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Background
Retinal imaging is an important part of ophthalmology and is also used in other research 
areas such as neurology and cardiology because it makes it possible to image retinal vas-
cularity and retinal nerve fibres. Most light-based retinal imaging modalities can acquire 
static images of the retinal tissue—e.g. fundus camera, optical coherence tomography 
(OCT) or scanning laser ophthalmoscopy (SLO)—thus enabling assessment of the reti-
nal structures. Some modalities (e.g. laser speckle flowmetry or Doppler OCT) can also 
measure blood flow through the retinal vascular tree, which is connected with functional 
assessment, particularly when specific light stimulation is used. However, there is a lack 
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Background:  Analysis of fast temporal changes on retinas has become an important 
part of diagnostic video-ophthalmology. It enables investigation of the hemodynamic 
processes in retinal tissue, e.g. blood-vessel diameter changes as a result of blood-
pressure variation, spontaneous venous pulsation influenced by intracranial-intraocular 
pressure difference, blood-volume changes as a result of changes in light reflection 
from retinal tissue, and blood flow using laser speckle contrast imaging. For such appli-
cations, image registration of the recorded sequence must be performed.

Methods:  Here we use a new non-mydriatic video-ophthalmoscope for simple and 
fast acquisition of low SNR retinal sequences. We introduce a novel, two-step approach 
for fast image registration. The phase correlation in the first stage removes large eye 
movements. Lucas-Kanade tracking in the second stage removes small eye move-
ments. We propose robust adaptive selection of the tracking points, which is the most 
important part of tracking-based approaches. We also describe a method for quantita-
tive evaluation of the registration results, based on vascular tree intensity profiles.

Results:  The achieved registration error evaluated on 23 sequences (5840 frames) is 
0.78 ± 0.67 pixels inside the optic disc and 1.39 ± 0.63 pixels outside the optic disc. We 
compared the results with the commonly used approaches based on Lucas-Kanade 
tracking and scale-invariant feature transform, which achieved worse results.

Conclusion:  The proposed method can efficiently correct particular frames of retinal 
sequences for shift and rotation. The registration results for each frame (shift in X and 
Y direction and eye rotation) can also be used for eye-movement evaluation during 
single-spot fixation tasks.
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of low-cost devices that can measure fast retinal dynamic changes under low-light con-
ditions, i.e. non-mydriatically. The only two commercially available devices are mydriatic 
and relatively expensive. The first one, based on laser speckle contrast imaging (LSFG-
NAVI, Softcare, Japan), is capable of measuring relative changes of blood flow under 
coherent illumination. The second device is a retinal vessel analyser (DVAplus, Imedos, 
Germany), which analyses blood vessel diameter and pulsation. Here, we briefly describe 
our low-cost experimental video-ophthalmoscope (VO) with non-coherent light source 
[1], which is capable of acquiring long retinal video sequences in non-mydriatic eyes 
with high spatial and temporal resolution. The main part of this paper describes a 
method for registering acquired retinal video sequences, which is a necessary part of the 
imaging system because it performs an offline image stabilisation. Possible applications 
of a registered sequence are: analysis of the blood-vessel pulsations (fast calibre changes 
during cardiac cycle), eye-movement estimation (directly from estimated parameters of 
geometrical transform during the registration process), or creation of an averaged reti-
nal image with higher image quality (with respect to noise and resolution, when decon-
volution is used).

There are many published methods for retinal image registration of static images, 
either mono or multimodal. They are usually based on landmark correspondence as the 
retinal vascularity is considered a source of reliable landmarks [2]. Some papers also 
describe intensity-based registration [3, 4], their combinations [5], or combination with 
other approaches [6, 7]. Nevertheless, retinal image registration is still challenging in 
some applications or modalities. Our experimental VO acquires sequences under low 
illumination, resulting in more noisy images compared with images from current colour 
fundus cameras. The retina can also move very fast and substantially during acquisition, 
due to (micro) saccadic eye movements. Therefore the registration approach must be 
robust against the noise and artefacts caused by eye movements as well as eye blink-
ing. Video sequences have, typically, a few hundred frames. Therefore, the registration 
process must be fast in order to align the sequence in a reasonable amount of time on 
common hardware (tens of seconds can be acceptable for clinical usage). These specific 
features and needs make the registration process a challenging task. There are only a few 
papers so far that are close to our application (i.e. fast registration of retinal temporal 
sequences acquired from a fundus camera). Now, we will discuss these papers and also 
other state-of-the-art papers presenting a similar registration approach.

Perez-Rovira et  al. [8] described a method for registering high-resolution, ultra-
wide field-of-view retinal sequences acquired during fluorescence angiography. Their 
approach is based on blood-vessel tree segmentation and bifurcation points matching, 
using a pairwise registration of whole sequence taking one frame as a reference and the 
other frames as moving. Their sequences contain between 8 and 27 frames with relatively 
low levels of noise due to the use of a commercial retinal camera (Optos P200C). They 
claimed 96.4 % correctly registered frames (graded subjectively by a physician).

Scharcanski et  al. [9] used infrared retinal images acquired under 940  nm illumina-
tion with framerate equal to 13 fps. They detected significant eye/retinal motion using 
a metric based on mutual information. The movement estimation was performed using 
the Fourier shift theorem. The authors reported a pixel difference error (normalised 
difference between two frames) of 0.065  %, evaluated on 2710 frames. Although the 
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evaluation measure is lower in comparison to the other two techniques that they used 
for comparison (Lucas-Kanade tracking with scale-invariant feature transform (SIFT) 
feature and correlation of magnitude), it doesn’t offer straightforward information about 
the registration accuracy.

An increasing number of applications of image registration can be found in the area 
of retinal imaging with adaptive optics (AO). However, these applications mainly use 
a scanning acquisition process, making the registration task different from ours. Nev-
ertheless, Ramaswamy et  al. [10] described a successful application of the phase cor-
relation method for elimination of residual fundus image motion (shift and rotation) 
acquired by non-scanning rtx1 retinal device (Imagine Eyes, France). They observed that 
the phase-correlation approach could achieve promising results with respect to reti-
nal nerve fibre sharpness measured by texture analysis. The same research group [11] 
also published an approach for registering AO-corrected retinal images from the same 
device, which uses a cross-correlation technique and least-squares, and a shape-preserv-
ing Procrustes algorithm to determine translation, scaling and rotation. The evaluation 
is based on the sharpness of the cone contrast in an averaged image, which doesn’t quan-
titatively evaluate the precision of the registration method. Sequences from the same 
device have been used in Kulcsar et al. [12] for analysis of local motion. The authors used 
the iterative Lucas-Kanade approach for estimating residual blood-vessel motion activ-
ity. Li et al. [13] describe the application of Lucas-Kanade tracking for processing of 1° 
field-of-view sequences from AO confocal SLO, providing real-time 30 fps retinal imag-
ing. The authors used the SIFT approach for stable feature detection. Finally, second-
order polynomial geometric transformation is used for frame alignment. Unfortunately, 
the authors didn’t provide quantitative evaluation of registration results.

From the above-mentioned papers it can be concluded that the application of phase 
correlation in retinal imaging is rather popular and still increasing because of its effi-
ciency and possibility of fast implementation. Other popular approaches use (usually) 
SIFT features, which are tracked by the Lucas-Kanade algorithm. In this paper, we adopt 
these two approaches for registration of our video sequences. The presented method is 
a continuation of our previous work [1, 7, 14], in which we applied these approaches on 
standard fundus images as well as colour and grayscale retinal video sequences. Never-
theless, there are still some issues that have to be addressed. The first one is the selection 
of the reference frame, which is an important task for successful registration. The frame 
should have high contrast with the blood vessels without blur or reflection. The second 
issue is the robustness of the method to relatively high levels of noise, blur and reflection 
artefacts. The third important part of the registration method is reliable and quantitative 
evaluation of the results, which should be objective and easy to perform.

The paper is organised as follows. We describe the data acquisition in “Methods” sec-
tion. The detailed description of the proposed registration approach is presented in 
“Results” section, followed by evaluation and discussion in “Conclusion” section.

Methods
Data acquisition

The image sequences were acquired at the Department of Ophthalmology, University 
of Erlangen-Nürnberg, Germany, in the framework of the Erlangen Glaucoma Registry 
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(EGR), a clinical registry (ClinicalTrials.gov identifier: NCT00494923). The experimental 
non-mydriatic VO has been used for acquisition of 23 sequences from healthy subjects. 
The number of frames in particular sequences varies from 127 to 474, resulting in a total 
of 5840 frames used for the processing.

The main principle of the experimental VO has been described in Tornow et al. [1]. 
Here we summarise the main properties. The VO principle is similar to a fundus camera. 
An ophthalmoscopic lens (40D) forms an intermediate aerial image of the retina in the 
image plane. This image is reimaged by the system of two achromatic lenses (120 mm 
focal length) to the camera sensor. The field-of-view is 20° × 15° with the image centred 
on the optic nerve head (ONH). Compared with the fundus camera, the main differ-
ence is the illumination pathway—we use the central area of the pupil for illumination 
(entrance pupil) and the rest of the pupil is used for imaging (exit pupil), similarly as 
used in SLO. A simple light-emitting diode at 575 nm is used as a light source, which is 
placed in the conjugate plane of the pupil centred on the optical axis. Due to pupil mag-
nification in the system, the image of LED in the pupil plane of the subject is reduced to 
1 mm. A CCD camera (UI-2210 SE-M-GL, 640 × 480 pixels, USB interface, iDS, Ger-
many) is used as image detector with 25 fps to take short video sequences. One image 
pixel corresponds to 9.3 µm on the retina and a visual angle of 1.86 arcmin (for eye axial 
length of 24.3 mm).

Image registration overview

The concept of the proposed registration approach is shown in Fig. 1. Our approach is 
based on one reference frame selected from a sequence. Then, pre-processing must be 
employed in order to normalise the unequal frame contrast and illumination. As a result, 
a two-stage registration is used—large eye-movement compensation is followed by fine 
frame adjustment. The registration evaluation is also discussed as an important part of 
the image-registration task.

Reference‑frame selection

Selection of the reference frame is a critical step in many image-registration approaches. 
We use a single reference image approach, i.e. the same reference image is used for regis-
tering the whole sequence in both processing stages.

Fig. 1  An overview of presented approach for retinal sequence registration and evaluation
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There are two main artefacts, which must be considered when selecting the reference 
frame and which might cause difficulties in the registration process—blur due to eye 
movements and light reflection due to the eyes blinking and strong corneal reflection. 
Both artefacts influence the retinal image and corresponding image histogram. A simple 
and efficient solution for detecting these distorted frames is based on an entropy metric. 
Each frame g(x,y) can be considered as a blurred image of original scene f(x,y), corrupted 
by an additive noise n(x,y):

The point spread function (PSF) h(x,y) includes the time and spatial invariant part of the 
optical-imaging system and also the time-variant distortion caused by eye movements. In 
order to evaluate blurriness, we can enhance edges using convolution operator s(x,y):

Here we omit the spatial variables x,y for simplicity. First, we consider that the low PSF 
distortion, i.e. h(x,y), will be similar to the Dirac function. The edge image (f*s) will be 
less blurred (the details in the image will be preserved) and the corresponding histogram 
(of the edge image) will have wider tonal distribution due to the presence of texture and 
noise. When the frame becomes blurred due to the time-variant or time-invariant part 
of PSF, the edge image will also be blurred, the details will smooth out, and the corre-
sponding histogram will have sharper peaks. For very strong blurring, the edge image 
will contain similar intensity values, resulting in a peak in the histogram. If the frame 
g(x,y) contains high-intensity reflections (due to eye blinks or corneal reflection), the 
corresponding histogram will also contain one dominant sharp peak. Consequently, 
these histogram shape changes can be assessed by an entropy measure:

where pi is a probability density function estimated via histogram from the edge-
enhanced image with N bins. The frames with low entropy will be distorted and the 
frame with the highest values can be taken as a reference frame. An example of entropy 
values for one sequence is shown in Fig. 2.

From an implementation point of view, the edge images have been obtained using the 
Sobel operator for horizontal and vertical directions, computed on a contrast-enhanced 
image (using contrast limited adaptive histogram equalization method—CLAHE [15]). 
The corresponding image histograms were computed with 128 bins.

Sequence pre‑processing

The recorded sequences are relatively noisy, mainly due to low-intensity retinal illumina-
tion. The signal-to-noise ratio (SNR), evaluated as a mean value to standard deviation 
in homogeneous region, is about 19 dB (estimated in several randomly selected frames 
and regions). In order to improve the efficiency of the registration method, we applied 
a simple median filtering with a 3 × 3 pixel window, which improves SNR up to 24 dB. 
The contrast of each frame was also equalised using the CLAHE method. This step 

g(x, y) = f (x, y) ∗ h(x, y)+ n(x, y)

l = g ∗ s = f ∗ h ∗ s + n ∗ s =
(

f ∗ s
)

∗ h+ n ∗ s

E = −

N
∑

i=1

pi log(pi)
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increases the contrast of blood vessels, which is important for both steps of the registra-
tion process.

Phase correlation

An FT-based (Fourier transform) technique of phase correlation can be used for align-
ment of two images. To create rich spectra, the images must have relatively high con-
trast and must contain edges. This approach can be used for estimating three spatial 
transformations and parameters—shift, rotation, and scaling. We use only shift, because 
the rotation is employed in the second stage of our registration approach and changes 
in scaling are not expected in our short term sequences. Let g1(x,y) and g2(x,y) be two 
frames, which differ only by displacements x0 and y0:

which is equivalent to the following expression in spectral domain:

Taking the inverse FT of normalised cross spectrum leads to Dirac function at (x0, y0) 
position:

In practical implementation the FT is replaced by DFT and a 2D window function has 
to be applied before taking this transform due to periodicity of DFT. A separable Han-
ning window with the size equal to the image was applied on each frame. Furthermore, 
as the Dirac function degrades to a sharp peak, its position must be detected in order to 
estimate x0 and y0 (using simple MAX operation, in our case). It must also be noted that 
image noise (typically at higher frequencies) can decrease the precision of shift estima-
tion. As mentioned above, we applied a 3 × 3 pixel median filter on input images in the 
pre-processing stage, which suppresses the noise and preserves the edges (e.g. of blood 

g2
(

x, y
)

= g1
(

x − x0, y− y0
)

F2(u, v) = F1(u, v)× e−j(u×x0+v×y0)

δ
(

x − x0, y− y0
)

= FT−1

{

F2(u, v) · F
∗
1 (u, v)

∣

∣F2(u, v) · F
∗
1 (u, v)

∣

∣

}

Fig. 2  An example of entropy for one sequence with example of distorted frame due to eye blink (1), eye 
movement (2), and the frame with the highest entropy value (3)
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vessels). This corresponds to the application of a low-pass filter window in the frequency 
domain, which is illustrated in Fig. 3 (see figure description for detailed information).

Optical flow

Here we describe our approach to fine alignment of particular frames, which differs 
from our previously published work [14, 16], in several steps. The new concept is based 
on the gradual update of tracking points (TP) using information from the blood vessels 
and from the tracking stage. The basic scheme is shown in Fig. 4.

We will start with TP detection, which is the most important part of the LK tracking 
approach. These points must lie on the retina and therefore we focused on the segmen-
tation of blood vessels. A plethora of different approaches for blood-vessel segmenta-
tion have been published during the last three decades—see, for example, some recent 
papers [17, 18], or survey [19]. Here we employ a relatively simple and efficient method 
using the Hessian matrix, see [20]. This matrix is composed of the second derivatives 
computed in each pixel of the image—the Sobel difference operator approximates the 
derivatives. Since the blood vessels are darker than an image background (a valley), we 
can use higher positive eigenvalue from the Hessian matrix as a parameter to create a 
new eigenvalue image Λ(x,y). This image can be considered as a probability map of TP 
after appropriate normalisation as:

�(x, y) =
�(x, y)−�min

�max −�min

Fig. 3  Images a, b show averaged spectra computed from one whole sequence: a spectrum from original 
sequence and b spectrum from 3 × 3 pixel median-filtered sequence (frame-by-frame). Image c shows spec-
tral difference—the dark values in the middle represent “no change” around low frequencies, and the grey 
levels at higher frequencies represent reduced spectral components in median-filtered frames
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where Λmin and Λmax is minimum and maximum from eigenvalue image Λ(x,y), respec-
tively. An example of this map is shown in Fig. 5, left.

In order to increase the precision of TP detection, taking into account possible tem-
poral change of TPs, we are using the currently registered frame for modification of this 
probability map by means of image averaging with exponential weights:

where 0  <  q<1 weights the previously weighted eigenvalue image with respect to cur-
rently added image λi(x,y), starting with �̄i

(

x, y
)

= �1

(

x, y
)

. The selection of q value is a 
trade-off between the influence of probability map from the current frame λi(x,y) (high 
for low values of q) and influence of the exponentially weighted probability maps �̄i

(

x, y
)

 

�̄i

(

x, y
)

= q · �̄i−1

(

x, y
)

+ �i

(

x, y
)

Fig. 4  The basic scheme of the fine registration stage

Fig. 5  Tracking point probability maps for three different frames in the same sequence: a �̄1(x , y), b �̄5(x , y)
, c �̄10(x , y)
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(high for high values of q). It can be deduced from our sequences that the majority of 
frames are acquired without distortion and only a few frames are distorted. Therefore, 
we chose a value close to 1 to decrease the influence of the current frame on the track-
ing-point selection. The normalisation according to the above-mentioned equation is 
performed after modification of each map. This averaging suppresses the random part 
while preserving the static part in the image, which can be seen from Fig. 5, where maps 
for i = 1, 5 and 10 are shown. This TP probability map is further modified using results 
from the LK tracking stage.

In our approach, we use the basic version of the Lucas-Kanade tracker [21]. Here, we 
briefly summarise this method and show how we use it for TP selection. The task of 
this tracker is to find, for a given tracking point j at position Xj

r =

(

x
j
r , y

j
r

)

 in a reference 

frame gr, corresponding TP Xj
i =

(

x
j
i , y

j
i

)

= X
j
r + D

j
i in frame gi, using the assumption 

that the neighbourhood of particular point Xj
r is similar to the neighbourhood of point 

X
j
i in defined rectangular window W of size M × M. The window size determines the 

trade-off between accuracy and robustness of the tracking. A smaller window leads to 
capturing small motion, but the tracking can be lost when the movement exceeds the 
size of this window. Conversely, a large window size can decrease accuracy. The large 
movements (up to a few pixels, see Table 1) have been compensated for by the phase-
correlation approach and therefore the M value should be small. We set the window size 
at 31 × 31 pixels, which corresponds to the thickest blood vessels (about 21 pixels) and 
possible inter-frame movement in the range of a few pixels in our retinal scene.

The displacement vector Dj
i =

(

dx
j
i , dy

j
i

)

 is referred to as the optical flow at Xj
i and 

can take different values (e.g. size and direction) for each TP, because of the noise and 
possible non-rigid motion of retinal tissue. The displacement vector between one TP in 
frames gr and gi can be computed by minimising the mean squared error ε, which can be 
formalised as:

Using Taylor series of the first-order on gi and some trivial manipulation leads to (we 
omit the spatial indexes):

arg

�

min
dx,dy

ε

�

= arg



min
dx,dy

�

(x,y)∈W

�

gi
�

x + dx, y+ dy
�

− gr
�

x, y
��2





ε =
∑

[

Di + Ix · dx + Iy · dy
]2

Table 1  AME values and  percentage evaluation of  proposed method and  combination 
of SIFT + LK tracking

Proposed method 
Median ± st.dev. [px]

Phase-correlation part only 
Median ± st.dev. [px]

SIFT + LK tracking 
Median ± st.dev. [px]

Inside the ONH 0.78 ± 0.67 0.92 ± 0.78 0.82 ± 0.87

Outside the ONH 1.39 ± 0.63 1.62 ± 0.72 1.52 ± 0.73

# values <1 px (%) 33 28 30

# values between 1 and 
2 px (%)

50 49 47

# values >2 px (%) 17 23 23
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where Di represents the temporal differences gi − gr and Ix, Iy represents image of spatial 
horizontal and vertical differences of image gi, respectively. Taking derivatives according 
to unknown spatial shifts leads to a set of linear equations, which can be easily solved:

These two equations are applied for each TP (for each j) to get the optical flow 
D
j
i =

(

dx
j
i , dy

j
i

)

Detection of reliable tracking points is the most important part of the LK tracker. After 
dx

j
i and dyji are computed for each TP, we can use the same equation to compute the real 

value of these two summations, which can be considered as a measure of tracking-point 
quality (i.e. ‘trackability’) for each tracking point at position (x,y):

The factor M2 normalises the value with respect to window size (M ×  M), because 
the sum is performed within this window and for x and y direction (factor two for two 
windows).

Figure 6 shows one Qi(x,y) image for selected frame i during the registration process 
after normalisation to (0, 1) range, where 1 represents good TP and 0 unreliable TP. 
One can see that the TPs with low error are placed at the blood-vessel bifurcations or 
crossings. It should be noted that the original Qi(x,y) image has been convolved with a 
Gaussian kernel, which spatially spreads the TP quality value in order to estimate the TP 
quality in neighbourhood pixels—because the tracking is not based on a single pixel but 
a pre-defined window: W.

This TP quality map Qi

(

x, y
)

 is consequently used to modify the selection of the TPs 
for the next frame using currently computed TP probability map �̄i

(

x, y
)

:

The TP probability map is linearly increased only at such locations for which the map 
is higher than zero.

This modified eigenvalue image �̄i
(

x, y
)

 is further thresholded to get the candidates for 
tracking points for the next frame. The threshold is estimated using the Kittler optimal 
thresholding approach [22]. Small, segmented regions are consequently removed as we 
assume that segmented blood vessels should create longer (i.e. larger) structures. Skel-
etisation is finally used to obtain the vessel centrelines, which are used for LK tracking 
with updated TPs.

The global transformation is then applied to register each frame to the reference frame. 
We used shift and rotation transformation for particular frame alignment. Shift and 

∂ε

∂(dx)
=

∑

[

Di + Ix · dx + Iy · dy
]

Ix = 0

∂ε

∂(dy)
=

∑

[

Di + Ix · dx + Iy · dy
]

Iy = 0

Q =
1

2 ·M2

∑

(x,y)∈W

[

Di + Ix · dx + Iy · dy
]

(Ix + Iy)

�̄i+1(x, y) = �̄i(x, y) · (1+ Qi(x, y))
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rotation parameters of this transformation are estimated by solving an overestimated set 
of N equations (for N tracking points), minimising the following expression:

where 
(

x′j
y′j

)

 are the coordinates of tracking points after the Euclidian transformation:

and the 

(

x
ref
j

y
ref
j

)

 are coordinates of tracking points in the reference image. The geometri-

cal parameters are finally found using the Gauss elimination method.
The process of LK tracking and global transformation is iteratively applied until the 

change of the geometrical parameters (tx, ty and ϕ) is small—between two iterations. 
The threshold is set to 0.05 pixels for shifts and 2 degrees for rotation. The typical num-
ber of iterations is between 2 and 7 for the whole data set.

Results
Evaluation

The evaluation of the method is also based on retinal vasculature. The blood vessels are 
stable and visible structures on the retina and shouldn’t move in registered sequence, 
except for the diameter changes. The pulsations are visible in the main retinal arter-
ies but can be observed also as spontaneous venous pulsations [23]. Nevertheless, we 
assume that the centre of the blood vessel should remain at the same position. We there-
fore proposed that the evaluation algorithm be based on constancy of the blood-vessel 
centrelines, as follows:

1.	 Manually choose positions for evaluation on the vascular tree.
2.	 Compute the mean blood-vessel intensity profile IPmean from the whole sequence 

(Fig. 6). Each frame is filtered with a 3 × 3 pixel averaging filter before this extraction 
in order to slightly suppress the noise and get smoother intensity profiles.

∑N

J=1

∣

∣

∣

∣

∣

(

x
ref
j

y
ref
j

)

−

(

x′j
y′j

)

∣

∣

∣

∣

∣

2

→ min,

(

x′j
y′j

)

=

(

cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)

×

(

xj
yj

)

+

(

tx
ty

)

Fig. 6  An example of TP quality image (left) and an overlay with current frame
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3.	 Upsample IPmean with factor 4 and determine the position of minimum value Xmean. 
The upsampling artificially increases spatial resolution and better approximates the 
position of the intensity-profile minima.

4.	 For each intensity profile IPi (extracted from each frame, i) determine its minimum 
value Xi and determine the absolute mean error (AME) for whole sequence:

where N is the number of frames in the sequence and number 4 corresponds to the 
upsampling factor. These steps are repeated for different positions selected in the first 
step. This evaluation approach computes the mean differences from the most probable 
position of the blood vessels centred at specific places. Therefore, it gives a measure of 
registration precision, although there can be higher individual AME values. We used 18 
positions, which were determined manually in different locations in a reference frame 
(see Fig. 7 for illustrative example).

We have tested the precision of the registration in two regions separately—inside and 
outside the ONH. This is because the contrast of blood vessels is usually higher inside 
the ONH region, as the ONH is brighter than the surrounding retinal tissue. Therefore, 
we need to assess whether the precision is influenced by this image/sequence property, 
because both stages of the registration process utilise retinal vascularity.

For performance comparison, we’ve used a basic and often-used approach combining 
the SIFT detector and LK tracker. Basic LK tracking has been applied on sequences after 
phase-correlation alignment. Vedaldi’s Matlab implementation of the SIFT method has 
been used [24]. The results are summarised in Table 1. We evaluated only the results of 
the phase-correlation part.

The ONH position, approximated by a circle, has been manually determined in each 
registered sequence. Then the evaluation has been performed within both regions sepa-
rately. The plot in Fig. 8 shows a relation between the AME value and the distance from 
the ONH centre for all sequences. The green stars correspond to the inside of the ONH 
and the red circles to the outside. We applied the Mann–Whitney U test to test the 
hypothesis that the AME values from both regions have equal medians. The null hypoth-
esis tests the same medians that have been rejected, showing that the difference is sta-
tistically significant at 1  % significance level. This finding is important, because many 
retinal image registration approaches rely on segmented blood vessels. Nevertheless, 
this difference is only 0.61 px, which is below one pixel, showing that the error difference 
is relatively small and can be safely neglected in most applications. The standard devia-
tions of AME errors from both regions are the same (tested by two-sample F test). The 
difference in median values can be clearly seen in Fig. 8. One important remark must be 
stressed here. The higher AME value is influenced not only by the registration method, 
but also by the image quality and the quality of the blood-vessel intensity profile, respec-
tively. It can be seen in Fig. 7 that the intensity profiles extracted from vascularity outside 
the ONH are generally noisier and have lower contrast in comparison with the profiles 
extracted from the region inside the ONH. This probably results in slightly higher AME 
values.

AME =
1

4N

N
∑

i=1

|Xi − Xmean|,
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We also explored in more detail the situations for higher AME values. In some 
sequences, there are several frames that contain the above-mentioned artefacts (motion 
blur, reflection). These frames were detected using the frame entropy and appropriate 
threshold (adjusted manually), thus removing them from evaluation. Nevertheless, some 

Fig. 7  An example of the line profile selection (a) and real profile curves corresponding with position 1 (b), 2 
(c) and 3 (d), together with the mean curve (red)
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less-distorted frames (e.g. frames with small corneal reflections or frames with lower sig-
nal-to-noise ratio) are still presented even after this processing, which might influence 
the AME values.

The standard approach using the SIFT + LK method achieved slightly higher median 
values as well as higher variances—see Table 1. Furthermore, the standard deviations for 
both regions significantly differed (tested by two-sample F test) and both values were 
higher than standard deviations for the proposed approach.

We also evaluated the amount of AME values in different ranges for both approaches 
(Table 1). We found that over 80 % of evaluated blood vessel cross-sections were regis-
tered with an absolute mean error of less than 2 pixels, while the SIFT + LK approach 
achieved less than 80 %.

Finally, we show two examples of an averaged retinal image computed from a corre-
sponding sequence after an adaptive histogram equalisation (Fig.  9). The comparison 
with a single frame is also shown.

Implementation and computational complexity

The CPU processing time has been measured by the cputime Matlab function. The 
hardware used for testing comprises Intel® Core™ i7-4710MQ, running at 2.5 GHz, and 
16 MB RAM. The average values per frame processing are shown in Table 2. The values 
are based on Matlab built-in and developed functions, without any additional C imple-
mentation. As Matlab uses high-level “scripting” language, the source code is translated 
line-by-line into machine instructions, which decreases the execution speed. Therefore, 
the processing of the whole sequence takes typically 1–2 min in current implementation. 

Fig. 8  AME values for all sequences, computed on manually selected blood vessel cross-sections and plotted 
in different shapes and colours for positions inside and outside the ONH. The full lines represent median values 
for each set separately and the dotted line represent standard deviation
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The implementation in some low-level language typically provides much higher compu-
tational speed (at levels of 1 to 2 orders faster), which can result in a computation time 
in the range of a few seconds. There are also efficient implementations of LK tracker, 
which are used for real-time implementation on Full HD video, e.g. in Mahmoudi et al. 
[25]. The increase of computation time when using the proposed approach instead of 
the SIFT + LK approach is about 30 %, which is acceptable in cases of more efficient 
implementation.

Conclusion
We described an advanced image-processing method for offline registration of video 
sequences acquired by an experimental, low-cost video-ophthalmoscope. We showed 
that the application of a phase-correlation method together with LK tracking and 
“frame-to-frame” modification of the tracking point could successfully be used for this 
task. We also described an evaluation approach that can be used if there is no “gold-
standard” dataset, which is frequently the case in the video-processing area. Our 
evaluation showed that the registration method could achieve acceptable results for 
most of the possible applications. These applications cover, for example, evaluation of 

Fig. 9  Two examples of averaged retinal images from two sequences (a, c) and single frame from corre-
sponding sequence (b, d). The CLAHE method has been applied on each image to increase the contrast

Table 2  Averaged CPU time values per one frame processing as measured in Matlab

Entropy calculation (s) Phase correlation, stage 1 (s) LK tracking, stage 2 (s)

Proposed method 0.22 0.25 2.5

SIFT + LK 0.22 0.25 1.9
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blood-vessel pulsation [26], eye-movement estimation [16], and super-resolution using 
multiple frames [27].

The experimental video-ophthalmoscopic camera has a flexible design and can be 
relatively easily modified for some specific applications. For example, the laser speckle 
contrast imaging would need to include a coherent light source instead of simple LED; 
the application for monitoring fast-movement changes would need a faster camera with 
higher frame rate; and using a brighter broadband light source would provide a light-
weight and easy-to-use colour camera. Nevertheless, all these applications would need a 
reliable method for registration of acquired sequences.
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