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Methods: In animal experiments, p-VADs were connected to the left ventricles and
the descending aorta of three calves (70-100 kg). Their outflows were estimated using
the new algorithm and compared to the results obtained using an ultrasonic blood
flow meter (UBF) (TS-410, Transonic Systems Inc,, Ithaca, NY, USA).

Results: The estimated and measured values had a Pearson’s correlation coefficient
of 0.864. The pressure sensors were installed at the external controller and connected
to the air driveline on the same side as the external actuator, which made the sensors
easy to manage.

Background

A ventricular assist device (VAD) is effective for treatment of systolic end-stage heart
failure, and can support the patient’s blood circulation until heart transplantation [1-8].
In fact, patients’ 1-year survival rates were three times higher when a VAD was used
compared to drug therapies alone [6—8]. Despite the advantages of VADs, they are not
widely implemented because of their high cost and risk of critical failure [6—9]. Malfunc-
tions and inappropriate control of VADs can seriously damage organs and vessels; there-
fore, the outflow of VADs must be monitored to detect device failure or changes in the
patient’s physiology [10-15].

The estimation of outflow using blood pressure sensors or motor speed has been stud-
ied; specifically, estimation according to the VAD outflow has been compared to that
measured by an ultrasonic blood flow meter (UBF) [13—19]. The inlet blood pressure
of the VAD has been shown to detect abnormal blood inflow; however, blood pressure
sensors are difficult to manage for long periods because of their limited life span and
difficulties in preventing thrombosis and fibrosis around the sensors [15, 16]. Outflow
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estimation has been studied based on the relationship between the motor speed and
current consumption under normal hemodynamic conditions [17-20]. However, patho-
logical changes in the patient’s physiologic state, or unexpected device failures, change
the relationship between motor speed and current consumption. Although measure-
ment with a UBF has been used to monitor the outflow of the VAD, the large size and
complicated management process requires improvement [10, 13].

Pulsatile VADs (p-VAD) or artificial hearts may provide more effective measurements,
since p-VADs pulsate blood in the implanted unit with transferred air expanding the air
pocket [2, 8, 12, 21, 22]. The internal pressure can change the volume of the air pocket
in the implanted unit; however, the air pressure cannot be used to calculate the volume
change without considering the air moving to and from the implanted unit [22].

Measurement of the number of molecules of air with a VAD is not possible due to the
structural deformation that the devices cause, as well as regulation of pulsation and suc-
tion force. Instead, the air through the airline can be measured using two air pressure
sensors [21]. The change in volume of the air pocket in the implanted unit is calculated
according to the amount of air molecules and the internal pressure in the implanted
unit. In this study, a new algorithm for determining the stroke volume (SV) and out-
flow of p-VADs was developed by measuring the internal pressure and the number of
air molecules in the external unit. The data obtained using this algorithm was verified by

in vivo and in vitro experiments.

Methods

Design of the stroke volume estimation system of a p-VAD

The SV of a pneumatic p-VAD is determined by the expanding volume of the air pocket
in the unit, which is driven by an external pneumatic actuator (as shown in Fig. 1) [12].
However, there is a major difference between the expanding air volume of the implanted
unit and the ejected air volume from the external actuator [21]. The air pressure of the
implanted unit depends not only on the driving force from the external unit, but also
on the inlet and outlet blood pressures of the implantable unit [22]. The inlet and outlet
blood pressures could be changed according to the patient’s hemodynamic conditions.
To detect the pump SV and the expanding volume of the air pocket in an implanted unit,
data including the number of air molecules was considered in addition to the internal
pressure of the implanted unit, according to an ideal gas equation.

Although the number of air molecules in the air pocket could not be determined by
the internal pressure alone, the transfer of air molecules through the air driveline could
be measured by the differential air pressure sensor. Differential pressure can also be use-
ful to estimate the internal pressure in the implanted unit without the requirement of
an additional sensor in the implanted unit, by considering the length of the air drive-
line. Therefore, the p-VAD system estimated SV and pump outflow with a differential
pressure sensor (MPX2100AP; Freescale Semiconductor, Inc., Austin, TX, USA) and
an absolute pressure sensor, which were embedded in the external actuator as shown in
Fig. 2. The measuring points, A and B, of those pressure sensors were also located in the
external actuator.

In this study, the LibraHeart I (LibraHeart, Inc., Jeju, Korea) was used as a p-VAD with
a tube-shaped blood sac that was designed to reduce the region of stationary blood to
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Fig. 1 Variation of stroke volume (SV) according to air movement in the external driving unit. a Initial state
volume (V), b variation in volume according to air movement in cylinder (V)

prevent thrombosis [12, 23]. Similar to a conventional p-VAD, the LibraHeart I has an
external actuator and an implanted unit. The external actuator ejected air through the
driveline. The volume of air transferred through the driveline was obtained by dividing
the resistance between the two measured points by the differential pressure, according
to Ohm’s law. However, because resistance according to air density, the amount of trans-
ferred air was determined using Eq. (1), which was derived from an ideal gas equation:

t
Ua_sll, = kiPa(®) /0 Py (tydt )
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Fig. 2 Configuration of the pump outflow estimation system of an external driving unit ((D The mean pres-
sure sensor, @ the differential pressure sensor (A to B), @ the airline, and @ the actuator)

1
<k1 = m,ﬂﬁﬂ@) = Py(t) — PB(U)

n, _p: mole number of passing air molecules at A

P, (t): pressure at A

Py(t): pressure at B

P 4i(t): difference in pressure between A and B

R: gas constant (= 62.4 x 10> cc mmHg/mol K)

k;: mole number—air pressure ratio (of air passing from A to B).

The air that passed through the driveline affected the air volume and pressure. Moreo-
ver, the driveline air changed the volume of the air pocket to that of the blood ejection
or filling volume. To obtain the difference in air pocket volume, the internal pressure of
the unit was measured along with the volume of transferred air. When the molecules of
passing air were the same as that determined by Eq. (1), the internal pressure was meas-
ured using a differential pressure sensor and an absolute sensor according to Eq. (2).

Py (t) = Pa(t) — kaPgyg (t) 2)

ky = ——
la-B

P,/(t): pressure at the implanted unit of the VAD
1,_v: length from A to the implanted unit of the VAD (1, _y)
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1, _p: length from A to B

k,: length ratio between 1, _, and I,_g.

The air pocket volume of the implanted unit was determined by the differential and
absolute pressure set at A and B in Fig. 2. It is important to note that the internal pres-
sure of the implanted unit and the air driveline expand those internal volume and their
internal volume expansion decreases the effect of air pocket expansion on SV. Equa-
tion 3 suggests that the implanted unit is deformed and expanded by the internal pres-
sure. The effective internal volume, V(t) was obtained with Eq. 4 to find the effect of
both air pocket expansion and the expansion of structure space on the SV. The SV was
determined as the difference between the maximum and minimum of the effective inter-
nal volume from Eq. 5. Table 1 shows the previously measured parameters and the used
parameters for the estimation from the Egs. 1 to 5.

P P 2Py (t) — ko Py (¢
Vi = o0 p ) < (PR RO g ) ()
oy
(k2 B lAB)
1 Pa(t) [oPug(t)dt
Sv|pulse_period = [max(V (¢)) — min(v(t))]ifpulse_period (5

In vitro and In vivo experiments for verifying the stroke volume
To evaluate the accuracy of the suggested SV estimation, a series of in vitro experiments
were performed using a mock circulation system and compared to the results obtained
using a UBF (Fig. 3). The probe of the UBF was positioned on the outlet tube of the
implanted unit. A clamp was installed to adjust the blood pressure from 80 to 120 mmHg
and, by adjusting the chamber, the peak-to-peak pressure changes were maintained at
40 mmHg. The SV was estimated from preloads ranging from 0 to —180 mmHg and
afterloads ranging from 0 to 180 mmHg.

In this study, LibraHeart I p-VADs were connected to three calves, whose weights
ranged from 76 to 98 kg, and the estimates of pump outflows were compared (Fig. 4). For
connecting the left-ventricular assist device (LVAD), a thoracotomy was used to insert a

Table 1 Estimation parameters and measured

(Unit) Parameters for estimation Measured parameters
Rav (mmHg s/cc) - 0.11£0.01
Rag (mmHg s/cc) 0.125 (Eq. 4) 0.15+0.5
N (mm) - 41405
lag (mm) - 201 +£05
k, (mol/mmHgs s) - 2.69 4 0.05 (at 25 °C)
k, - 5(Egs. 2,3) 494 0.05

C (cc/mmHg) 021(Eq.3) 03 £001
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Fig. 3 Mock circulatory system used to evaluate the pump outflow during the in vitro experiment. (D Exter-
nal driving unit, @ ultrasonic blood flow meter (UBF; TS-410, Transonic Systems Inc.) @) pressure measure-
ment device (MP36; Biopac Inc, Daegu, Korea), ® outlet chamber used to simulate aortic pressure, & clamp
to simulate the resistance of systemic perfusion, ® the inlet chamber to simulate the left atrial pressure, @
the UBF (PXL Clamp flow sensor; Transonic Systems Inc.), and ® the implanted unit)

Fig. 4 Short/long-term animal experiment (D the implanted unit, @ the ultrasonic sensor, @) closed circuit
television (CCTV), @ the UBF, and B the external driving unit)

catheter between the apex of the left ventricle and the descending aorta. For anesthesia,
intramuscular ketamine (10 mg/kg) and inhaled isoflurane (1-2 %) were administered.
Units were fixed to the animals’ backs and connected to the UFB probe for comparison
to the estimated results. The inputs and outputs of implanted units were connected to
the implanted catheter using 90 cm of Tygon tubing. The UBF probe was positioned on
the cannula at the outlet side of the device. Following the operation, pump outflows for
two animals were measured within 1 week due to failures in maintaining the flowme-
ter probe. The remaining animal was assessed after 3 months. The pump rate was set
between 45 and 65 bpm and the SV of the p-VAD was maintained at 2-3 L/min.
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Results

The results from the in vitro experiments are shown in Fig. 5. Figure 5a reveals a close
relationship between the estimated SV and the volume measured by UBF. The preload
was increased from 0 to —180 mmHg, with a reduction in the p-VAD outflow from
2.42 £ 0.23 to 1.15 £ 0.17 L/min. The Pearson’s correlation coefficient for the measured
and estimated pump outflow was 0.966. Figure 5b shows the estimated and measured
SV, based on the afterload. As the afterload was increased from 0 to 180 mmHg, the
pump outflow was reduced from 2.41 4 0.19 to 1.25 & 0.27 L/min. When the afterload
was changed over wide ranges, the Pearson’s correlation coefficient between the meas-
ured and estimated pump outflows was 0.88. Figure 5c shows the estimated and meas-
ured SVs according to the pump rate. Pump rate was changed from 40 to 80 bpm and the

SV changed from 1.55 + 0.17 to 2.81 & 0.26 L/min.
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Fig.5 Correlation between the estimated and measured pump outflow. Correlations for a the in vitro
preload, b in vitro afterload, and ¢ in vitro bpm are shown
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The results of the in vivo experiment are shown in Fig. 6. A close relationship was
observed between the measured and estimated pump outflows. To increase the preload
and afterload, the inlet and outlet cannula on both sides of the device were clamped. The
mean outflow of blood was maintained at 2.1 L/min until the preload and afterload were
increased and the outflow was decreased to 0.6 L/min. For the three independent animal
experiments, the Pearson’s correlation coefficients were 0.901, 0.878, and 0.867.

The results of the long term in vivo experiment are shown in Fig. 7. Figure 7a shows the
estimated and measured SV during 95 days, Fig. 7b reveals a close relationship between
the estimated SV and the measured volume using UBF and their Pearson’s correlation
coefficient was 0.863. Figure 7c, d and e shows that the SV estimation did not changed in

course of time.
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Fig. 6 Correlation between the estimated and measured pump outflows, in vivo
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(See figure on previous page.)

Fig. 7 Long-term in vivo experiments shown are a variations between the estimated and measured pump
outflow over 95 days, b the correlation between the estimated and measured pump outflow, ¢ the error rate
during early period from 0 to 30 days after the operation, d the error rate during middle period from 31 to
60 days and e the error rate during final period over 61 days

Discussion and conclusion

The estimation method suggested herein can be applied to conventional pneumatic
p-VADs; however, it cannot be applied to the continuous rotary pumps that are primar-
ily used at present [8]. The p-VAD is currently used for children or infants, where it has
been applied to pneumatic artificial hearts [2, 24]. Moreover, the suggested method can
also be applied to an intracortical balloon pump (IABP) to determine any expanding of
the volume of the balloon. Thus, the technique can improve the safety of medical devices
that are driven by air pockets or balloons [25].

The technique described herein estimates the inner pressure of the air pocket and
considers the load on both of the implanted devices. The previously used UBF indicated
blood flow only and could not be used to determine the cause of abnormal flow. Fur-
thermore, while the current and motor speed could not be used to determine whether
the abnormal findings were due to a failure of the device or hemodynamic changes in
the patient, the estimation method presented herein determined that the device failed
[19, 20]. In this study, errors caused by temperature changes were not observed. Dur-
ing in vitro experiments with a mock circulation system, the temperature of the mock
system and the air pocket were between 21° and 25°. During the in vivo experiments,
the implanted unit was attached to the animal’s back and the air tube was maintained at
ambient temperature.

Within a closed chamber (EBE-4HW6P4C-20, ESPEC corp., Japan) of which internal
temperature was adjusted from 5° to 40°, the correlation between the estimation SV and
the measured was not changed. Even when the calculated effective volume V(t) in Eq. 4
was different according to temperature changes, the SV in Eq. 5 was not changed since
the peak-to-peak value of V(t) waveform was not affected by temperature. Within this
temperature range, the material compliance and structural volume were not changed
and the temperature seemed to equally affect to the air volumes and pressures of the
air driveline near sensors and the implanted unit. When the atmospheric pressure was
decrease from 770 to 680 mmHg, the LVAD outflow slightly decreased and the SV esti-
mation also decreased same to the measurement. If the temperature and pressure were
out of the measuring range, the material compliance and structural space can change
and cause the estimation error. The effects of severe temperature and pressure on mate-
rial, structure and SV estimation will be studied with an advanced chamber.

In this study, the preload and afterload to the VAD affected the SV estimation differ-
ently. In our estimations, the compliance of air drive line and implanted case was set
a value (0.05 cc/mmHg). However, the compliance could be different according to its
internal air pressure. When the internal pressure was higher than atmospheric pressure,
the compliance was maintained constant value, however, when the internal pressure was
—100 mmHg lower than atmospheric pressure, the tube structure were deformed and its
compliance got high compliance because of the buckling phenomenon and the abnormal
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bending curvature of the airline. The compliance of our structure was measured from
200 to —100 mmHg and the compliance was rarely changed within this range. In the
in vitro experiments that applied preload below —30 mmHg to the LVAD, temporarily
low internal air pressure below —100 mmHg frequently had been shown in the air drive
line and implanted case. Those unexpected compliance increase caused the error of SV
estimation results when the preload was applied to the VAD.

The LibraHeart I p-VAD used in this study contains a tube-shaped blood sac that
reduces stagnation, which could otherwise cause thrombogenesis in the blood sac.
Although the VAD has a blood sac that is different to that of other pneumatic p-VADs,
it also contains an air pocket that is driven by an external actuator. Thus, the estimation
method that was applied to the LibraHeart I in this study can also be applied to other
devices. The method presented herein also facilitates management of the device, since
the data were obtained using sensors located on the external actuator.
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