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Fig. 2  Typical volumetric capnogram of a ventilated preterm infant with a wide phase II and a short phase III, 
which defined the end-tidal CO2 (PetCO2)

 P
E
C

O
2

P
et

C
O

2

P
aC

O
2

p

q

Expired volume VT

Z
X

Y

 Anatomic + apparatus 
dead space  Alveolar tidal volume 

Fig. 3  Dead space calculation by Fletcher’s method using Fowler’s equal areas (p = q) to define dead space. 
The area X corresponds to the exhaled amount of CO2 and the areas Z and Y to the nonexhaled CO2 as a 
consequence of the anatomic + apparatus (X) and alveolar (Y) dead spaces
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and increased diffusional resistance within the airways, resulting in an increase in the 
slope of phase III. As phase III becomes steeper, it becomes more difficult to define an 
alveolar plateau. The nomenclature of the volumetric capnogram is also used for time-
based capnograms, however, the interpretation is not equivalent. An alveolar plateau in 
a time based capnogram does not give any information if and how much alveolar CO2 
was exhaled [31]. Nevertheless a missing or falsified alveolar plateau in the time-based 
and volumetric capnogram may indicate that the measured PetCO2 does not reflect the 
alveolar CO2 pressure, making it problematic to use the measured PetCO2 to monitor 
blood gases [44, 45]. Therefore, PetCO2 measurements are only useful if the shape of the 
capnogram is considered. Automated measurements of PetCO2 without monitoring the 
waveform should be used with caution, as the resulting data can be misleading.

Missing alveolar plateau

In newborns, volumetric capnograms without alveolar plateaus are not uncommon. A 
clinical study in spontaneously breathing preterm infants by Tirosh et al. [30] showed 
that the number of capnograms without alveolar plateaus increased significantly with 
decreasing gestational age. Proquittè et al. [31] investigated the effects of lung stiffness 
on the incidence of capnograms without alveolar plateaus in 21 ventilated newborn pig-
lets (body weight 560–1435 g) before and after lung lavage with saline. They found that, 
in healthy lungs, 10 % of capnograms did not show an alveolar plateau, whereas the inci-
dence in surfactant-depleted lungs was about 50 %. Furthermore, the incidence of cap-
nograms without an alveolar plateau increased markedly as exhalation time decreased, 
with >75  % of capnograms lacking an alveolar plateau when exhalation times were 
<200 ms. Although the cause remains unclear, they likely result from both the technical 
limitations of the current technique (primarily, the overly long response time) and the 
physiological peculiarities of CO2 exchange in small stiff lungs.

Airway dead spaces

In adult lungs, only alveolar ventilation takes part in gas exchange with pulmonary capil-
lary blood, while gas exchange in the physiologic dead space (VDphys) is negligible. VDphys 
comprised the alveolar dead space (VDalv) of non-perfused or under-perfused alveoli, the 
anatomic dead space (VDana) of the conducting airways and the apparatus dead space 
(VDapp) of the face mask, pneumotach and mainstream gas analyzer. As early as the 
1960s, Chu et al. [46] used in neonates a rapid capnograph to measure PetCO2 in exhaled 
air, with the anatomic and physiologic dead space calculated using the Bohr equation:

or the Bohr/Enghoff equation by substituting PaCO2 for PetCO2:

where mean PmeanCO2 is the mean CO2 tension of the mixed expired air. The difference 
between these dead spaces represents the alveolar dead space:

(1)VDana = VT
PetCO2 − PmeanCO2

PetCO2

(2)VDphys = VT
PaCO2 − PmeanCO2

PaCO2

(3)VDalv = VDphys − VDana
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The measured VDana includes the dead space of the equipment. The Bohr and Bohr/
Enghoff equations use only three measured parameters for dead space calculations, 
independent of the shape of the capnogram. Fletcher et al. [47] were the first who devel-
oped the calculation of different dead spaces from volumetric capnograms shown in 
Fig. 3. The three dead spaces can be calculated by ratios of the areas X, Y, and Z using 
Fowler’s classic ‘equal area’ method (p = q) [48].

Fletcher’s method requires a clear subdivision of the capnogram into phases I, II and 
III. It is, therefore, often difficult to apply this method to measurements in small lungs, in 
which phases II and III are not well defined. This method was inapplicable in the absence 
of an alveolar plateau. A clinical study of ventilated infants with a median birth weight 
of 2658  g showed that Fletcher’s method failed in 67  %, especially in preterm infants, 
whereas the Bohr/Enghoff equations could be used in all [12]. Therefore, in small infants 
the Bohr/Enghoff equation has been preferentially used to calculate dead space [44, 49, 
50]. However, this advantage may be deceptive, because the extent to which phase III 
steepness or a missing alveolar plateau leads to errors in calculating dead space has not 
been determined. The more a capnogram differs from a step function, the more unreli-
able will be the dead-spaces calculated by Bohr/Enghoff equations.

Endotracheal tube leaks

The time-based capnography is widely used in both the intensive care unit (ICU) and 
during anesthesia to monitor gas exchange and the integrity of the ventilator circuit [51, 
52]. In contrast to adults, newborns are frequently intubated with uncuffed endotracheal 
tubes (ET) to protect the airways and to avoid subglottic stenosis [53, 54]. Uncuffed ETs, 
however, have been associated with a risk of inadvertent air leaks [55], which occur in 
about 70 % of ventilated neonates [56]. In contrast to tidal volume measurements [57, 
58], the effects of ET leaks on measurements of exhaled CO2 are much more com-
plex [59]. At the end of expiration, when patient flow is zero, an ET leak can lead to 
reverse flow through the sample chamber, washing out the exhaled CO2 and resulting in 
a measured PetCO2 close to zero. Leak-dependent CO2 measurement errors depend on 
the shape of the CO2 plateau in exhaled air [59]. As long as the CO2-plateau of exhaled 
air reaches the sample chamber before reverse flow starts, the peak CO2 will represent 
the PetCO2. Therefore, in contrast to volume measurements [58, 60], it is not possible to 
determine an upper limit of ET leaks that may be tolerated clinically for capnographic 
measurements. In mechanically ventilated preterm infants with low compliant, stiff 
lungs the frequently very short or absent CO2 plateaus may be notably falsified by the 
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leak. If ET leakage occurs, capnographic measurements in these infants should be inter-
preted with caution, because of the uncertainty of PetCO2.

Technical limitations
Apparatus dead space

The apparatus dead space is of particular interest for capnographic measurements 
because it can lead to rebreathing of exhaled CO2, thereby generating false inspiratory 
and expiratory CO2 measurements. This was a significant problem using volumetric cap-
nography with serial connections of the CO2 analyzer and pneumotach [61]. Combined 
sensors with a dead-space of about 1  ml have become available, e.g., neonatal sensor 
of the NM3, NICO, and CO2SMO+ respiratory monitors (all from Philips-Respironics, 
Murrysville, PA, USA). Nevertheless, the dead space problem remains, especially in pre-
term infants with low tidal volumes.

Dead space-free mainstream capnography remains a technical challenge, similar to 
that of dead space-free ventilatory measurements by the flow-through technique, in 
which the apparatus dead space is virtually eliminated by a background flow [62]. Evans 
et al. [63] performed capnographic measurements in 20 one-day old newborns using a 
bias flow of 3 L/min to wash-out the apparatus dead space of the face mask [63]. How-
ever, the bias flow diluted the CO2 concentration of the analyzed breathed gas, caus-
ing a loss in the precision of CO2 measurements, depending on the resolution of the 
capnograph.

Response time

Because the respiratory rate is about 4–5 times higher in neonates than in adults, a cap-
nograph should have a shorter response time in neonates than in adults. The response 
time of the capnograph, however, must be sufficiently short, so that the magnitude and 
shape of the CO2 signal pattern are as accurate as possible. The response time of a cap-
nograph has two components, the transit time and the rise time [64]. In sidestream 
measurements, the transit time is the time taken by the gas sample to travel from the 
sample port to the CO2 analyzer. This time depends on the suction flow and the length 
and diameter of the tube, with a numerical correction of the time lag being only approxi-
mate. The rise time is the time taken by the CO2 analyzer to increase from 10 to 90 % 
of the final value. Capnographs used in neonates currently have rise times (T10–90 %) of 
50–80 ms, depending on the airflow used for testing. This time may be too long for pre-
term neonates with low expiratory air flow and expiratory times <500 ms. Unfortunately, 
signal filtering has marginal effects on improving rise times, with improvements limited 
by the rapid reduction in signal-to-noise ratio [65].

The effects of increased rise time on time-based and volume-based capnograms are 
shown in Fig. 4. A CO2-signal of a ventilated newborn with a short exhalation time was 
low pass filtered to simulate an increase in the rise time of the analyzer. The time con-
stant of 36 ms is equivalent to a T10–90 % of 80 ms. Although the errors in PetCO2 are rela-
tively small, low pass filtering shifts the volumetric capnogram to the right, resulting in 
overestimates of calculated dead spaces which can lead to misleading clinical interpreta-
tions [66]. Thus, dead space measurements in neonates with short exhalation times are 
much more sensitive to the rise time of the CO2-analyzer than PetCO2 measurements. 
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Therefore, the results of older studies in newborns, using capnographs developed for 
adults with much higher rise times, should be interpreted with caution.

Ultrasonic flowmeters that simultaneously measure air flow and the molar mass of 
breathed gas [67] have very short response times, with no time delays between the two 
signals (Fig. 5). Although theoretically well suited to dead space measurements, molar 
mass is a surrogate signal, making it difficult to separate the CO2 signal [68]. Neumann 
et al. [69] used an ultrasonic flowmeter with an additional VDapp of 1.1 mL (Exhalyzer D, 
Ecomedics, Dürnten, Switzerland) for capnographic measurements in mechanically ven-
tilated preterm infants. However the weight and size of currently available ultrasound 
flow sensors are still too large for widespread clinical use in ventilated neonates.

Sampling rate

In the past capnographs developed for adults have often been shown inappropriate for 
measurements in neonates. Besides the high suction flow when using sidestream meas-
urements, the long rise time and the large volume of the analyzer chamber, the sampling 
rates of analogue-to-digital (A/D) converters were often too low for fast respiratory sig-
nals [66, 70, 71]. Furthermore, it is crucial that the analogue flow and CO2 signals pass 
through anti-aliasing filters prior to sampling, in order to satisfy the Shannon sampling 
theorem and to avoid the potentially insidious problems of aliasing. This requires the 
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specification of appropriate frequency cut-offs, which may differ between adults and 
newborns [72].

Beside the frequency cut-offs of the anti-aliasing filter the necessary sampling rate 
depends also on the frequency content of the signals. For acquisition of tidal breath-
ing data, particularly in rapidly breathing infants with low respiratory time constants 
sampling rates of ≥200 Hz are recommended [72]. The frequency content of the CO2 
signal depends on the rise time of CO2 sensor and is still unknown for infants with low 
respiratory time constant. The rise time of the current infrared CO2 sensors is likely too 
high to measure correctly the dynamic of CO2 signals in stiff lungs with exhalation times 
<200 ms (Fig. 4). A sampling rate of 100 Hz has been shown to be normally adequate in 
mature infants when calculating only VT, PetCO2 and airway dead spaces by the Bohr/
Enghoff equations. Greater time resolution may be required in rapidly breathing infants 
or intubated infants with stiff lungs, provided that faster CO2 analyzer are available. Fur-
thermore, in contrast to time-based capnograms, the distances between sampling points 
in volumetric capnograms are not equidistant, reducing the ability to cleanly distin-
guish among phases I, II, and III of volumetric capnograms. A sufficiently high digital 
resolution is also necessary for graphical displays of time- and volumetric capnograms, 
because visual assessment of a capnogram is essential for valid interpretation of capno-
gram-derived parameters and for calculating interactive dead space by Fletchers method 
[61].

Bias flow to reduce CO2 rebreathing 

Dead space 
reducer 

To the patient

Side chamber 

Ultrasonic 
transducer 2

Ultrasonic 
transducer 1
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Fig. 5  Schematic diagram of an ultrasonic flow meter (Exhalyzer D, Ecomedics, Dürnten, Switzerland). The 
flow rate V′(t) is directly proportional to the difference between transit times t1 and t2. The molar mass of the 
gas can be calculated from the sum of t1 and t2
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Further technical developments

The smaller tidal volumes and higher respiratory rates encountered in neonates, com-
pared with those in older infants and adults, result in higher demands on capnograph 
use in neonates and require further developments [73]:

• • Minimizing the dead-space of main-stream sensors because of low tidal volume,
• • Reducing suction flow of side-stream monitors because of low breathing flow,
• • Reducing the response time of the CO2 analyzer because of the short exhalation 

times, especially in preterm neonates with stiff lungs,
• • Increasing the sample rate to provide sufficient numerical and graphic resolution of 

the capnogram, especially in infants with high respiratory rates, and
• • Minimizing the phase shift between CO2 and flow signals to prevent errors in dead 

space calculations.

Capnography for ventilated neonates will not be widely accepted by neonatologists as 
long as capnography is not integrated into the neonatal ventilator without increasing of 
VDapp by the CO2-analyzer. This requires from the ventilator manufacturers to develop 
new combined sensors for air flow and CO2 measurements.

Conclusion
Capnography is a fascinating, noninvasive method for collecting information about 
breathing, alveolar gas exchange and airway dead spaces. In mechanically ventilated 
infants it is useful for monitoring the integrity of the ventilator circuit for early detection 
of mishaps, such as accidental tracheal extubation and disconnection of the breathing 
circuit, before irreversible damage is caused by prolonged hypoxia. Capnography, how-
ever, has physiological and technical limitations in neonatal patients, especially in new-
borns with stiff lungs. The short exhalation times, low tidal volumes and high impact of 
apparatus dead space hamper its measurements. Dead space calculations developed for 
adult lungs are often inapplicable to neonates with a prolonged phase II and a reduced 
or absent phase III. Imaginative physiological concepts are needed to interpret capno-
grams in these patients.

Despite technological progress, there are still technical limitations in correctly meas-
uring the fast CO2 signals of neonates. These patients require need faster CO2 sensors 
and low suction flow for side stream measurements. Moreover, when using volumet-
ric capnography, the pneumotach should be integrated with the CO2 sensors to reduce 
apparatus dead space. Finally, the widespread acceptance of capnography for neonates 
requires new, well designed bench, animal, and clinical studies to demonstrate its clini-
cal value and various diagnostic possibilities in these patients.
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