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Abstract 

Background: Amyloid β-protein (Aβ) plaque deposition is an important prevention 
and treatment target for Alzheimer’s disease (AD). As a noninvasive, nonradioactive 
and highly cost-effective clinical imaging method, magnetic resonance imaging (MRI) 
is the perfect imaging technology for the clinical diagnosis of AD, but it cannot display 
the plaque deposition directly. This paper resolves this problem based on pixel feature 
selection algorithms at the image level.

Methods and results: Firstly, the brain region was segmented from mouse model 
brain MR images. Secondly, the pixels in the segmented brain region were extracted 
as a feature vector (features). Thirdly, feature selection was conducted on the extracted 
features, and the optimal feature subset was obtained. Fourthly, the various optimal 
feature subsets were obtained by repeating the same processing above. Fifthly, based 
on the optimal feature subsets, the final optimal feature subset was obtained by voting 
mechanism. Finally, using the final optimal selected features, the corresponding pixels 
on the MR images could be found and marked to show the information about Aβ 
plaque deposition. The MR images and brain histological image slices of twenty-two 
model mice were used in the experiments. Four feature selection algorithms were used 
on the MR images and six kinds of classification experiments are conducted, thereby 
choosing a pixel feature selection algorithm for further study. The experimental results 
showed that by using the pixel features selected by the algorithms in this paper, the 
best classification accuracy between early AD and control slides could be as high as 
80 %. The selected and marked MR pixels could show information of Aβ plaque deposi-
tion without missing most of the Aβ plaque deposition compared with brain histologi-
cal slice images. The hit rate is over than 90 %.

Conclusions: According to the experimental results, the proposed detection algo-
rithm of the Aβ plaque deposition based on MR pixel feature selection algorithm is 
effective. The proposed algorithm can detect the information of the Aβ plaque deposi-
tion on MR images and the information can be useful for improving the classification 
accuracy as assistant MR biomarker. Besides, these findings firstly show the feasibility of 
detection of the Aβ plaque deposition on MR images and provide reference method 
for interested relevant researchers in public.
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Background
Alzheimer’s disease (AD) is a progressive, neurodegenerative disease that is character-
ized by severe deterioration in cognitive function, especially memory loss, and it is the 
most common type of dementia. Today, it represents a major public health problem and 
accounts for the majority of the whole population with dementia. An early diagnosis of 
AD will allow patients to benefit from effective treatments that can slow the neurode-
generation process [1]. Therefore, early diagnosis of AD is very necessary.

With the emergence of symptomatic treatment and the promise of drugs that can 
delay disease progression, the development of diagnostic biomarkers for AD has become 
very important. Relevant studies have shown that the β-amyloid (Aβ) protein is the 
main component of senile plaques. A marked increase in Aβ in anatomical structures 
(e.g., cerebrospinal fluid, CSF) in AD has been found in numerous studies. Importantly, 
increased Aβ has also been found very early in the disease process, before the onset of 
clinical symptoms [2]. Recent studies have suggested that Aβ has satisfactory perfor-
mance when used as a diagnostic marker for AD in routine clinical practice [3]. Research 
has also shown that the main pathologic characteristic of AD is that Aβ deposition 
appears in the cerebral cortex and hippocampus, which gradually accumulate senile 
plaques (SPs). Previous studies have indicated that Aβ, which has strong neurotoxicity, 
is the core pathogenic substance of AD and is the most important prevention and treat-
ment target for AD. Research has shown that Aβ begins to deposit 15–20 years before 
AD symptoms occur. Therefore, the noninvasive detection of the Aβ would be very help-
ful to the early diagnosis of AD. In addition to detecting Aβ plaque deposition, it is pos-
sible to increase the noninvasive early diagnostic accuracy in AD.

Currently, early diagnosis and treatment of AD based on Aβ have achieved encour-
aging results, including Aβ immune histochemical diagnosis, immune therapy, nerve 
factor therapy and so on [4–7]. However, due to technological deficiencies in the nonin-
vasive detection of Aβ, it is difficult to attain the goal of clinical application of research 
for early diagnosis and timely intervention therapy. Therefore, it is very necessary and 
urgent to establish early, noninvasive detection technologies to detect Aβ in vivo [8].

Research studies have shown that positron emission computed tomography (PET) 
combined with a tracer, such as 11C-PIB, could display information about Aβ plaque 
deposition distributed in several anatomical structures, such as the cerebral cortex, 
white matter and so on [8–11]. However, the PET imaging method has the following 
disadvantages that prevent it from clinical application: (1) the tracer emits radiation, so 
patients are likely to oppose to this type of detection method; (2) PET essentially has low 
resolution and data volume, and it does not detail human physiological metabolism, so 
it cannot provide information about anatomical structures and small lesions, and it is 
unacceptable to clinicians; and (3) the price of PET is much higher than that of MRI, so 
patients tend to prefer latter to the former because dementias are chronic, non-lethal 
diseases [12–15].

Compared with the disadvantages of PET, MRI is inexpensive and noninvasive, it 
involves no radiation and no tracer, it has high resolution, and it has been widely applied 
in clinical applications. It can precisely and quantitatively reflect the changes in struc-
ture and function occurring in different brain tissues, and it has been widely applied for 
the early diagnosis of AD [16]. In recent years, studies have shown that β-amyloid plaque 
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deposition could be reflected by MR without tracer under the high field intensity of MR 
because Aβ can absorb iron and calcium deposits [17]. MRI could reflect information 
about Aβ plaque deposition in the hypothalamus, hippocampus and cerebral cortex [17–
19]. Insoluble cellulose caused by Aβ leads to the rapid attenuation of proton magnetiza-
tion. Thus, on MRI, the brightness of relevant regions will decrease apparently, and the 
contrast will also change [20].

Based on the analysis above, although MR cannot display information about Aβ plaque 
deposition information directly, it can reflect information. Therefore, it is necessary to 
find a method to extract the information of Aβ plaque deposition from MR images and 
display it. The extraction of Aβ information is essentially a data mining problem, so it is 
feasible to solve the problem by introducing machine learning methods.

This paper intends to solve this problem using this idea. First, segment the brain 
regions that possibly contain Aβ plaque deposition on brain MR images. Second, extract 
the pixels from the brain regions to construct pixel feature vectors (samples). Third, con-
duct feature selection by maximizing the classification accuracy and obtaining the opti-
mal pixel features. Finally, map the selected pixel features to the corresponding pixels on 
MR images, thereby showing the Aβ plaque deposition. For detail, please see “Methods”, 
“Experiment and Discussion” sections.

The remainder of this paper is organized as follows. In “Methods” section, the whole 
process is introduced to describe how to select the MR image pixels to detect Aβ plaque 
deposition. In this process, four feature selection algorithms are involved. “Results” and 
“Discussion” sections describe the experimental results and analysis. “Conclusions” ends 
the paper and discusses future work. Finally, highlights are presented in last section.

Methods
Data description—mouse model and images

The mouse model used was the homozygous APPswe/PS1dE9 double transgenic mouse, 
bred on a C57BL/6 background. The mice were obtained from Beijing HFK Bio-technol-
ogy Co., Ltd., Institute of Laboratory Animal Science, Chinese Academy of Medical Sci-
ence (Beijing, China). These transgenic mice carry human APPswe (Swedish mutations 
K594N/M595L) and presenilin-1 with exon-9 deletion (PS1-dE9) under control of the 
mouse prion protein promoter, producing increasing amounts of amyloid deposits in the 
brain, as well as developing cognitive deficits with age [21]. Female transgenic mice aged 
9 months old and their matched, non-transgenic, wild-type (WT) littermates were used 
in the present study (n = 8, respectively). The animals were housed in temperature- and 
humidity-controlled rooms with ad libitum access to food and water. All of the research 
with mice followed the University Policies on the Use and Care of Animals and was 
approved by the Institutional Animal Experiment Committee of Fourth Military Medi-
cal University. All of the experiments were performed blinded with regard to the genetic 
status of the mice. The mouse model in this paper was the APP transgenic mouse, which 
causes Aβ plaque deposition. We collected brain MR images from 22 mice (10 with early 
Alzheimer’s disease [AD] and 12 normal mice [CTL]). The 9 months old App mice are 
corresponding to the early stage of AD.

The MR images and brain histological images all came from the Beijing animal imag-
ing scan room. The information about the image data is summarized as follows: the MR 
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image sequence was a T2-weighted image sequence (TE first echo), TR: 4000 ms, ETL: 
8, and ESP: 10; and the data size was 128 × 128. Each mouse had 12-layer, two-dimen-
sional images (DICOM format). The 4th to 9th slices of brain MR images of each mouse 
were chosen. Subsequently, a total of 132 two-dimensional images (denoted as samples, 
6 × 22 = 132) were obtained, 72 samples of which did not contain Aβ plaque deposition 
and belonged to normal mice, and 60 samples of which contained Aβ plaque deposi-
tion and belonged to mice with dementia. For subsequent pixel feature selection, the 132 
samples are randomly divided into three parts. They are training set, validation set and 
test set respectively. The three parts do not overlap each other. By repeating the division 
for eight times, the eight groups of the data sets are constructed.

The brains were fixed in 0.01 M PBS (pH 7.4) containing 4 % formalin, dehydrated by 
a graded series of alcohol, embedded in paraffin and then sectioned into slides 5 μm in 
thickness. After treatment with 0.1 M formic acid, the brain slices were incubated with 
beta-amyloid 17–24 (4G8) monoclonal antibody (SIG-39220, Covance, BioLegend, San 
Diego, California, USA) for 24 h at 4 °C. The slices were then incubated with horserad-
ish-labeled secondary antibody for 1 h, and the color signal was developed with DAB. 
The nuclei were stained with hematoxylin. The slides were observed, and images were 
obtained under an Olympus BX53 microscope (Olympus, Japan).

Brain histological images were divided into the immune group and control group, the 
former containing apparent Aβ plaque deposition. The resolution of the brain histologi-
cal images was 2560 × 1920, and they were magnified 40 times. Each mouse had six tis-
sue section images including the left and right sections of the hippocampus and the left 
and right sections of the cerebral cortex.

As shown in Fig. 1, the left pictures marked with a and d are MR images of two catego-
ries (early AD and CTL); the former contains Aβ plaque deposition, and the latter does 
not. But there is no obvious difference between the two images. The middle images are 
the left hippocampi of two MR images, and we cannot distinguish whether they con-
tain Aβ plaque deposition or not. In the figure, the right images are the corresponding 

Fig. 1 MR and tissue section images of Aβ protein deposition. a, d MR images of two categories of AD and 
CTL, from the same slice in each case; b, e Left hippocampi from two MR images, surrounded by green boxes; 
c, f The corresponding microscopic images of histology slides
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microscopy images of histology slides (c and f ). By observing the brain histological 
images, we found that for CTL mice, there was no Aβ plaque deposition, whereas for 
early lesions in the AD mice, Aβ plaque deposition could be seen in the brain histologi-
cal slice images (see small brown area).

Past studies have showed the MR image contain the information of the Aβ plaque but 
cannot show it visually. The result shows that there is strong correlation between the MR 
pixels and the information of the Aβ plaque. By observation, the histology slices from 
APP mice (AD) contain the Aβ plaque deposition apparently, but the histology slices 
from healthy mice (CTL) contain the Aβ plaque barely. Hence there is strong correla-
tion between the information of the Aβ plaque deposition and the classification of CTL 
and AD. As we known, Aβ plaque deposition is an important prevention and treatment 
target for AD, so there are strong correlations among the three things. The classification 
accuracy of the Aβ plaque deposition can be improved by selecting the corresponding 
MR pixels. The MR pixels can reflect the information of the Aβ plaque deposition. The 
information of the Aβ plaque deposition can be helpful for improving the classification 
accuracy of CTL and AD. Therefore, the AD and CTL groups could be considered a gold 
standard to detect the Aβ plaque deposition. Based on this idea, we could optimize the 
MR pixels that reflect information about Aβ plaque deposition by maximizing the classi-
fication accuracy of AD and CTL samples. Therefore, this idea could be called the detec-
tion of Aβ plaque deposition on MR images based on pixel feature selection and class 
information at the image level.

Flowchart of the propose algorithm

The flow chart of the proposed method is shown in Fig. 2. First, the brain tissue is seg-
mented manually, and then brain tissue images of the mice are obtained. Second, the 
pixel values are extracted from the brain tissue images to form feature matrices as data 
samples. Third, randomly split samples are obtained for training, validation and testing 
of the three parts, each for training, optimizing, and testing the feature selection and 
performance of the model respectively. Fourth, the optimal pixel features are obtained 
by maximizing the classification accuracy of AD. Fifth, the final optimal pixel features 
are obtained by voting mechanism. Sixth, the test samples are classified as CTL or AD 
base on the final optimal pixels and the classification accuracy rates are calculated. 

Fig. 2 Flowchart of this detection idea. The process consists of four main steps, including segmentation of 
brain tissue with MRIcro, pixel feature extraction, feature selection with CAGA or PCA, and classifier testing; 
marking of brain MR images is based on the coordinate information of the pixel features
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Finally, elastic mapping is performed of the final optimal pixel features onto the pixels 
on the MR images of AD, and they are marked to show the location of the Aβ plaque 
deposition.

Brain image segmentation

In this paper, MRIcro software was used to examine and transform efficiently the brain 
MRI of mice and to input and output the brain imaging data. Because Aβ plaque deposi-
tion is located in the brain tissue region, the brain tissue region of the mice was the region 
of interest (ROI). This paper created and preserved the segmented images using MRIcro. 
To ensure the accuracy of the segmentation, the whole process was conducted under the 
guidance of a doctor. First, the outline of the brain tissue was manually traced; second, 
the filling operation was performed; and finally, the ROI was output as an analytic image, 
as shown in the following Fig. 3b. In this paper, the process of manual extraction of brain 
tissue images was performed under the supervision of doctors. The segmentation results 
were accepted by the doctor, and the segmentation accuracy met the requirements.

Feature extraction

Based on the segmented brain tissue, the gray values of the pixels in the brain tissue 
were extracted as pixel features. According to different images, the number of pixels in 
the brain tissue was possibly different, and the lengths of the feature vectors were differ-
ent. Therefore, based on the shortest feature vector, elastic mapping was conducted of 
the feature vectors with different lengths onto those with the same length. The length 
was determined by the shortest feature vector.

Feature selection

Usually, the feature selection method included three major parts: the feature selection 
mode, search algorithm, and evaluation criteria. They are described as follows.

Feature selection mode

In this paper, two types of feature selection modes were used: wrapper mode and filter 
mode. The former evaluates subsets of variables, unlike filter approaches, which allow 
the detection of the possible interactions between variables. Its evaluation criterion is 
the accuracy rate from the classifier. The latter is an unsupervised learning algorithm 
that analyzes the internal information of the feature subset to measure its quality.

Fig. 3 Effect of brain tissue segmentation. a The fourth slice of a brain MR image of an AD mouse model.  
b The corresponding segmented brain tissue of the brain MR image
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Search algorithm (optimization algorithm)

In the paper, two popular search algorithms were involved here, PCA (principal compo-
nent analysis) and chain agent genetic algorithm (CAGA algorithm), which the authors 
proposed previously. The former is a statistical procedure that uses orthogonal trans-
formation to convert a set of observations of possibly correlated variables into a set of 
values of linearly uncorrelated variables called principal components [22, 23]. The PCA 
will be described in detail in the ‘PCA’ section.

CAGA

Because the former approach has been widely adopted, we describe the principle of the 
CAGA [24] here. The CAGA algorithm, as an improved agent genetic algorithm, has 
advantages of high and stable search accuracy and strong robustness. The population 
individuals are designed to be intelligent agents within this algorithm. Assuming that 
the agent located in the jth node in the ith sub-population is expressed as Li,j, the neigh-
borhood domain of Li,j is defined as follows: Neibori,j =

{

Li,j1, Li,j2
}

, where i indicates 
the serial number on the chain agent body, and j indicates the jth agent on the ith chain 
body.

As seen from the formula above, this chain is closed, and genetic information can 
spread freely thereon. For details, please see Ref. [24].

The agent ring can be described as that in Fig. 4. Each circle represents an agent, the 
data in a circle represent its position in the ring, and the agent can interact with the left 
neighboring position and the right neighboring position.

Energy is defined as follows: an agent, a, represents a candidate solution to the optimi-
zation problem in process. The value of its energy is defined as follows:

where fitness() indicates the fitness value of some individual in the population. For fea-
ture selection, it corresponds to some evaluation criterion.

As seen, each agent represents an individual. To realize the local perceptivity of agents, 
the environment is constructed as a chain-like structure as mentioned above.

(1)Li,j1 =

{

Li,L j = 1

Li,j−1 j �= 1
, Li,j2 =

{

Li,1 j = L
Li,j+1 j �= L

(2)Eng(L1,i) = fitness
(

L1,i
)

Fig. 4 Chain-like agent structure inside the sub-population. The whole large circle indicates one population. 
Each small circle represents an agent, and Lsize indicates the size of the population. The figure indicates the 
population structure of the genetic algorithm
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Suppose that the current agent, which is located at L1,i =
(

li,1, li,2, . . . li,n
)

 
Max1,i =

(

mi,1,mi,2, . . . ,mi,n

)

, is the agent with maximum energy among the neighbors 
of L1,i, where n indicates the number of genes. Li,n indicates the nth gene of the ith indi-
vidual L1,i (that is, the chromosome), and m1,n indicates the nth gene of Max1,i. That is, 
Max1,i ∈ Neibors1,i and ∀a ∈ Neibors1,i then Eng(a) ≤ Eng

(

Max1,i
)

.
If L1,i satisfies formula (3), then it persists in the agent chain. Otherwise, it dies, and its 

chain-point is occupied by New1,i.

Dynamic competition strategy During the competition process, the 
Max1,i = max

(

L1,i1 , L1,i2
)

. The competition process is performed in ascending order, and 
after the competition of the 1st agent, the 1st agent is updated. Assuming the ith agents 
before competition and after competition are Lpre

1,i  and Lpost
1,i , respectively, so Max1,i is 

determined by Eq. (4):

Dynamic neighborhood competition selection operator The neighborhood compe-
tition selection operator is described as follows: suppose the order of competition 
selection is from left to right, the current agent is Lt

1,i, and the neighbors are Nbs1,i, 
Nbs1,i =

{

Lt
1,i1 Lt

1,i2

}

, i = 1, 2 . . . popsize. Updating of Lt
1,i is as follows in Eq. (5):

In formula (5), ◦ indicates competition selection between agents Lt
1,i and Lt

1,i1, and the 
two agents consist of many genes:

cti,j indicates the jth gene of Lt
1,i, c

t
i1,j indicates the jth gene of Lt

1,i1, and length indicates 
number of genes of a single agent. The competition selection between agents Lt

1,i and 
Lt
1,i1 can be called Lt

1,i ◦ L
t
1,i1, and the process is as follows:

If cti,j = cti1,j, then cti1,j does not change; otherwise, if cti,j �= cti1,j, then cti,j = U(0, 1), 
where U(0, 1) indicates 0 or 1 randomly selected.

Adaptive crossover operator In the course of the crossover operation, the crossover 
probability is adaptive. The corresponding formula is given by Eq. (7):

(3)Eng
(

L1,i
)

≥ Eng
(

Max1,i
)

(4)
Max1,i =



















max

�

L
pre
1,Lsize

, L
pre
1,i+1

�

i = 1

max

�

L
post
1,Lsize−1

, L
post
1,1

�

i = Lsize

max

�

L
post
1,i−1

, L
pre
1,i+1

�

else

(5)







Lt
1,i = Lt

1,i fitness(Lt
1,i) > fitness(max(Lt

1,i1, L
t
1,i2))

Lt
1,i = Lt

1,i ◦ L
t
1,i1 (max(L1,i1, L1,i2) = L1,i1)&(fitness(L1,i1) > fitness(Lt

1,i))

Lt
1,i = Lt

1,i ◦ L
t
1,i2 (max(L1,i1, L1,i2) = L1,i2)&(fitness(L1,i2) > fitness(Lt

1,i))







(6)
Lt1,i = (cti,1 c

t
i,2 . . . c

t
i,j . . . c

t
i,length),

Lt1,i1 = (cti1,1 c
t
i1,2 . . . c

t
i1,j . . . c

t
i1,length)

(7)pc =







�

f tmax−f ′i
f tmax−f tave

�
1

GH(i,i′)

f ′ ≥ f tave

1 f ′ < f tave
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where GH(i, i′) is the Hamming distance of Lt
1,i, and max1,i, max1,i is an individual with a 

large fitness value in Nbs1,i, f ′ is a large fitness value within Lt
1,i, and max1,i, popt−1 is the 

maximal fitness value among the individuals of this generation, f tave is the mean fitness 
value of individuals of this generation. The specific cross-operation is as follows: gener-
ate a random number U(0, 1) between 0 and 1 and then compare it with pc to deter-
mine whether Lt

1,i can cross over with max1,i.The corresponding formula is as follows: 
{

crossU(0, 1) < pc

uncrossU(0, 1) ≥ pc
. The intersection parents randomly exchange at the same locus, 

thereby generating new individuals.

Adaptive mutation operator Suppose that the mutation probability ispm, so 
{

mutationU(0, 1) < pm

unmutationU(0, 1) ≥ pm
, and generally speaking, pm is related to the length of the 

chromosome and is decided by the following equation: pm = 1/length.

Stopping criterion To obtain more stable selection results, the paper introduces an adap-
tive stopping criterion. fave can reflect the evolution of the current population. fbest indicates 
the best average fitness value because the beginning. kstop indicates a counter, which counts 
the number of fbest that has no change. Niter indicates the preset maximum iteration number. 
If kstop > k or if the number of iterations is more than Niter, the search stops.

Evaluation criteria

The evaluation criteria are decided based on the feature selection mode. Under the 
wrapper mode, the evaluation criterion is classification accuracy. The evaluation crite-
rion under the filter mode is characterized by internal information of the feature meas-
urements guidelines. In this paper, we adopt the separability distance criterion.

In this paper, the evaluation criterion under the filter mode is the separability distance cri-
terion, which is one of the classification abilities that characterize the evaluation criteria. Like 
the mainstream standard to evaluate the separability, the separability criterion could replace 
classification accuracy for feature selection, and its value is positively proportional to the 
classification capability. In this paper, the fitness function by the separability distance crite-
rion is designed based on geometric distance. The fitness function is the ratio between the 
inter-class variance and intra-class variance. The calculation formula is described as follows:

where Sb = (c̄1 − c̄2)
2 indicates inter-class variance and intra-class variance can be 

expressed as

P1 =
N1

N1+N2
 indicates the ratio of the first type of sample of total sample, while 

P2 =
N2

N1+N2
 indicates the ratio of the second type of sample of the total sample; c1ik 

� =
Sb

Sw

Sw =
P1

N1

N1
∑

i=1

M
∑

k=1

(c1ik − c̄1)
2 +

P2

M2

N2
∑

j=1

M
∑

k=1

(

c2jk − c̄2
)
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represents the gray value located in the kth column of the ith sample within the first 
class; and c2jk is the kth column’s gray value of the jth sample within the second class. c̄1 
represents the first class center value, and c̄2 indicates the second class center value.

Classifier—support vector machine (SVM)

Support vector machine (SVM) is currently the mainstream classifier in machine learn-
ing [25]. Its main parameters to be trained are described in Eq. (8):

where c is the penalty factor, ai is the learning rate, q is the serial number of the sample, 
k() is the kernel, and b is the offset. Here, we used linear kernel as the kernel function, 
which can be written as follows in Eq. (9):

where z is any point in space, and zc is the center of the kernel function.

Classifier—random forest (RF)

When the random forest algorithm is chosen as the classifier, the corresponding training 
is conducted as follows [26].

Step 1:  Bootstrap methods are used for re-sampling, randomly generating T training 
sets: S1, S2, . . . , ST.

Step 2:  Based on each training set, the corresponding decision trees are generated: 
C1,C2, . . . ,CT; m attributes from M attributes are randomly selected as the 
splitting attribute set of the current node, and the node is split.

Step 3:  Each tree grows integrally, without being pruned.
Step 4:  Based on each decision tree, the sample in the test set X is classified, thereby 

obtaining the corresponding categories, C1(X),C2(X), . . . ,CT (X).
Step 5:  Applying the voting method, the categories of the sample are output by the T 

decision trees. The category with maximum votes is the final category of the 
sample.

Pixel feature selection algorithms

Based on the main parts described above, the four pixel feature selection algorithms are 
developed for selecting the optimal pixel features, thereby showing the information of 
the Aβ plaque deposition. The four algorithms are described as follow.

GA filter feature selection algorithm (GA_filter)

GA is used for search algorithm. The separability distance criterion (in “Evaluation cri-
teria” section) is used for constructing the fitness function. By genetic iteration, the GA 
search the optimal pixel features by maximizing the fitness value. The separability dis-
tance criterion is a useful criterion for indirectly evaluating the classification accuracy. It 
has advantage of low time cost and high generalization capability. Here, both the train-
ing set and validation set are used for calculating the fitness values based on the feature 

(8)
c =

∑

q

aqk(sq , x)+ b

(9)k(z, zc) = zT zc
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subset candidates (chromosomes). The feature subset candidate with the highest fitness 
value is the optimal feature subset or the optimal pixels features (feature vector).

The pseudo code for the GA_filter is shown below:

Output the optimal agent ( )op t corresponding optimal feature subset and fitness value _fit val

Initialize ( )p t //Initialize the population

[ ( ), _ ] _ ( , )op t fit val CAGA dist= T E

WHILE ( Nt ≤ ) //N is the number of iterations

Evaluation( ( ))p t // T is sent to fitness function by separability distance criterion, and then output the

fitness value as the initial fitness value of the agent  

( ) Selection( ( ))sp t p t= //Neighborhood competition selection

(t) Crossover( (t))scp p= //Adaptive crossover

( ) Mutation( ( ))cmp t p t= //Adaptive mutation

Evaluation( ( ))mp t // Calculate fitness value after adaptive mutation

IF Evaluation Evaluation( ( )) ( ( ))mp t p t>

( ) ( )op t p t=

Evaluatio_ ( ( ))nfit val p t=

ELSE IF Evaluation Evaluation( ( )) < ( ( ))mp t p t

( ) ( )o mp t p t=

Evaluation_ ( ( ))mfit val p t=

END IF

1t t= +
END WHILE

Output ( )op t and _fit val

PCA based feature selection algorithm (PCA)

The number of principal components is less than or equal to the number of original vari-
ables. This transformation is defined in such a manner that the first principal compo-
nent has the largest possible variance (that is, accounts for as much of the variability 
in the data as possible), and each succeeding component, in turn, has the highest vari-
ance possible under the constraint that it is orthogonal to the preceding components. 
The resulting vectors are an uncorrelated orthogonal basis set. The principal compo-
nents are orthogonal because they are the eigenvectors of the covariance matrix, which 
is symmetric. By the procedures above, the best components can be obtained. By inverse 
covariance matrix, the best components can be transformed as the corresponding opti-
mal pixel features. The whole process of PCA is conducted on the training and validation 
set.
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GA_SVM wrapper feature selection algorithm (GA_SVM(wrapper))

Different from the GA_filter, the GA_SVM (wrapper) is a kind of wrapper feature selec-
tion algorithm. GA is used for search algorithm. The classification accuracy from SVM is 
used for constructing the fitness function. By genetic iteration, the GA search the opti-
mal pixel features by maximizing the fitness value. The classification accuracy is a use-
ful criterion for directly evaluating the classification accuracy. It has advantage of high 
classification accuracy. Here, the training set is used for training the SVM with feature 
subset candidates (chromosomes); the validation set is used for calculating the fitness 
values based on the trained SVM and the feature subset candidates. The feature subset 
candidate with the highest fitness value is the optimal feature subset or the optimal fea-
tures (feature vector).

The pseudo code for the GA_SVM (wrapper) is shown below: 

Output the optimal agent ( )op t corresponding optimal feature subset and classification accuracy, acc

Initialize ( )p t //Initialize the population

[ ( ), ] _ ( , )op t acc CAGA SVM= T E

WHILE ( Nt ≤ ) //N is the number of iterations

Evaluation( ( ))p t // T is sent to SVM for training, and then output test diagnostic accuracy as the initial

fitness value of the agent based on the trained SVM 

( ) Selection( ( ))sp t p t= //Neighborhood competition selection

(t) Crossover( (t))scp p= //Adaptive crossover

( ) Mutation( ( ))cmp t p t= //Adaptive mutation

Evaluation( ( ))mp t // Calculate fitness value after adaptive mutation

IF Evaluation Evaluation( ( )) ( ( ))mp t p t>

( ) ( )op t p t=

Evaluation( ( ))pac tc =

ELSE IF Evaluation Evaluation( ( )) < ( ( ))mp t p t

( ) ( )o mp t p t=

Evaluat (io ( ))n macc p t=

END IF

1t t= +
END WHILE

Output ( )op t and acc

GA_RF wrapper feature selection algorithm (GA_RF(wrapper))

Similar with the GA_SVM (wrapper), the GA_RF (wrapper) is another kind of wrapper 
feature selection algorithm. GA is used for search algorithm. The classifier is RF rather 
than SVM. The classification accuracy from RF is used for constructing the fitness func-
tion. By genetic iteration, the GA search the optimal pixel features by maximizing the 
fitness value. Here, the training set is used for training the RF with feature subset candi-
dates (chromosomes); the validation set is used for calculating the fitness values based 
on the trained RF and the feature subset candidates. The feature subset candidate with 
the highest fitness value is the optimal feature subset or the optimal features (feature 
vector).



Page 13 of 27Li et al. BioMed Eng OnLine  (2016) 15:108 

Voting mechanism

By the feature selection algorithm, the optimal pixel features can be obtained. By repeat-
ing the same feature selection algorithm for m times, the m optimal feature subsets (fea-
ture vectors) can be obtained. For each feature, calculate the times kselect that the feature 
which is selected. If the kselect > Tselect, then the feature is chosen; else, the feature is not 
chosen. Usually, the Tselect ranges within 

(

kselect/2, kselect
)

.

Elastic mapping from selected pixel features to the marked pixels on MR images

The main procedure is described as follows:

Step 1:  m optimal feature subsets are obtained from the pixel feature selection algo-
rithm by repeating it m times.

Step 2:  The voting mechanism is used to obtain the final optimal feature vector.
Step 3:  According to the final optimal feature vector, elastic mapping to the origi-

nal pixels feature vectors that formed in feature extraction section, thereby 
obtaining the corresponding pixels on the brain MR image.

Step 4:  The mapped pixels are marked on the MR image of AD to show the position 
of the Aβ plaque deposition

Step 5:  Steps 1–4 are repeated until all of the MR images of AD are marked.

The process can be seen in Fig. 5.

Results
Experimental conditions

The mouse model in the paper consisted of APP transgenic mice, which experience Aβ 
plaque deposition. We collected brain MR images from 22 mice [10 with early AD, and 
12 normal mice (CTL)]. The MR images and all of the brain histological images came 
from the Beijing animal imaging scan room. The information about the imaging data is 
summarized as follows: The data were divided into two categories (CTL and AD). The 
image sequence was a T2-weighted image sequence (TE first echo), TR: 4000 ms, ETL: 
8, and ESP: 10; the data size was 128 × 128. Each mouse had 12-layer two-dimensional 

Fig. 5 Flowchart of elastic mapping based on the optimal feature subset. “0” indicates that the feature of 
the location is not selected; “1” indicates that the feature of the location is selected. Feature subsets were 
obtained by binary coding; m is the total number of samples. By all of the feature subsets, the optimal feature 
subset is obtained. Pixel vectors with different dimensions were obtained using elastic mapping from the 
optimal feature vectors. By the pixel vectors, the corresponding pixels in the brain images can be found and 
marked, thus providing information about Aβ plaque deposition
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images (DICOM format). The area of brain tissue on some of the images was small, so 
these images were removed. The 4th to 9th slices of the brain MR images of each mouse 
were chosen. Subsequently, a total of 132 two-dimensional images (denoted as samples, 
6 × 22 = 132) were obtained, 72 samples of which did not contain Aβ plaque deposition 
and belonged to normal mice, and 60 samples of which contained Aβ plaque deposition 
and belonged to mice with dementia.

Pixels in the brain tissue portion of each image sample were extracted, forming a fea-
ture vector, with a feature’s value indicating a pixel’s gray value. The shortest feature vec-
tor was used as a feature vector template. Every feature vector was aligned (mapped) 
with the feature vector template. The length of the template vector was 2911, so the 
images of the 132 samples were converted to gray feature matrices of 2911 × 132, where 
132 is the number of data samples, and 2911 is the number of the features.

In this paper, experimental operating system platform was the Windows, version 7, 
64-bit operating system, and the memory size was 4 GB. Image extraction of the mice’s 
brain tissue was performed using an MRIcro medical image viewer, and the data pro-
cessing was completed in MATLAB, version 2012a.

To verify the accuracy of the algorithms to detect Aβ plaque deposition information 
on MR images, four feature selection algorithms are involved. Based on the optimal 
pixels from the feature selection algorithms, the test samples were classified by the cor-
responding classifiers (SVM, RF). By cross combination, the six kinds of classification 
experiments were conducted. GA_SVM (filter) means the SVM classifies the test sam-
ples based on the optimal MR pixel features from GA_filter. GA_RF (filter) means the 
RF classifies the test samples based on the optimal MR pixel features from GA_filter. 
PCA_SVM (filter) means the SVM classifies the test samples based on the optimal MR 
pixel features from PCA. PCA_RF (filter) means the RF classifies the test samples based 
on the optimal MR pixel features from PCA. GA_SVM (wrapper) means the SVM clas-
sifies the test samples based on the optimal MR pixel features from GA_SVM (wrap-
per). GA_RF (wrapper) means the RF classifies the test samples based on the optimal 
MR pixel features from GA_RF (wrapper).

For CAGA, to balance time cost and accuracy better, according to many experimen-
tal statistics, we determined the size of the initial population at 50, the initial crossover 
probability was 0.8, and the initial mutation probability was 0.05. At the end of each 
iteration, according to the fitness value, we reserved the 50 best individuals, and the 
maximum number of iterations was set at 30, which helped to find the global opti-
mum quickly and to select the optimal feature subset. The different decision trees in 
the random forest had impacts on their generalization performance. To reduce the 
impact of randomness, the paper established 100 forest models randomly and then 
regarded the average value of the average accuracy rate as the classification accuracy 
of the current tree. Finally, by considering the random forest containing trees and the 
modeling speed, we chose the number of trees as the object of optimization and com-
bine it with CAGA to select the optimal feature subset. According to the statistical 
experiments, 500 was the best number of decision trees for CAGA + random forest. 
For PCA +  random forest, the best number of trees was 650.For voting mechanism, 
the k = 10; Tselect = 8.
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Performance evaluation index

The evaluation metrics used to measure the accuracy of whether MRI contained Aβ 
plaque deposition were the accuracy, sensitivity, and specificity of the test sample. The 
formula below is the related definition of the classification confusion matrix:

where TP indicates true positives, TN indicates true negatives, FP indicates false posi-
tive, and FN indicated false negatives. Sensitivity and specificity are statistical ratios of 
correctly classified positive and negative instances, respectively:

In addition, based on the selected pixel features, the corresponding pixels on the MR 
images are marked to show the information about Aβ plaque deposition.

Classification accuracy of AD based on detected Aβ plaque deposition information 

indirectly

The six kinds of classification experiments discussed above were conducted on the clas-
sification of the test samples. Every sample is classified and labeled with AD or CTL class 
tag. By comparing the labeled class tag of the samples and the real class tag of them, 
the classification accuracy rates can be calculated. Each experiment was repeated eight 
times, and the statistical results of the classification are shown in Table 1.

Most of them were greater than 50 % apparently (see Fig. 6; Table 1), indirectly indi-
cating that the algorithms for detecting Aβ plaque deposition were effective since the 
Aβ plaque deposition correlate with the classification of AD strongly. In the six experi-
ments, GA_SVM under the filter mode achieved the greatest accuracy of up to 77  %, 
with an average of 73 % of the accuracy rate, which was possible to form a strong classi-
fier. It would be helpful to improve the accuracy of the current classification methods of 
AD on MR images. The case is similar with the sensitivity and specificity. Since the App 
mice slides are corresponding to the early stage of the AD and there is no obvious differ-
ence for the MR images of the two categories, the classification accuracy based on one 
biomarker is applicable.

Figure  6 shows classification accuracy curve of the six experiments repeated eight 
times. In addition to the accuracy of PCA_SVM (filter), the accuracy rates of the other 
five experiments were significantly greater than 50 %, which proved that the detection 
was effective. Under the filter mode, the classification accuracy based on CAGA_SVM 
was relatively stable; under the wrapper mode, the classification accuracy based on

CAGA_SVM was the greatest, reaching up to 81 % (see Table 1). It was noteworthy 
that the results based on CAGA_SVM under the filter mode were better than the results 
under the wrapper mode in the same conditions, which possibly indicates that the sepa-
rability distance criterion used in the paper performed better.

Accuracy =
TP + TN

TP + FP + TN + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP



Page 16 of 27Li et al. BioMed Eng OnLine  (2016) 15:108 

Figure 7 shows the box plots of accuracy for the six experiments. As seen in the fig-
ure, we could intuitively find outliers within the data. Observing the length of the box, 
the top-and-bottom spaced entries, and the length of the whiskers, we could judge the 
discrete degree and bias of accuracy from the six types of methods. Under the wrapper 
mode, GA_SVM had two outliers, which indicated that the results had a large range of 
fluctuations. The GA_SVM under the filter mode with moderate box size and relatively 
shorter whiskers illustrated that the distribution of the correct rate values was concen-
trated, so the algorithm was more stable than the other five algorithms.

Classification performance based on CAGA filter feature selection algorithms

Because CAGA + SVM and CAGA + RF in filter mode have best classification accuracy, 
they are analyzed in this section. Comparisons of the classification results in both cases 
are shown in Fig. 8.

Compared with RF, the classification accuracy of SVM is far better. The average accu-
racy is 73 %, and the accuracy rate is 76.92 % (see Fig. 8). In addition, the ACC (accuracy) 

Table 1 The classification results under filter and wrapper mode

Evaluation 
criteria

GA_SVM 
(filter)

GA_RF 
(filter)

PCA_SVM 
(filter)

PCA_RF 
(filter)

GA_SVM 
(wrapper)

GA_RF 
(wrap-
per)

Accuracy Average (%) 73 65 49 64 71 63

Best (%) 77 76 58 71 81 75

Sensitivity Average (%) 75 70 57 66 64 66

Best 81 78 69 78 70 78

Specificity Average (%) 68 58 36 60 75 56

Best (%) 70 75 40 60 88 70

Selected 
feature 
number

Average 1445 1460 125 125 1450 1460

Best 1470 1435 125 125 1462 1441

Fig. 6 Diagram of classification accuracy of the six types of classification algorithms. The picture describes 
the average classification accuracy by the six types of classification algorithms for eight repetitions. The x axis 
indicates the running time; the y axis indicates the classification accuracy
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curve shows that the stability of CAGA_SVM is better, possibly because the SVM is 
more suitable for the distance separability criterion than RF, and the optimal feature 
subset obtained by the distance separability criterion is more suitable for training and 
testing of SVM.

Analysis of significance level of the feature selection algorithms

To demonstrate the significance level of the classification accuracy of the algorithms pro-
posed in the paper (the proposed algorithms were significantly different from the ran-
dom pixel selection algorithm), the t test of the hypothesis was conducted. The results 
are shown in Table 2 and Fig. 9.

Fig. 7 Box plots of six types of algorithms. F filter, W wrapper. The six box plots represent the skewness and tail 
weight of the data, intuitively and clearly identifying outliers in the data batch. There are two outliers with the 
algorithm of GA_SVM in wrapper mode. The p value above the box indicates a significant difference between 
the algorithms in this paper and a random algorithm

Fig. 8 The classification results of the optimal classification algorithms. The graph shows the classification 
accuracy with same feature selection algorithm and with different classifiers. The green line indicates the best 
classification accuracy
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The four experiments with significant differences in random feature selection were 
CAGA_SVM (filter), CAGA_RF (filter), PCA_SVM (filter), and CAGA_SVM (wrap-
per) (see Table 2; Fig. 9). Especially for CAGA_SVM (filter) and CAGA_RF (filter), the p 
value was far less than 0.001. The results indicated that the high classification accuracy 
was based on the proposed algorithms themselves, rather than chance. In other words, 
the results indicated that the effectiveness of detection of the Aβ plaque deposition was 
based on the proposed algorithms themselves, rather than chance.

Detection of Aβ protein deposition information in MR images based on pixel feature 

selection algorithm

According to the Table 1, the classification accuracy of CAGA_filter is best. Therefore, 
the CAGA_filter is chosen for further study. Conduct feature selection and obtain the 
optimal pixel feature vector with training set and validation set by CAGA_filter. Repeat 
the feature selection for ten times, the ten optimal feature vectors are obtained. By vot-
ing mechanism, the final optimal feature vector is obtained. Conduct classification of 
test samples by SVM and the final optimal feature vector (MR pixel features). If the cur-
rent test sample is classified as AD sample, the sample is labeled and the corresponding 
pixels in the sample are marked by the elastic mapping and the final optimal feature vec-
tor, thereby showing the Aβ plaque depositions. By repeating the experiments for eight 
times, the statistical classification accuracies are obtained. Please see the Table 3.

Table 2 Significant analysis of the algorithm

H = 0 indicates that the null hypothesis cannot be rejected at the 5 % significance level. H = 1 indicates that the null 
hypothesis can be rejected at the 5 % level

Significant 
indices

GA_SVM 
(filter)

GA_RF (filter) PCA_SVM 
(filter)

PCA_RF 
(filter)

GA_SVM 
(wrapper)

GA_RF 
(wrapper)

p 0.0005 0.0003 0.0339 0.3546 0.0436 0.2495

H 1 1 1 0 1 0

Fig. 9 Significant difference between the classification algorithms and the random algorithm. F1, the 
algorithms on paper; F2, random algorithm; 1, GA_SVM under filter mode; 2, GA_FR under filter mode; 3, 
PCA_SVM under filter; 4, PCA_RF under filter; 5, GA_SVM under wrapper mode; 6, GA_FR under wrapper 
mode. p: p value, p < 0.05 indicates that the difference is significant; p > 0.05 indicates that the difference is 
not significant
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Seen from the table, the classification performance is improved to some extent com-
pared with that in the Table 1. The mean classification accuracy is 75 % or so. The results 
mean that the detected Aβ plaque deposition information can be helpful to improve 
the classification accuracy. Besides, by voting mechanism, the number of the selected 
pixels decreases greatly. The selected pixels become more stable and can reflect the Aβ 
plaque deposition information better. In order to show that the classification accura-
cies are obtained based on the proposed algorithm rather than chance, the significance 
analysis of the mapped pixels (marked pixels) was conducted. Seen from the p values in 
the Table 3, all the p values are lower than 0.001 greatly. Apparently, the proposed algo-
rithm is different from random algorithm which randomly selects the MR pixels greatly. 
The classification accuracy is based on the pixels selected by the CAGA_filter algorithm 
rather than randomly selected pixels. The classification accuracy indirectly reflects the 
Aβ plaque information is detected by the final optimal selected pixels. In other words, 
the proposed detection algorithm is effective.

According to the coordinates of the final optimal pixel features obtained from CAGA_
filter algorithm, the selected pixels could be elastically mapped to the pixels in the MR 
images of AD from test set, and the mapped pixels are marked to show the Aβ plaque 
deposition information. Figure 10 shows the marked pixels (detected Aβ plaque depo-
sition information) in the MR images and the corresponding brain histological image 
slices. A, D: Hippocampi on brain MR images; B, E: Marked hippocampi of MR images; 
C, F: Hippocampi in corresponding brain histological image slices. The regions marked 
with different colors in B and E are related to the distributions of the apparent Aβ plaque 
deposition in C and F.

Seen from the figure, no information about Aβ plaque deposition in hippocampi could 
be directly seen in image A and D. The brain histology image C and F could show infor-
mation about Aβ plaque deposition. By the proposed algorithm, the information about 
Aβ plaque deposition in hippocampi could be shown in MR image B and E.

The different colors of the ellipses show the Aβ plaque depositions which are matched 
with those marked pixels on the MR image slices. The black line between the same color 
of the ellipses means the Aβ plaque deposition is matched. Seen from the different colors 
of the ellipses, the positions of the main Aβ plaque depositions could be shown on image 

Fig. 10 Effect of detection of the Aβ protein deposition. A, D Hippocampi on brain MR images; B, E Marked 
hippocampi of MR images; C, F Corresponding tissue section images. The regions marked with different colors 
in B and E are related to the distributions of the Aβ plaque deposition in C and F
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B and E. In other words, the proposed algorithm could detect Aβ plaque deposition on 
MR images.

By counting the matched and unmatched plaque depositions, the match rate and miss 
rate can be calculated. The proposed detection algorithm is tested on the eight groups 
of test samples. The information about the matching of the Aβ plaque deposition can 
be found in the Table 4 and can show the performance of the proposed algorithm. The 
match rate  =  (number of matched Aβ plaque depositions)/(total number of the Aβ 
plaque depositions); the miss rate =  (number of unmatched Aβ plaque depositions)/
(total number of the Aβ plaque depositions).

Seen from Table 4, for every group of test set, there are 20 AD samples. Since the test 
sets are constructed by random division of whole data set, there are different slices from 
different mice in every test set. With the AD MR samples, the corresponding brain his-
tological image slices can be found. By observing the brain histological image slices, the 
apparent Aβ plaque depositions can be found and counted with the help from clinician 
of neurology. By summing up the Aβ plaque depositions in the 20 slices, the total num-
ber of the Aβ plaque depositions in hippocampus in one group of test set can be calcu-
lated. Seen from the number of the eight groups of test sets, the numbers are similar and 
range between [139, 189]. The one possible reason is that all the AD mice have the same 
age (9 month old).

By comparing the Aβ plaque depositions in hippocampus in the brain histologi-
cal image slices and the marked pixels in the corresponding brain MR image slices, the 
matched and unmatched Aβ plaque depositions can be found. By accumulating them, 
the number of matched and unmatched Aβ plaque depositions in hippocampus can be 
obtained. The match rate and miss rate can be obtained. Seen from the rates, most of 
them are over 90 %. The results show that the proposed detection algorithm can detect 
most of the Aβ plaque depositions while no other method can do the thing before. 

Table 4 Information about the matching of the Aβ plaque by the proposed detection algo-
rithm

No. of groups of test sets: the sequence number the eight groups of the test sets; Number of CTL samples: the number of 
the CTL samples in each group of data set; Number of AD samples: the number of the AD samples in each group of data set; 
sum of Aβ plaque depositions in hippocampus: the total number of the Aβ plaque depositions in hippocampus in the brain 
histological image slices of AD; Number of matched Aβ plaque depositions: the total number of the Aβ plaque depositions 
which are matched by the marked pixels in brain MR images of corresponding AD samples; match rate: the ratio of the 
number of the matched Aβ plaque depositions to total number of the Aβ plaque depositions; Number of unmatched Aβ 
plaques: the total number of the Aβ plaque depositions which are not matched by the marked pixels in brain MR images of 
corresponding AD samples; miss rate: the ratio of the number of the unmatched Aβ plaque depositions to total number of 
the Aβ plaque depositions

No. 
of groups 
of test sets

Number 
of CTL 
samples

Number 
of AD sam-
ples

Sum of Aβ 
plaques 
in hip-
pocampus

Number 
of matched 
Aβ plaques

Match rate 
(%)

Number 
of unmatched 
Aβ plaques

Miss rate 
(%)

1 32 20 153 144 94 9 6

2 32 20 167 149 89 18 11

3 32 20 189 176 93 13 7

4 32 20 142 133 94 9 6

5 32 20 139 125 90 14 10

6 32 20 168 152 90 16 10

7 32 20 167 147 88 20 12

8 32 20 159 148 93 11 7
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According to the relevant theory about the Aβ plaque deposition of AD, the Aβ plaque 
deposition is positively proportional of the progress of AD, but the volume and the dis-
tribution of the Aβ plaque deposition do not correspond to the different states of AD 
one-to-one strictly. Hence, the 80–90 % of match rate to show the apparent Aβ plaque 
deposition can be acceptable.

In order to further to verify the performance of the selected MR pixels (detected Aβ 
plaque deposition), ‘Mean total intensity values in every AD samples’ and ‘Mean total 
intensity values in every CTL samples’ are calculated for comparison. First, based on the 
selected MR pixels, the intensity values of the selected pixels in every sample are found 
and accumulated. Second, in each group of data sets, the total intensity values of the 20 
AD samples (called ‘TI_AD values’) and the 32 CTL samples (called ‘TI_CTL values’) are 
obtained respectively. Third, mean intensity values of 20 AD samples (called ‘MTI_AD 
values’) are obtained (MTI_AD values = TI_AD values/20); mean intensity values of 32 
CTL samples (called ‘MTI_CTL values’) are obtained (MTI_CTL values = TI_CTL val-
ues/32). The relevant information can be found in Table 5.

Seen from Table 5, for every group of data sets, the MTI_AD value always is lower than 
MTI_CTL value. The mean value of the MTI_AD values is lower than the MTI_CTL val-
ues too. The results show that the intensity value based on the selected MR pixels can 
distinguish the image slices of AD and CTL. The p value is lower than 0.001 greatly. The 
results show that the difference between the MTI_AD values and MTI_CTL values are 
apparent. The classification based on the selected MR pixels is stable and reliable. By 
considering the AD with Aβ plaque deposition and the CTL without Aβ plaque deposi-
tion, the results indirectly support the conclusion that the selected MR pixels reflect the 
information of the Aβ plaque deposition.

Discussion
In this work, we proposed a detection algorithm for showing Aβ plaque deposition on 
MR images. First, the brain tissue is segmented manually, and then brain tissue images 
of the mice are obtained. Second, the pixel values are extracted from the brain tissue 
images to form feature matrices as data samples. Third, randomly split samples are 
obtained for training, validation and testing of the three parts, each for training, opti-
mizing, and testing the feature selection and classification of the model. Fourth, the 
optimal pixel features are obtained by maximizing the classification accuracy. Fifth, the 
final optimal pixel features are obtained by voting mechanism. Sixth, the test samples are 
classified as CTL or AD base on the final optimal pixels and the classification accuracy 
rates are calculated. Finally, elastic mapping is performed of the optimal pixel features 
onto the pixels on the MR images of AD, and they are marked to show the location of the 
Aβ plaque deposition.

There are two types of mouse models—CTL and AD: AD model contains Aβ plaque 
deposition, and CTL model does not. The result shows that there is strong correlation 
between the information of the Aβ plaque deposition and the classification of CTL and 
AD.

We verified the effectiveness of the proposed detection algorithm by the following 
experiments:
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1. Based on the optimal pixels from the four feature selection algorithm, the test sam-
ples were classified by the corresponding classifiers (SVM, RF). By cross combina-
tion, the six kinds of classification experiments were conducted. All the average 
classification accuracies of the six kinds of classification experiments are above 50 % 
greatly. The best classification accuracy can achieve the 80 %.

2. According to the classification accuracies, the GA_SVM (filter) is best. Therefore, the 
GA_fiter is further studied. By repeating the GA_filter on the training and validation 
samples, the k optimal MR pixel feature vectors are obtained. By voting mechanism, 
the final optimal MR pixel feature vector is obtained. Based on the final optimal MR 
pixel feature vector, SVM is used to classify the test samples, label them, and output 
the classification accuracies. The classification accuracy is improved further.

3. With the final optimal MR pixels (MR pixel feature vector), the test samples of AD 
are marked with the selected MR pixels by elastic mapping, thereby showing the Aβ 
plaque deposition in the MR samples visually. By comparing the marked MR pixels 
and the Aβ plaque depositions in the corresponding brain histological image slices 
by clinician, most of the apparent Aβ plaque depositions are matched by the marked 
MR pixels. The results can directly support the effectiveness of the proposed feature 
selection algorithm.

4. Based on the matched Aβ plaque deposition, the match rate and miss rate were cal-
culated. They are satisfying and meet the elementary requirement from the depart-
ment of neurology in hospital. The experimental results of the significance level of 
the propose detection algorithm show that the positive results are stable and reliable 
rather than by chance.

5. The classification capability of the selected MR pixels by the propose algorithm is 
studied and shown. The experimental results show that the selected MR pixels can 
distinguish the CTL and AD samples significantly.

To the best knowledge of the authors, the detection of Aβ plaque deposition from 
brain MR images alone has not been discussed before in public. Although PET can 
detect Aβ plaque deposition with a specific tracer to some extent, it essentially has low 
resolution and data volume and cannot provide information about anatomical structures 
and small lesions, which are very important for the diagnosis of the AD, as the “Back-
ground” section discussed. Furthermore, PET is radioactive and expensive, preventing 
it from clinical application and from being accepted by patients requiring detection. In 
comparison, MRI is inexpensive, noninvasive and non-radioactive, and it can provide 
information about anatomical structures and small lesions. If it can detect Aβ plaque 
deposition, it will be a better imaging technology for clinical application. This paper 
proved that it is feasible to detect information on Aβ plaque deposition with MR images 
alone, providing a solution for related research.

Because the detection of Aβ plaque deposition using only brain MR images has not 
been discussed before, no existing methods were compared with the method proposed 
in this paper. To show that the idea of detecting Aβ plaque deposition on brain MR 
images alone is feasible, six pixel selection and classification experiments were real-
ized. According to the experimental results, most of the data show that the idea is feasi-
ble. In addition, the classification rate was as high as 80 %, with high significance level, 
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indicating that the idea of pixel selection based on the classification of images was feasi-
ble and reliable.

The best feature selection algorithm is chosen from the four feature selection algo-
rithms. Based on the selected pixels and voting mechanism by it, the final optimal 
selected pixels are obtained. By elastic mapping, the corresponding pixels on brain MR 
images of AD were found and marked to show Aβ plaque deposition. By comparing the 
marked pixels on brain MR images of AD and the Aβ plaque deposition on correspond-
ing histology images of the brain, it was found that the major Aβ plaque deposition was 
not missed. Compared with the random algorithm, this proposed idea and the proposed 
algorithm were effective with a high significance level. The hit rate and miss rate were 
calculated and support the effectiveness of the proposed detection algorithm of the Aβ 
plaque deposition on MR images.

Conclusions
Aβ plaque deposition is an important target for early AD diagnosis and the evaluation 
of treatment, so the noninvasive and nonradioactive detection of Aβ plaque deposition 
is necessary, especially for real applications. MRI is a safe and cost-effective imaging 
method, and can contain information about Aβ plaque deposition. However, it cannot 
detect the Aβ plaque deposition directly and there is currently no existing method to 
extract Aβ plaque deposition information and to show it on MR images.

In order to solve this problem, this paper proposed MR pixel feature selection algo-
rithm to search for the Aβ plaque deposition information on MR images by maximiz-
ing the classification accuracy of AD and CTL MR samples. The experimental results 
showed that the algorithms in the paper could obtain the best classification accuracy of 
CTL and early AD more than 80 % with high significance. In addition, the selected pixels 
could show the position of Aβ plaque deposition with high match rate. Most of the main 
Aβ plaque deposition was not missed almost. The selected pixels can help to distinguish 
the CTL and early AD samples significantly.

The proposed detection method is based on the class information of the image slices, 
and they can detect Aβ plaque deposition based on class information at the image level. 
Although it is effective to detect the Aβ plaque from brain MR images, there are many 
works to do to further evaluate and refine the proposed detection algorithm in the 
future. For example, more mice models possible are needed; human body experiments 
are needed for clinical research; it is useful to construct a diagnosis algorithm of AD by 
combing the detected Aβ plaque information with the other MR biomarkers.

Highlights
This paper proposed pixel feature selection algorithm as detection algorithm to extract 
information of Aβ plaque deposition from MR images by maximizing classification accu-
racy. The main contributions and innovations of this paper can be described as follows:

1. This paper proposed a detection algorithm of Aβ plaque deposition on MR images, 
and the effectiveness of the algorithm was verified.

2. The detection of Aβ information was transformed into a classification problem, 
thereby making the detection easy.
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3. This paper proposed MR pixel feature selection algorithm as detection algorithm to 
realize the detection of the Aβ plaque deposition on MR images by maximizing the 
classification accuracy of AD.

4. Since the selected MR pixels can match the Aβ plaque deposition well, the detected 
Aβ plaque deposition can help the clinicians and the researchers observe the Aβ 
plaque deposition on MR images. By considering the advantages of the MRI, the 
function can be helpful for putting the Aβ into clinical applications.

5. The detection of the Aβ plaque deposition on MR images can be helpful for con-
structing the detection of the Aβ plaque deposition with multiplex-model imaging by 
combining the PET.

6. Since all the AD mice models have same age (9  months old), the non-invasively 
detected Aβ plaque deposition information has potential to be helpful for measuring 
the Aβ plaque deposition of the mice in vivo in this time point or any time point. The 
function is helpful for better understanding the mechanism of the occurrence and 
development of the Aβ plaque deposition of mouse model in vivo.
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