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Abstract 

Background:  A challenging problem in current systems biology is that of parameter 
inference in biological pathways expressed as coupled ordinary differential equations 
(ODEs). Conventional methods that repeatedly numerically solve the ODEs have large 
associated computational costs. Aimed at reducing this cost, new concepts using gra-
dient matching have been proposed, which bypass the need for numerical integration. 
This paper presents a recently established adaptive gradient matching approach, using 
Gaussian processes (GPs), combined with a parallel tempering scheme, and conducts 
a comparative evaluation with current state-of-the-art methods used for parameter 
inference in ODEs. Among these contemporary methods is a technique based on 
reproducing kernel Hilbert spaces (RKHS). This has previously shown promising results 
for parameter estimation, but under lax experimental settings. We look at a range of 
scenarios to test the robustness of this method. We also change the approach of infer-
ring the penalty parameter from AIC to cross validation to improve the stability of the 
method.

Methods:  Methodology for the recently proposed adaptive gradient matching 
method using GPs, upon which we build our new method, is provided. Details of a 
competing method using RKHS are also described here.

Results:  We conduct a comparative analysis for the methods described in this paper, 
using two benchmark ODE systems. The analyses are repeated under different experi-
mental settings, to observe the sensitivity of the techniques.

Conclusions:  Our study reveals that for known noise variance, our proposed method 
based on GPs and parallel tempering achieves overall the best performance. When the 
noise variance is unknown, the RKHS method proves to be more robust.

Keywords:  Parameter inference, Ordinary differential equations, Gradient matching, 
Gaussian processes, Parallel tempering, Reproducing kernel Hilbert spaces
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Background
A central objective of current systems biology research is explaining the actions among 
components in biopathways. A standard approach is to view a biopathway as a network 
of biochemical reactions, which is modelled as a system of ordinary differential equa-
tions (ODEs).

This system can typically be expressed as:

where s ∈ {1, . . . ,N } denotes one of N components (referred to throughout as “species”) 
in the biopathway, xs(ti) denotes the concentration of species s at time ti and x(ti) is a 
vector of concentrations of all system components that influence or regulate the concen-
tration of species s at time ti.1 If, for example, species s is an mRNA, then x(ti) might 
contain the concentrations of transcription factors (proteins), from which s is tran-
scribed, that bind to the promoter of the gene. The regulation is described by the regula-
tion function f. The type of regulatory interaction depends on the species involved, e.g., f 
may describe mass action kinetics, Michaelis-Menten kinetics, etc. All of these interac-
tions depend on a vector of kinetic parameters, θ s. For many biopathways, only a small 
fraction of θ s can be measured in practice. Therefore, in order to understand the dynam-
ics of the biopathway, the majority of these kinetic parameters need to be inferred from 
observed (typically noisy and sparse) time course concentration profiles.

Conventional inference methods typically rely on searching the space of θ values, 
and at each candidate, numerically solving the ODEs and comparing the output with 
that observed. After choosing an appropriate noise model, the form of the likelihood is 
defined, and a measure of similarity between the data signals and the signals described 
by the current set of ODE parameters can be calculated. This process is repeated, as part 
of either an iterative optimisation scheme or sampling procedure in order to estimate 
the parameters. However, the computational costs involved with repeatedly numerically 
solving the ODEs are usually high.

Several authors have adopted approaches based on gradient matching (e.g. [1, 2]), 
aiming to reduce this computational complexity. These approaches are based on the 
following two-step procedure. At the first step, interpolation is used to smooth the time 
series data, in order to avoid modelling noisy observations; in a second step, the kinetic 
parameters θ of the ODEs are either optimised or sampled, whilst minimising some 
metric measuring the difference between the slopes of the tangents to the interpolants, 
and the θ-dependent time derivative from the ODEs. In this fashion, the ODEs never 
have to be numerically integrated, and the problem of inferring the typically unknown 
initial conditions of the system is removed, as it is not required for matching gradi-
ents. A downside to this two-step scheme is that the results of parameter inference are 
critically dependent on the quality of the initial interpolant. Alternatively, as first sug-
gested in [3], we can allow the ODEs to regularise the interpolant. Dondelinger et al. [4] 
applied this to the nonparametric Bayesian approach in [1], which uses Gaussian pro-
cesses (GPs), and demonstrated that it significantly improves the parameter inference 

(1)ẋs =
dxs(ti)

dti
= fs(x(ti), θ s, ti),

1  A summary of the notation used throughout this paper can be found in Table 1.
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accuracy and robustness with respect to noise. Unlike in [3], all hyperparameters that 
control the smoothness of the interpolants are consistently inferred in the framework 
of nonparametric Bayesian statistics, which dispenses with the need to use heuristics 
and approximations in the configuration of the interpolation function.

We further the work of [4] in two respects. Firstly, we combine adaptive gradient 
matching using GPs with a parallel tempering scheme for the parameter that controls the 
mismatch between the gradients. This is conceptually different from the inference par-
adigm of the mismatch parameter that Dondelinger et al. [4] uses. Ideally, if the ODEs 
provide a correct mathematical description of the system, there should be no difference 
between the gradients of the interpolant and those predicted from the ODEs. However, in 
practice, forcing the gradients to be equal is likely to cause parameter inference methods 
to converge to a local optimum of the likelihood. Forcing the gradients to immediately be 
the same would restrict the inference procedure to a section of the likelihood correspond-
ing to parameters that agree with the gradient match. However, there is no guarantee that 
these parameters are suitable for the data, see [5] for details. A parallel tempering scheme 
is the natural way to deal with such local optima, as opposed to inferring the degree of 
mismatch, since different tempering levels correspond to different strengths of penalising 
the mismatch between the gradients.Campbell and Steele [5] explore a parallel temper-
ing scheme, but in order to get an understanding as to how well utilising this scheme 
improves inference, the rest of the set-up should be as similar as possible. Hence, compar-
ing the results directly to the GP approach in [4], won’t provide us with this understand-
ing, since the approach in [5] uses a different methodological paradigm. In this paper, we 
present a comparative assessment of parallel tempering versus inference in the context 
of gradient matching for the same modelling framework, i.e. without any confounding 
influence from the modelling choice. Secondly, we compare the approach of Bayesian 
inference using GPs with a variety of other methodological paradigms, within the specific 
context of comparing the gradients from the interpolant to the gradients from the ODEs, 
which is highly relevant to current computational systems biology.

We test the methods on two benchmark ODE systems: the Fitz–Hugh Nagumo system 
[which can model the behaviour of cardiac conditions such as: electrical excitation-con-
duction [6]; cardiac action potentials [7], and arrhythmias [8], as well as neurodegen-
erative diseases ([9, 10])], and a protein signalling transduction pathway [where cell 
signalling pathways can model cancers [11] and neurodegenerative diseases such as: 
Alzheimer’s disease; Parkinson’s disease, and amyotrophic lateral sclerosis (ALS) [12]], 
systems that are highly relevant to current biomedical engineering.

Table 1  Examples of the notation used throughout this paper

Notation Meaning Example

Bold face uppercase letter or symbol Matrix X

Bold face lowercase letter or symbol Vector θ

Vector at time ti Concentration for all species at time ti y(ti) or x(ti)

Vector of concentrations for species s Concentrations for species s over all timepoints ys or xs
Vector of concentrations Concentrations over all timepoints for one species y or x

Lower case letter at time ti for species s Concentration for species s at timepoint ti ys(ti) or xs(ti)
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This paper is an extended version of [13] and includes a full description of the RKHS 
method in [14], as well as a series of comparative simulation studies using this method 
on the Fitz–Hugh Nagumo system, under different observational noise scenarios, and a 
protein signalling transduction pathway. The description of the methodology in [13] and 
[14] is also outlined in the review article [15], included here with permission from the 
authors.

Methods
Adaptive gradient matching with Gaussian processes

Consider a set of T arbitrary timepoints t1 < · · · < ti < · · · < tT , and noisy observations 
Y = (y(t1), ..., y(tT )), where y(ti) = x(ti)+ ǫ(ti), N = dim(x(ti)), X = (x(t1), ..., x(tT )), 
y(ti) is the data vector of the observations of all species concentrations at time ti, x(ti) is 
the vector of the concentrations of all species at time ti, ys is the data vector of the obser-
vations of species concentrations s at all timepoints, xs is the vector of concentrations of 
species s at all timepoints, ys(ti) is the observed datapoint of the concentration of species 
s at time ti, xs(ti) is the concentration of species s at time ti and ǫ is multivariate Gaussian 
noise, ǫ ∼ N (0, σ 2

s I).
The time-dependent signals of the system can be described by ordinary differential 

equations

which can be represented in scalar form as

where fs(t) =
(

fs(t1), . . . , fs(tT )
)T and ẋs is the vector containing the gradients from the 

ODEs for species s at all timepoints.
Then,

where the dimension of the matrices X and Y are N by T. We take the approach in [1], 
and place a GP prior on xs,

where φs is a mean vector, which for simplicity we set as the sample mean, and Kηs is a 
positive definite matrix of covariance functions with hyperparameters ηs. Differentiation 
is a linear operation, and therefore a GP is closed under differentiation ([16, 17]), mean-
ing that the joint prior distribution of the concentrations of the species xs and their time 
derivatives ẋs is multivariate Gaussian with mean (φs, 0)

T and covariance functions

(2)ẋs =
dxs

dti
= fs(X, θ s, t),

(3)ẋs(ti) =
dxs(ti)

dti
= fs(x(ti), θ s, ti),

(4)p(Y|X, σ 2) =
∏

s

∏

t

N (ys(ti)|xs(ti), σ 2
s ),

(5)p(xs|φs, η) = N (xs|φs,Kηs),

(6)cov[xs(ti), xs(tj)] = Kηs(ti, tj),

(7)cov[ẋs(ti), xs(tj)] =
∂Kηs(ti, tj)

∂ti
:= K ′

ηs
(ti, tj),
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where Kηs(ti, tj) are the components of the covariance matrix Kηs. The conditional distri-
bution for the state derivatives is obtained using elementary transformations of Gauss-
ian distributions (see page 87 of [18] for details), yielding

where

We assume additive Gaussian noise with a state-specific error variance γs, and so, from 
Eq. (2), we get

Using a product of experts approach, Calderhead et al. [1], Dondelinger et al. [4], link 
the interpolant in Eq. (10) with the ODE model in Eq. (12), giving us the following 
distribution

Therefore, the joint distribution is

where γ is the vector which contains all the gradient mismatch parameters and 
p(θ), p(η), p(γ ) are the prior distributions over the respective parameters. Dondelinger 
et  al. [4] show that the marginalisation over the state derivatives yields a closed form 
solution to

Using the noise model in Eq. (4) and the closed form solution to Eq. (15), our full joint 
distribution becomes

where p(σ 2) is the prior over the variance of the observational error. The work in [4] 
shows

(8)cov[xs(ti), ẋs(tj)] =
∂Kηs(ti, tj)

∂tj
:= ′Kηs(ti, tj),

(9)
cov[ẋs(ti), ẋs(tj)] =

∂2Kηs(ti, tj)

∂ti∂tj
:= K ′′

ηs
(ti, tj),

(10)p(ẋs|xs,φs, ηs) = N (µs,As),

(11)µs = ′KηsKηs
−1(xs − φs) and As = K′′

ηs
− ′KηsKηs

−1K′
ηs
.

(12)p(ẋs|X, θ s, γs) = N (fs(X, θ s, t), γsI).

(13)
p(ẋs|X, θ s,φs, ηs, γs) ∝ p(ẋs|xs,φs, ηs)p(ẋs|X, θ s, γs)

= N (µs,As)N (fs(X, θ s, t), γsI).

(14)p(Ẋ,X, θ ,φ, η, γ ) = p(θ)p(η)p(γ )
∏

s

p(ẋs|X, θ s,φs, ηs, γs)p(xs|ηs),

(15)p(X, θ ,φ, η, γ ) =
∫

p(Ẋ,X, θ ,φ, η, γ )dẊ.

(16)p(Y,X, θ ,φ, η, γ , σ 2) = p(Y|X, σ 2)p(X|θ ,φ, η, γ )p(θ)p(η)p(γ )p(σ 2),

(17)p(X|θ ,φ, η, γ ) ∝ 1

C
exp

[

−1

2

∑

s

(

xTs Kηsxs + (fs − µs)
T (As + γsI)

−1(fs − µs)

)

]

,
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where C =
∏

s |2π(As + γsI)|
1
2 and fs is the vector containing the ODE predicted gradi-

ents for species s. Sampling is conducted using MCMC and the whitening approach of 
[19] is used to efficiently sample in the joint space of latent variables X and GP hyperpa-
rameters η.

Parallel tempering: Consider a series of “temperatures”, 0 = α(1) < · · · < α(M) = 1 and 
a power posterior distribution of our ODE parameters ([20])

It is clear that Eq. (18) becomes the prior for α(i) = 0 and is the posterior when α(i) = 1. 
For 0 < α(i) < 1 we get a distribution between our prior and posterior. The M α(i)s in Eq. 
(18) are annealed likelihoods that are used as the target densities of parallel MCMC chains 
([5]). At each MCMC step, all “temperature” chains independently perform a metropolis-
hastings step to update θ (i), the parameter vector associated with temperature α(i)

where q(  ) represents the proposal distribution and the superscripts “prop” and “curr” 
indicate whether the algorithm is being evaluated at the proposed or current state, 
respectively. At each MCMC step, two chains are randomly selected (uniformly) and 
the corresponding parameters are proposed to swap between them. This proposal has 
acceptance probability

The method we develop in this paper focuses on the intrinsic slack parameter γs (see 
Eq.  12), which theoretically should be γs = 0, since this corresponds to no mismatch 
between the gradients. In practice, to prevent the inference scheme from getting stuck 
in sub-optimal states, it is allowed to take on larger values γs > 0. However, rather than 
inferring γs like a model parameter, as Dondelinger et al. [4] do, other authors (e.g. [5]) 
state that γs should be gradually set to zero, since values closer to zero force the gradi-
ents to be more similar to one another and allow the interpolants to be informed by the 
ODEs. It is possible to abruptly set the values to zero, rather than gradually, however this 
is likely to cause the parameter inference techniques to converge to a local optimum of 
the likelihood. Hence, we combine the gradient matching with GPs approach in [4] with 
the tempering approach in [5] and temper this parameter to zero.

Prior to the parameter inference, we choose values of γs and assign them to the vari-
ance parameter in Eq. (12) for each “temperature” α(i), such that chains closer to the 
prior (α(i) values closer to 0) allow the gradients from the interpolant to have more 
freedom to deviate from those predicted by the ODEs (which corresponds to larger γs 
values), chains closer to the posterior (α(i) values closer to 1) more closely match the gra-
dients (corresponding to smaller γs values), and for the chain corresponding to α(M) = 1 , 
we want the mismatch to be approximately zero (γs ≈ 0). Since γs corresponds to the 

(18)pα(i) (θ
(i)|y) ∝ p(θ (i))p(y|θ (i))α(i) .

(19)pmove = min



1,
p
�

y|θprop(i)
�α(i)

p
�

θprop(i)
�

q
�

θcurr(i)|θprop(i)
�

p
�

y|θcurr(i)
�α(i)

p
�

θcurr(i)
�

q
�

θprop(i)|θcurr(i)
�



,

(20)pswap = min

(

1,
pα(j) (θ

(i)|y)pα(i) (θ (j)|y)
pα(i) (θ

(i)|y)pα(j) (θ (j)|y)

)

.
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variance of our species-specific error (see Eq.  12), as γs → 0, we have less difference 
between the gradients, and as γs gets larger, the gradients have more freedom to deviate 
from one another. Hence, we temper γs towards zero. Now, each α(i) chain in Eq. (18) has 
a γ (i)

s  (where the superscript (i) indicates the gradient mismatch parameter associated 
with “temperature” α(i)) fixed in place for the strength of the gradient mismatch. The 
specific schedules of the gradient mismatch parameter are included in Table 4.

Reproducing kernel Hilbert space

Reproducing kernel Hilbert spaces (RKHS) allow for any function defined in an RKHS to 
be written as a linear combination of the kernel function evaluated at the training points. 
This provides a computationally fast process for interpolation. The objective function is 
expressed as

where y denotes the data, K is a matrix of kernel elements for all combinations of 
observed timepoints and c is a vector of coefficients. Minimising with respect to c gives 
us

Hence,

where t∗ is the timepoint at which one wants to make predictions and k∗ is the vector of 
kernel elements for all combinations of t∗ and ti. Note that this form is the same form as 
a posterior mean of a GP predictive distribution. For more details on RKHS, see [21].

Penalised likelihood with RKHS

The aim of González et al. [14] is to create a penalised likelihood function that incorpo-
rates the information of the ODEs, then, using the properties of reproducing kernel Hil-
bert spaces, perform parameter estimation in a computationally fast manner. González 
et al. [14] consider ODEs of the form

which can be represented in scalar form as

where xs is the vector of concentrations for species s, δs is the degradation rate 
of the concentrations for species s, ρs is a parameter vector for species s and 
gs(t) =

(

gs(t1), . . . , gs(tT )
)T. It is important to realise the difference between Eqs. (1) and 

(24). Whereas in Eq. (1), all parameter terms are included in the function fs(), Eq. (24) 

(21)J (c) = 1

2σ 2
|y − Kc|2 + 1

2
cTKc,

(22)ĉ = (K + σ 2I)−1y.

(23)f̂ (t∗) =
N
∑

i=1

ĉik(t∗, ti) = kT∗ (K + σ 2I)−1y,

(24)ẋs = gs(X, ρs, t)− δsxs,

(25)ẋs(ti) = gs(x(ti), ρs, ti)− δsxs(ti),
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considers the linear decay term separate to the rest of the ODE function gs(X, ρs, t). Now 
consider a differencing matrix D, where

and � = diag
(

1
t2−t1

, 1
t3−t1

, 1
t4−t2

, . . . , 1
tT−tT−2

, 1
tT−tT−1

)

. Equation (24) can then be 
approximated as

To make it clear how Dxs is computed, as an example let us consider 
xs = (x(t1), . . . , x(t5))

T and t = (3, 4, 5, 6, 7)T.
Then

Now denote R = D+ δsI (where I is the identity matrix). This gives us the following 
penalty to be incorporated into the likelihood term:

From Eq. (27), we can see that Rxs − gs(X, ρs, t) = 0. However, since xs = 0 does not 
necessarily imply that �(xs) = 0, Eq. (29) cannot be expressed as a norm of xs within the 
RKHS framework. In order to make them compatible, the authors transform the state 
variables xs (and subsequently ys). Instead, consider

By multiplying both sides of Eq. (30) by R and taking squared norms we get the exact 
form of Eq. (29) (||Rx̃s||2 = ||Rxs − gs(X, ρs, t)||2). Similarly, the data are transformed

in order to correspond with the transformed states x̃s. The penalty function in Eq. (29) is 
now

Equation (32) is now a proper norm, since when x̃s = 0, this implies �(x̃s) = 0. Denote 
K = (RTR)−1. K is a matrix of kernel elements which define a unique RKHS. Hence,

(26)D = �























−1 1 0 . . . . . . 0
−1 0 1 0 . . . 0

0 − 1
. . . 1

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

0 . . . . . . . . . − 1 1























,

(27)Dxs = gs(X, ρs, t)− δxs.

(28)
Dxs =















1
4−3

1
5−3

1
6−4

1
7−5

1
7−6

























−1 1 0 0 0
−1 0 1 0 0
0 − 1 0 1 0
0 0 − 1 0 1
0 0 0 − 1 1





















x(3)
x(4)
x(5)
x(6)
x(7)











=
� −x(3)+x(4)

1 , −x(3)+x(5)
2 , −x(4)+x(6)

2 , −x(5)+x(7)
2 , −x(6)+x(7)

1

�T
.

(29)�(xs) = ||Rxs − gi(X, ρs, t)||2.

(30)x̃s = xs − R−1gs(X, ρs, t).

(31)ỹs = ys − R−1gs(X, ρs, t),

(32)�(x̃s) = ||Rx̃s||2 = �Rx̃s,Rx̃s� = x̃Ts R
TRx̃s.

(33)�(x̃s) = ||x̃s||2H = cTKc,
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(where Eq. (33) is used as the term in the far right of Eq. (21) and c is given in Eq. (22)). 
We are able to obtain closed form expressions for the transformed state variables by 
using Eqs. (22) and (23) (the original expressions can be recovered using Eq. 30)

where � is the covariance matrix of the data (generalising Eq. 22, since the observational 
error of our data may not be independent between species) and �s is a penalty parameter.

In the case of homogeneous ODEs, where gs() = 0, a kernel in a Hillbert space can 
be constructed using the Green’s function of the linear operator R. K is the Green’s 
function of RTR, where RT is the adjoint operator of R.  Aronszajin et  al. [22] show 
||Rx̃s||2L2 = ||x̃s||2HK

= �(x̃s). Since the analytical form of Green functions of RTR is not 
available, the differential operator is approximated with the difference operator (D ). 
In the non-homogeneous ODE system, the model is linearised by feeding surrogate x̂s 
(using spline interpolation, in this case) into gs(). �(x̃s) is still a valid RKHS norm for the 
transformed variable x̃s defined in Eq. (30).

The penalised log-likelihood function is now expressed as

where αs is the vector containing the coefficients from the spline interpolant for species 
s. Parameter estimation using Eq. (35) can be carried out with standard non-linear opti-
misation algorithms such as quasi–Newton or conjugate gradients.

In the original paper of [14], the penalty parameter �s is inferred using AIC. For a given 
value of �s, Eq. (35) is optimised to estimate the ODE parameters and subsequently the 
AIC score of the procedure is calculated. This is repeated for different �s values and the 
�s value corresponding to the smallest AIC score is chosen.

As well as using this approach for estimating �s, we found that using threefold cross 
validation, instead of AIC, provided more robust parameter estimation. We present the 
results from both schemes.

Brief summary of methods

The detailed methodology we cover previously pertains to our new method and to the 
methods we were able to obtain the authors’ code for and adapt to many experimen-
tal settings. We were unable to obtain the authors’ code for the publication in Ramsay 
et al. [3]. The run times for the parallel tempering method of Campbell and Steele [5], 
using the authors’ own code, were excessive (typically in the order of days), and we were 
therefore unable to carry out an exhaustive exploration of the method. The methods of 
Ramsay et al. [3] and Campbell and Steele [5] are included as a benchmark comparison 
and so we leave it to the readers to refer to the original publications for full details. The 
following is a brief summary of all the methods we compare. Since many methods and 
settings are used in this paper for comparison purposes, abbreviations are used for ease 
of reading. Table 2 contains a key for those methods.

C&S   [5]: Parameter inference is carried out using adaptive gradient matching and 
tempering of the mismatch parameter. B-splines are used as the choice of interpolation 

(34)x̃s = K(K + 2�s�)−1ỹs,

(35)l(ρs, δs,�,αs, c|ỹs) =
N
∑

s=1

[

−1

2
(ỹs − x̃s)

T�−1(ỹs − x̃s)−
1

2
ln|�|

]

−
N
∑

s=1

�s�(x̃s),



Page 108 of 128Macdonald et al. BioMed Eng OnLine 2016, 15(Suppl 1):S80

scheme. INF [4]: This method conducts parameter inference through adaptive gradient 
matching using GPs. The penalty mismatch parameters γ s are inferred. LB2: This method 
conducts parameter inference through adaptive gradient matching using GPs. The penalty 
mismatch parameters γ s are tempered in log base 2 increments, see Table 4 for details. 
LB10: As with LB2, parameter inference is conducted through adaptive gradient match-
ing using GPs, however, the penalty mismatch parameters γ s are tempered in log base 10 
increments, see Table 4 for details. GON [14]: Parameter inference is conducted in a non-
Bayesian fashion, implementing a reproducing kernel Hilbert space (RKHS) and penalised 
likelihood approach. Comparisons between RKHS and GPs have been previously explored 
conceptually (for example, see [21, 23]), and in this paper we analyse them empirically in 
the specific context of inference in ODEs. The RKHS method that incorporates the infor-
mation from the ODEs in [14] obtains the ODE kernel using a differencing operator. AIC 
is used to estimate the penalty parameter �. GON Cross [14]: The method is the same 
as GON, however, cross validation is used to estimate the penalty parameter �, instead of 
AIC. RAM [3]: This technique uses a non-Bayesian optimisation process for parameter 
inference. The method penalises the difference between the gradients using splines and 
a hierarchical 3 level regularisation approach is used to set the tuning parameters (see [3] 
for details). Table 3 describes particular settings with some of the methods in Table 2. The 
ranges of the penalty parameters γ s, for the LB2 and LB10 methods are given in Table 4. 
The increments are linear on the log scale. The M αss from 0 to 1 are set by taking a series 
of M equally spaced values and raising them to the power 5, as described in [20]. 

Data
Fitz–Hugh Nagumo ([24, 25]): These equations originally were used to describe the volt-
age potential across the cell membrane of the axon of giant squid neurons. There are 3 
parameters; α, β and ψ and two “species”; Voltage (V) and Recovery variable (R). Species 
in [ ] denote the time-dependent concentration for that species:

(36)˙[V ] = ψ([V ] − [V ]3
3

+ [R])

Table 2  Abbreviations of  the methods used throughout  this paper. Table reproduced 
from [13], with permission from Springer

Abbreviation Method Reference

C&S Tempered mismatch parameter using splines-based 
smooth functional tempering

Campbell and Steele [5]

INF Inference of the gradient mismatch parameter using GPs Dondelinger et al. [4]

LB2 Tempered mismatch parameter using GPs in log base 
2 increments

Our method

LB10 Tempered mismatch parameter using GPs in log base 
10 increments

Our method

GON Reproducing kernel Hilbert space and penalised likelihood.  
The penalty parameter is estimated using AIC

González et al. [14]

GON Cross Reproducing kernel Hilbert space and penalised likelihood.  
The penalty parameter is estimated using 3-fold cross validation

González et al. [14]

RAM Hierarchical 3 level regularisation approach using splines
based interpolation

Ramsay et al. [3]
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The Fitz–Hugh Nagumo equations are used in biomedical engineering to model fea-
tures such as cardiac conditions (i.e. electrical excitation-conduction in cardiac tissue 
[6], cardiac action potentials [7] and arrhythmias [8]) and neurodegenerative diseases 
(Drosophila courtship can be modelled using these equations and used to screen genes 
linked to memory-deficiency and human neurodegeneration [9] and the system can also 
be used for diagnosing leprosy [10]).

Protein signalling transduction pathway [26]: These equations describe protein sig-
nalling transduction pathways in a signal transduction cascade [26], where the kinetic 
parameters control how quickly the proteins (“species”) convert to one another. There 
are 6 parameters (k1, k2, k3, k4,V ,Km) and 5 “species” (S,  dS,  R,  RS,  Rpp). The system 
describes the phosphorylation of a protein, R → Rpp (Eq. 42), catalysed by an enzyme S, 
via an active protein complex [RS, Eq. (41)], where the enzyme is subject to degradation 
[S → dS, Eq. (39)]. The chemical kinetics are described by a combination of mass action 
kinetics [Eqs. (38), (39), (41)] and Michaelis–Menten kinetics [Eqs. (40), (42)]. Species in 
[ ] denote the time-dependent concentration for that species:

(37)˙[R] = − 1

ψ
([V ] − α + β ∗ [R])

(38)˙[S] = −k1 ∗ [S] − k2 ∗ [S] ∗ [R] + k3 ∗ [RS]

Table 3  Particular settings of Campbell and Steele’s [5] method

Table reproduced from [13], with permission from Springer

Abbreviation Definition Details

10C 10 chains When comparing our methods, it was of interest to see how 
the performance depended on the number of parallel 
MCMC chains, as originally the authors used 4 chains

Obs20 20 observations Originally, the authors use 401 observations. We reduced this 
to a dataset size more usual with these types of experi-
ments to observe the dependency of the methods on the 
amount of data

15K 15 knots The method in C&S uses B-splines interpolation. We changed 
the original tuning parameters from the authors’ paper to 
observe the sensitivity of the parameter estimation by these 
tuning parameters

P3 polynomial order 3 (cubic spline) The original polynomial order is 5 and again, we wanted to 
observe the sensitivity of the parameter estimation by these 
tuning parameters

Table 4  Ranges of the penalty parameter γ s for LB2 and LB10

In this paper γ s = γ∀s
Table reproduced from [13], with permission from Springer

Method Chains Range of penalty γ

LB2 4 [1 , 0.125]

LB2 10 [1 , 0.00195]

LB10 4 [1 , 0.001]

LB10 10 [1, 1e−9]



Page 110 of 128Macdonald et al. BioMed Eng OnLine 2016, 15(Suppl 1):S80

Cell signalling is a highly relevant topic in current biomedical engineering. The equa-
tions can model cancers [11] and neurodegenerative diseases that include Alzheimer’s 
disease, Parkinson’s disease and ALS [12].

These ODE systems give us benchmark data and produce periodic signals (in the Fitz–
Hugh Nagumo system) and signals that make a transition to a stationary phase (protein 
signalling transduction pathway), which is representative of models in this area. Hence, 
we can assess the methods discussed in this paper on systems that are meaningful to the 
field of biomedical engineering.

Simulation
We have compared the proposed GP tempering scheme with the alternative methods 
summarised in the "Methods" section. For the comparison to Ramsay et al. [3], we were 
unable to obtain the authors’ software and so we compared our results directly with the 
results from the original publications. Hence, we generated test data in the same man-
ner as described by the authors and used them for the evaluation of our method. For 
the methods in Campbell and Steel [5], Dondelinger et al. [4] and González et al. [14], 
where we did receive the authors’ software, we repeated the evaluation twice, first on 
data equivalent to those used in the original publications, and again on new data gener-
ated with different (more realistic) parameter settings. For comparisons using the Fitz–
Hugh Nagumo model, Eqs. (36) and (37), we used the ODE prior distributions in [5] and 
for comparisons using the protein signalling transduction pathway model, Eqs. (38–42), 
we used the parameter priors from [4]. This gave us priors that were motivated by the 
current literature. Our code is available upon request.

Tempered mismatch parameter using splines-based smooth functional tempering (C&S) 
[5]: The authors tested their method on the Fitz–Hugh Nagumo system, Eqs. (36) and 
(37), with the following parameter settings: α = 0.2, β = 0.2 and ψ = 3, starting from ini-
tial values of (−1, 1) for the two “species”. They generated 401 observations over the time 
course [0, 20] (producing 2 periods) and Gaussian noise with sd {0.5, 0.4} was used to 
corrupt each respective “species”. To infer the ODE parameters with their approach, the 
authors chose the following settings: B-splines of polynomial order 5 with 301 knots; 4 
parallel tempering chains, gradient mismatch parameter schedules {10,100,1000,10000}; 
parameter prior distributions for the ODE parameters: α ∼ N (0, 0.42), β ∼ N (0, 0.42) 
and ψ ∼ χ2

2 .
As well as comparing our method with the results the authors had obtained with 

their original settings, we made the following modifications to test the robustness of 

(39)˙[dS] = k1 ∗ [S]

(40)˙[R] = −k2 ∗ [S] ∗ [R] + k3 ∗ [RS] +
V ∗ [Rpp]
Km + [Rpp]

(41)˙[RS] = k2 ∗ [S] ∗ [R] − k3 ∗ [RS] − k4 ∗ [RS]

(42)˙[Rpp] = k4 ∗ [RS] −
V ∗ [Rpp]
Km + [Rpp]
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their procedure. We reduced the number of observations from 401 to 20 over the time 
course [0, 10] (producing 1 period), which more closely reflects the amount of data typi-
cally available in current systems biology. In doing so, we also reduced the number of 
knots for the splines to 15 (preserving the same proportionality of knots to datapoints as 
before), and we tried a different polynomial order: 3 instead of 5. The method incurred 
high computational costs, (roughly 11

2 weeks for a run), and so we could only repeat the 
inference on 3 independent data sets. The posterior samples were combined in order to 
approximately marginalise over datasets and thereby remove their potential particulari-
ties. For a fair comparison, we also ran our methods with 4 rather than the 10 chains that 
we used as default.

Inference of the gradient mismatch parameter using GPs and adaptive gradient match-
ing (INF) [4]: We applied the method in the same way as described in the original publi-
cation of [4], using the authors’ software and selecting the same kernels and parameter/
hyperparameter priors for the method proposed in the present paper. We generated data 
from the protein signal transduction pathway described in Eqs. (38–42), with the same 
settings as in [4]; initial values of the species: (S = 1, dS = 0,R = 1,RS = 0,Rpp = 0) ; 
ODE parameters: (k1 = 0.07, k2 = 0.6, k3 = 0.05, k4 = 0.3,V = 0.017,Km = 0.3); 15 
timepoints producing one period: {0, 1, 2, 4, 5, 7, 10, 15, 20, 30, 40, 50, 60, 80, 100}. As in 
[4], we used multiplicative iid Gaussian noise of standard deviation = 0.1 to corrupt the 
signals and reflect the noisy observations obtained in experiments. We chose the same 
gamma prior on the ODE parameters as used in [4], namely Ŵ(4, 0.5), for Bayesian infer-
ence. For the GP, we used the same kernel they originally used; see further on for details. 
In addition to this ODE system, we also applied this method to the rest of the described 
set-ups.

Reproducing kernel Hilbert space method (GON) [14]: The authors tested their method 
on the Fitz–Hugh Nagumo data (Eqs. 36, 37) with the following settings; initial values of 
(−1,−1) and ODE parameters of α = 0.2; β = 0.2 and ψ = 3. The authors generated 50 
datapoints over the time domain [0, 20] (producing 2 periods), with iid Gaussian noise 
(sd = 0.1) added to introduce error to the observations. 50 independent data sets were 
created in this way.

As well as comparing to the original publication set-up, we also tested the methods on 
a scenario with larger observational noise. We tested on 2 scenarios, when the signal to 
noise ratio was on average 10 for each species and when the average signal to noise ratio 
was 5. We used the average signal to noise ratio so that each species had the same obser-
vational error as one another. We reduced the dataset size to 25 timepoints over the time 
course [0, 10], producing 1 period, and show the results across 10 independent datasets.

To observe the variation between ODE models, we also ran the method on the protein 
signal transduction pathway in Eqs. (38–42). We generated data under the same settings as 
in [4]; ODE parameters: (k1 = 0.07, k2 = 0.6, k3 = 0.05, k4 = 0.3,V = 0.017,Km = 0.3) ; 
initial values of the species: (S = 1, dS = 0,R = 1,RS = 0,Rpp = 0); 15 timepoints cov-
ering one period: {0, 1, 2, 4, 5, 7, 10, 15, 20, 30, 40, 50, 60, 80, 100}. We examined 2 noise 
scenarios; when the average signal to noise ratio was 10, and when the average signal to 
noise ratio was 5. As opposed to the set-up in [4], we use additive Gaussian noise to cor-
rupt the data, to correspond with the assumed noise model.
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Penalised splines and 2nd derivative penalty method (RAM) [3]: González et al. [14] 
used the method of Ramsay et al. [3] to compare with their technique. We have used the 
results from the original publication of [14]. For fairness of comparison, our method was 
applied in the same way as with the set-up in [14].

Choice of kernel: For the GP, we need to choose a suitable kernel, which reflects our 
prior knowledge in function space. We considered two kernels in our study (to corre-
spond with the authors’ set-ups), the radial basis function (RBF) kernel

with hyperparameters σ 2
RBF and l2, and the sigmoid variance kernel

with hyperparameters σ 2
sig, a and b [23].

To initialise the hyperparameters, we fit a standard GP regression model (i.e. without 
information from the ODE) using maximum likelihood. We then checked to see whether 
the interpolant adequately represents our prior knowledge.

We found that the RBF kernel provided a good fit to the data for the data generated 
from the Fitz-Hugh Nagumo model. However, in confirmation of the findings in [4], we 
found that for the protein signalling transduction pathway, the non-stationary nature of 
the data is not represented properly with the RBF kernel, which is stationary [23]. As in 
[4], we used the sigmoid variance kernel, which is non-stationary [23] and found a con-
siderable improvement to the fit to the data.

Other settings: We need to set the values for our variance mismatch parameter of the 
gradients, γs. Since studies that indicate reasonable values for our technique are limited 
(see [1, 20]), we used Log2 and Log10 increments with an initial start at 1. All parameters 
were initialised with a random draw from the respective priors (apart from GON, which 
did not use priors).

Results
Tempered mismatch parameter using splines-based smooth functional tempering (C&S) 
[5]: By examining Figs. 1, 2 and 3, we can see that the C&S method shows good perfor-
mance over all parameters in the one case where the number of observations is 401, the 
number of knots is 301 and the polynomial order is 3 (cubic spline), since the bulk of the 
distributions of the sampled parameters surround the true parameters in Figs. 1 and 3 
and are close to the true parameter in Fig. 2. These settings, however, require a great deal 
of “hand-tuning” or time expensive cross-validation and would be very difficult to set 
when using real data. We can observe the sensitivity of the method in the other set-ups, 
where the results are noticeably worse. An important point to note is when the dataset 
size was reduced, the cubic spline performed very badly. This lack of robustness makes 
these splines based methods very difficult to apply in practice. The INF, LB2 and LB10 
methods consistently outperform the C&S method with distributions being closer to 
or overlapping the true parameters. On the set-up with 20 observations, for both 4 and 

(43)k(ti, tj) = σ 2
RBF exp(−

(ti − tj)
2

2l2
)

(44)k(ti, tj) = σ 2
sig arcsin

a+(btitj)√
(a+(btiti)+1)(a+(btjtj)+1)
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Fig. 1  Average posterior distributions of parameter α from the Fitz–Hugh Nagumo model (Eq. 37) over 3 
datasets. From left to right: LB2, INF, LB10, LB2 10C, INF 10C, LB10 10C, C&S, C&S P3, C&S 15K, C&S 15K P3, C&S 
Obs20, C&S Obs20 P3, LB2 Obs20, INF Obs20, LB10 Obs20, LB2 Obs20 10C, INF Obs20 10C and LB10 Obs20 
10C. The solid line is the true parameter. For definitions, see Tables 2 and 3. Figure reproduced from [13], with 
permission from Springer

Fig. 2  Average posterior distributions of parameter β from the Fitz–Hugh Nagumo model (Eq. 37) over 3 
datasets. From left to right: LB2, INF, LB10, LB2 10C, INF 10C, LB10 10C, C&S, C&S P3, C&S 15K, C&S 15K P3, C&S 
Obs20, C&S Obs20 P3, LB2 Obs20, INF Obs20, LB10 Obs20, LB2 Obs20 10C, INF Obs20 10C and LB10 Obs20 
10C. The solid line is the true parameter. For definitions, see Tables 2 and 3. Figure reproduced from [13], with 
permission from Springer
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10 chains, the INF method produced largely different estimates across the datasets, as 
depicted by the wide boxplots and long tails.

Inference of the gradient mismatch parameter using GPs, adaptive method (INF) [4]: 
In order to see how the LB2 and LB10 tempering methods perform in comparison to 
the INF method, we can examine the results from the protein signalling transduction 
pathway (see Eqs. 38–42), as well as comparing how each method did in the other set-
ups. Figure 4 shows the distributions of parameter estimates minus the true values for 
the protein signalling transduction pathway. After implementing the authors’ code, we 
noticed that some of the MCMC simulations had not converged. In order to present a 
fair depiction of the methods’ performance, we show results from the dataset that pro-
duced the median performance. For each dataset the root mean square was calculated 
on the parameter samples minus the true values. The dataset that produced the median 
root mean square value is given.

We can see by examining Fig. 4, that for each parameter the methods are performing 
well, since the distributions are close to the true values. For this set-up, overall there 
does not appear to be a significant difference between the INF, LB2 and LB10 methods.

For the original set-up in [14], Fig. 5 shows the expected cumulative distribution func-
tions (ECDFs) of the absolute errors of the parameter samples for the tempering and 
inference schemes. P-values for 2-sample, 1-sided Kolmogorov-Smirnov tests are given. 
Since the distributions are of the average error, if a distribution’s ECDF is significantly 
higher than another’s, this constitutes better parameter estimation. A higher curve 
means that there are more values located in the lower range of absolute error.

Fig. 3  Average posterior distributions of parameter ψ from the Fitz–Hugh Nagumo model (Eqs. 36, 37) over 3 
datasets. From left to right: LB2, INF, LB10, LB2 10C, INF 10C, LB10 10C, C&S, C&S P3, C&S 15K, C&S 15K P3, C&S 
Obs20, C&S Obs20 P3, LB2 Obs20, INF Obs20, LB10 Obs20, LB2 Obs20 10C, INF Obs20 10C and LB10 Obs20 
10C. The solid line is the true parameter. For definitions, see Tables 2 and 3. Figure reproduced from [13], with 
permission from Springer
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Fig. 4  Results from the dataset that showed the average RMS of the posterior parameter samples minus the 
true values for the INF, LB2 and LB10 methods. The posterior distributions are of the sampled parameters from 
the protein signalling transduction pathway (Eqs. 38–42) minus the true value. The horizontal line shows zero 
difference. For definitions, see Tables 2 and 3. Figure reproduced from [13], with permission from Springer

Fig. 5  ECDFs of the absolute errors of the parameter estimation for the protein signalling transduction path-
way (Eqs. 38-42). Top left —ECDFs for LB2 and INF, top right—ECDFs for LB10 and INF and bottom—ECDFs for 
LB10 and LB2. Included are the p-values for 2-sample, 1-sided Kolmogorov–Smirnov tests. For definitions, see 
Tables 2 and 3. Figure reproduced from [13], with permission from Springer
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By examining Fig. 5 and using the standard significance level of 0.05 as a cut-off, we 
can see that the CDFs for LB2 and LB10 are significantly higher than those for INF. This 
means that the parameter estimates from the LB2 and LB10 methods are closer to the 
true parameters than the INF method, since we are dealing with absolute error. The LB2 
and LB10 method show no significant difference to each other.

For the set-up in [5], Figs. 1, 2 and 3 show us that the LB2 and LB10 methods perform 
well across dataset size and over all the parameters, since most of the mass of the dis-
tributions surround or are situated close to the true parameters. One type of schedul-
ing did not always outperform another, the LB2 does better than the LB10 for 4 parallel 
chains (distributions overlapping the true parameter for all three parameters) and the 
LB10 outperforms the LB2 for 10 parallel chains (distribution overlapping true param-
eter in Fig. 1, being closer to the true parameter in Fig. 2 and narrower and more sym-
metric around the true parameter in Fig. 3). The bulks of parameter sample distributions 
for the INF method are located close to the true parameters for all dataset sizes. How-
ever, the method produces less uncertainty at the expense of bias. When reducing the 
dataset size to 20 observations, for both 4 and 10 chains, the results deteriorate for the 
INF method and it is outperformed by the LB2 and LB10 methods.

Reproducing kernel Hilbert space (GON) [14] and Hierarchical regularisation splines 
based method (RAM) [3]: For these sets of results, to assess the performance of the meth-
ods, we used the same criterion as in GON. For each parameter, the absolute value of the 
difference between an estimator and the true parameter (|θ̂i − θi|) was computed and the 
distribution across the datasets was examined. For the LB2, LB10 and INF methods, we 
used the median of the sampled parameters as an estimator, since it is a robust average. 

Fig. 6  Boxplots of the distributions of the absolute differences of an estimate to the true parameter over 
50 datasets. The three sections from left to right represent the parameters α, β and ψ from the Fitz–Hugh 
Nagumo model (Eqs. 36, 37). Within each section, the boxplots from left to right are: LB2 method, INF method, 
LB10 method, GON method (boxplot reconstructed from [14]) and RAM method (boxplot reconstructed from 
[14]). For definitions, see Tables 2 and 3. Figure reproduced from [13], with permission from Springer
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Examining Fig. 6, the LB2, LB10 and INF methods do as well as the GON method for 2 
parameters (INF doing slightly worse for ψ) and outperform it for 1 parameter with the 
width of the distributions of the absolute distances to the true parameter roughly 13 of the 
size. All methods outperform the RAM method.

Looking at Fig. 7, the performance of LB2 and LB10 is poorer for the 3rd parameter 
than the other methods by about 1 unit in absolute difference to the true parameter. 
When the noise is increased, Fig. 8, the GON and GON Cross methods are more robust 
in estimating the final parameter, where overall the average absolute error to the true 
parameter is about 0.5 smaller.

Fig. 7  Boxplots of the distributions of the absolute differences of an estimate to the true parameter over 
10 datasets. The three sections from left to right represent the parameters α, β and ψ from the Fitz–Hugh 
Nagumo model (Eqs. 36, 37). Within each section, the boxplots from left to right are: LB2 method, INF method, 
LB10 method, GON method and GON method using cross validation for inferring the penalty parameter. 
The average signal to noise ratio for each “species” is 10. The standard deviation of the observational noise is 
inferred. For definitions, see Tables 2 and 3

Fig. 8  Boxplots of the distributions of the absolute differences of an estimate to the true parameter over 
10 datasets. The three sections from left to right represent the parameters α, β and ψ from the Fitz–Hugh 
Nagumo model (Eqs. 36, 37). Within each section, the boxplots from left to right are: LB2 method, INF method, 
LB10 method, GON method and GON method using cross validation for inferring the penalty parameter. 
The average signal to noise ratio for each “species” is 5. The standard deviation of the observational noise is 
inferred. For definitions, see Tables 2 and 3
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Examining the results for the protein signalling transduction pathway, Eqs. (38–42), 
in Figs. 9 and 10, we can see that the performance of INF, LB2 and LB10 vary in accu-
racy. The GON Cross method shows a more robust set of estimates, with results that are 
on average 0.2 units in absolute value closer to the true parameters. The GON method 
(which uses AIC to estimate the penalty parameter) was unable to optimise for this ODE 
system. Given certain values of �s, the optimiser of the log likelihood function tends to 
choose kernel parameters which make (K + �sσsI) non-invertible and computationally 
singular. In the cross validation scheme, all problematic �ss are rejected. We present the 
results for the GON Cross method only, for this ODE model.

We also present the root mean square (RMS) values in function space.  Firstly, the 
signal was reconstructed with the sampled parameters, by numerically integrating the 

Fig. 9  Boxplots of the distributions of the absolute differences of an estimate to the true parameter over 10 
datasets. The 5 sections from left to right represent the parameters for the protein signalling transduction 
pathway, Eqs. (38–42). Within each section, the boxplots from left to right are: LB2 method, INF method, LB10 
method and GON method using cross validation for inferring the penalty parameter. The average signal to 
noise ratio for each “species” is 10. The standard deviation of the observational noise is inferred. For definitions, 
see Tables 2 and 3

Fig. 10  Boxplots of the distributions of the absolute differences of an estimate to the true parameter over 
10 datasets. The 5 sections from left to right represent the parameters for the protein signalling transduction 
pathway, Eqs. (38–42). Within each section, the boxplots from left to right are: LB2 method, INF method, LB10 
method and GON method using cross validation for inferring the penalty parameter. The average signal to 
noise ratio for each “species” is 5. The standard deviation of the observational noise is inferred. For definitions, 
see Tables 2 and 3
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ODEs, and then the true signal was subtracted (signal created with true parameters and 
no observational noise added). The RMS was calculated on these residuals. It is impor-
tant to assess the methods on this criterion as well as looking at the parameter uncer-
tainty, as some parameters might only be weakly identifiable, corresponding to ridges in 
the likelihood landscape. In other words, large uncertainty in parameter estimates may 
not necessarily imply a poor performance by a method, if the reconstructed signals for 
all groups of sampled parameters were close to the truth.

By examining Fig. 11 we can see that the LB2 and LB10 methods perform poorer than 
the rest, with an average RMS value roughly 0.5 larger. In Fig. 12, the increased noise 
scenario, we can see that the LB2 and LB10 methods have an average RMS value about 
0.5 units larger than the other methods.

Figures 13 and 14 show that the GON Cross method is slightly outperforming the INF, 
LB2 and LB10 methods, with RMS distributions that are on average 0.1 units lower.  

The wider range of estimates of the parameters (as well as the long tails in the pos-
terior distributions in Figs.  1, 2 and 3), for the INF, LB2 and LB10 methods, were 
observed when occasionally the time course signals would flatten. An inspection of Eq. 
(17) reveals that when fs(X, θ , t) = 0 ∀s, then p(X|θ ,φ, η, γ ) is maximised at xs = φs ∀s . 
This corresponds to a flattening of the true concentration profiles, which usually can 
be assumed to be a poor fit to the data. Hence, this flattening should be discouraged 
by the likelihood term p(Y|X, σ ) in Eq. (4). However, for σ ≫ σTrue (where σTrue is the 
unknown true standard deviation of the observational error of the signals), the likeli-
hood term is effectively switched off, which will allow the system to converge to a high 
probability attractor state corresponding to xs = φs. In practice, we observe this effect 

Fig. 11  Distribution of RMS values in function space, calculated on the residuals of the true signal (signal 
produced with true parameters and no observational error) minus the signal produced with the estimate of 
the parameters, for the Fitz–Hugh Nagumo model (Eqs. 36, 37). Within each section, the boxplots from left to 
right are: LB2 method, INF method, LB10 method, GON method and GON method using cross validation for 
inferring the penalty parameter. The average signal to noise ratio for each “species” is 10. The standard devia-
tion of the observational noise is inferred. For definitions, see Tables 2 and 3
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Fig. 12  Distribution of RMS values in function space, calculated on the residuals of the true signal (signal 
produced with true parameters and no observational error) minus the signal produced with the estimate of 
the parameters, for the Fitz–Hugh Nagumo model (Eqs. 36, 37). Within each section, the boxplots from left to 
right are: LB2 method, INF method, LB10 method, GON method and GON method using cross validation for 
inferring the penalty parameter. The average signal to noise ratio for each “species” is 10. The standard devia-
tion of the observational noise is inferred. For definitions, see Tables 2 and 3

Fig. 13  Distribution of RMS values in function space, calculated on the residuals of the true signal (signal 
produced with true parameters and no observational error) minus the signal produced with the estimate 
of the parameters, for the protein signalling transduction pathway (Eqs. 38–42). Within each section, the 
boxplots from left to right are: LB2 method, INF method, LB10 method and GON method using cross validation 
for inferring the penalty parameter. The average signal to noise ratio for each “species” is 10. The standard 
deviation of the observational noise is inferred. For definitions, see Tables 2 and 3
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for σ exceeding σTrue. This attractor state is further self-enforcing by driving the length 
scales included in the GP hyperparameters η to very large values, as we have observed in 
our simulations. Obviously, xs = φs is unrealistic. To test whether holding the standard 
deviation of the noise at the true value prevents the Markov chains from being driven to 
this unrealistic attractor state, we repeated the simulations of the comparison to GON 
and GON Cross, for the Fitz–Hugh Nagumo system and protein signalling transduc-
tion pathway for signal to noise ratios of 10 and 5. We held the standard deviation of 
the noise at the value that was used to generate the data, where in practice this could be 
estimated through a standard GP regression. We used the true value in order to observe 
whether this approach affects the results and to what extent, under the most favourable 
conditions.

Examining Fig. 15, where now the standard deviation of the noise is held fixed at the 
true value, the INF, LB2, LB10, GON and GON Cross methods perform similarly for the 
first 2 parameters and the GON and GON Cross do about 1 unit of absolute diferrence 
to the true parameter better for the 3rd. When the noise is increased, Fig. 16, the meth-
ods produce estimates that are similar to one another for all three parameters.

For the protein signalling transduction pathway, Eqs. (38–42), Fig. 17 shows that the 
INF, LB2 and LB10 methods perform on average 0.075 units in absolute value to the true 
parameter better than GON Cross, over the different parameters. Similarly, in Fig. 18, 
INF, LB2 and LB10 perform roughly 0.07 units better in absolute distance to the true 
parameter than GON Cross.

The RMS distributions in Fig.  19 show that the GON and GON Cross methods are 
producing slightly better estimates, reflected by the distributions being around 0.5 units 

Fig. 14  Distribution of RMS values in function space, calculated on the residuals of the true signal (signal 
produced with true parameters and no observational error) minus the signal produced with the estimate 
of the parameters, for the protein signalling transduction pathway (Eqs. 38–42). Within each section, the 
boxplots from left to right are: LB2 method, INF method, LB10 method, and GON method using cross valida-
tion for inferring the penalty parameter. The average signal to noise ratio for each “species” is 5. The standard 
deviation of the observational noise is inferred. For definitions, see Tables 2 and 3
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in RMS lower. For the increased noise scenario, Fig.  20, all methods are performing 
similarly.

In Fig. 21, we can see that the INF, LB2 and LB10 methods outperform the GON Cross 
method, shown by smaller RMS distributions that are roughly 0.05 units smaller. In 
Fig. 22, the INF and LB10 methods do better than LB2 and GON Cross with RMS values 
on average 0.05 units smaller.

Fig. 15  Boxplots of the distributions of the absolute differences of an estimate to the true parameter over 
10 datasets. The three sections from left to right represent the parameters α, β and ψ from the Fitz–Hugh 
Nagumo model (Eqs. 36, 37). Within each section, the boxplots from left to right are: LB2 method, INF method, 
LB10 method, GON method and GON method using cross validation for inferring the penalty parameter. The 
average signal to noise ratio for each “species” is 10. The standard deviation of the observational noise is held 
at the true value. For definitions, see Tables 2 and 3

Fig. 16  Boxplots of the distributions of the absolute differences of an estimate to the true parameter over 
10 datasets. The three sections from left to right represent the parameters α, β and ψ from the Fitz–Hugh 
Nagumo model (Eqs. 36, 37). Within each section, the boxplots from left to right are: LB2 method, INF method, 
LB10 method, GON method and GON method using cross validation for inferring the penalty parameter. The 
average signal to noise ratio for each “species” is 5. The standard deviation of the observational noise is held at 
the true value. For definitions, see Tables 2 and 3
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Discussion
We have modified a recently developed gradient matching approach for systems biol-
ogy (INF) by combining it with a parallel tempering scheme for the gradient mismatch 
parameter (C&S). We have also carried out a comparative evaluation of this new method 
with various state-of-the-art gradient matching methods. These methods are based on 
different inference approaches and statistical models, namely: non-parametric Bayesian 
statistics using GPs (INF, LB2, LB10), splines-based smooth functional tempering (C&S), 
hierarchical regularisation using splines interpolation (RAM), and penalised likelihood 
based on reproducing kernel Hilbert spaces (GON). Our set-ups have also allowed us to 

Fig. 17  Boxplots of the distributions of the absolute differences of an estimate to the true parameter over 
10 datasets. The 5 sections from left to right represent the parameters for the protein signalling transduction 
pathway, Eqs. (38–42). Within each section, the boxplots from left to right are: LB2 method, INF method, LB10 
method and GON method using cross validation for inferring the penalty parameter. The average signal to 
noise ratio for each “species” is 10. The standard deviation of the observational noise is held at the true value. 
For definitions, see Tables 2 and 3

Fig. 18  Boxplots of the distributions of the absolute differences of an estimate to the true parameter over 
10 datasets. The 5 sections from left to right represent the parameters for the protein signalling transduction 
pathway, Eqs. (38–42). Within each section, the boxplots from left to right are: LB2 method, INF method, LB10 
method and GON method using cross validation for inferring the penalty parameter. The average signal to 
noise ratio for each “species” is 5. The standard deviation of the observational noise is held at the true value. 
For definitions, see Tables 2 and 3
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Fig. 19  Distribution of RMS values in function space, calculated on the residuals of the true signal (signal 
produced with true parameters and no observational error) minus the signal produced with the estimate of 
the parameters, for the Fitz–Hugh Nagumo model (Eqs. 36, 37). Within each section, the boxplots from left to 
right are: LB2 method, INF method, LB10 method, GON method and GON method using cross validation for 
inferring the penalty parameter. The average signal to noise ratio for each “species” is 10. The standard devia-
tion of the observational noise is held at the true value. For definitions, see Tables 2 and 3

Fig. 20  Distribution of RMS values in function space, calculated on the residuals of the true signal (signal 
produced with true parameters and no observational error) minus the signal produced with the estimate of 
the parameters, for the Fitz–Hugh Nagumo model (Eqs. 36, 37). Within each section, the boxplots from left to 
right are: LB2 method, INF method, LB10 method, GON method and GON method using cross validation for 
inferring the penalty parameter. The average signal to noise ratio for each “species” is 5. The standard devia-
tion of the observational noise is held at the true value. For definitions, see Tables 2 and 3
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Fig. 21  Distribution of RMS values in function space, calculated on the residuals of the true signal (signal 
produced with true parameters and no observational error) minus the signal produced with the estimate 
of the parameters, for the protein signalling transduction pathway (Eqs. 38–42). Within each section, the 
boxplots from left to right are: LB2 method, INF method, LB10 method and GON method using cross validation 
for inferring the penalty parameter. The average signal to noise ratio for each “species” is 10. The standard 
deviation of the observational noise is held at the true value. For definitions, see Tables 2 and 3

Fig. 22  Distribution of RMS values in function space, calculated on the residuals of the true signal (signal 
produced with true parameters and no observational error) minus the signal produced with the estimate 
of the parameters, for the protein signalling transduction pathway (Eqs. 38–42). Within each section, the 
boxplots from left to right are: LB2 method, INF method, LB10 method and GON method using cross valida-
tion for inferring the penalty parameter. The average signal to noise ratio for each “species” is 5. The standard 
deviation of the observational noise is held at the true value. For definitions, see Tables 2 and 3
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compare the opposing paradigms of Bayesian inference (INF) versus parallel tempering 
(LB2, LB10) of the slack parameters controlling the amount of mismatch between the 
gradients.

In one case, when the number of observations was very high (higher than what would 
be expected in these types of experiments) and the tuning parameters were finely 
adjusted (which is time-consuming in practice), the C&S method does well. When the 
dataset size was reduced, all settings for this method deteriorated significantly, includ-
ing the previous tuning setting that performed well. It is also important to note that the 
particular settings that we found to be optimal were different than in the original paper, 
which highlights the sensitivity and lack of robustness in the splines based method.

The GON and GON Cross methods produce estimates that are close to the true 
parameters in terms of absolute uncertainty. For the Fitz-Hugh Nagumo ODE model, the 
method outperforms the other schemes for one parameter, in the case when the signal to 
noise ratio was 10 and 25 datapoints were generated. For the protein signalling transduc-
tion pathway, however, this method is outperformed by INF, LB2 and LB10. This method 
also has a drawback to practical implementation, on non-simulated data. The method, 
which uses a classical approach to parameter estimation (producing point estimates), 
cannot immediately produce confidence intervals for the parameters and so quantify-
ing the uncertainty in the parameter estimates will be more difficult. For simulated data, 
this is not an issue, since it is possible to generate multiple datasets and quantify the 
accuracy of the method by observing the results across all datasets. In practice however, 
this is not available. One would need to rely on other processes, such as bootstrapping, 
and the effect on the accuracy and computational time is something that needs to be 
investigated.

The INF method performs reasonably by producing results close to the true param-
eters across the scenarios that we have examined. However, this method’s decrease in 
uncertainty is at the expense of bias.

The LB2 and LB10 methods show good performance across the set-ups. The param-
eter inference is accurate across the different ODE models and the different settings 
of those models. The parallel tempering schedule has proven to be quite robust, as the 
methods perform similarly across the various set-ups.

For some simulations, we noticed a flattening of the time course signals for INF, LB2 
and LB10. The uncertainty in the signals reduced the accuracy in the methods. In order 
to achieve a robust method that provides accurate parameter estimation, we exam-
ined holding the standard deviation at the true value. In this case, the GON and GON 
Cross outperformed INF, LB2 and LB10 on one parameter in the Fitz-Hugh Nagumo 
system, when the signal to noise ratio was 10. For the signal to noise ratio setting of 5, 
the methods all performed similarly. The INF, LB2 and LB10 methods outperform the 
GON Cross method for the protein signalling transduction pathway. Holding the stand-
ard deviation of the noise at the true value, for the INF, LB2 and LB10 methods, stops 
the likelihood term from effectively being switched off and prevents the flattening. In 
practice, this parameter could be estimated by a standard GP regression, in order to fix 
the standard deviation of the noise when the true value is unknown. This is a somewhat 
heuristic fix to the problem however, and a general robust solution should be the focus 
for future research.
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It is also important to note that the methods in this paper were not derived in order 
to operate with a particular ODE model. The results therefore, should be similar across 
ODE type. We have seen evidence of this in other ODE systems, like the Lorenz attractor 
and the Lotka-Volterra predator-prey model, which are less relevant to the field of bio-
medical engineering, though, and are thus beyond the scope of the present paper.

Conclusions
The combination of adaptive gradient matching using GPs from Dondelinger et al. [4] 
and a parallel tempering scheme for the gradient mismatch parameter from Campbell 
and Steele [5], has yielded a method that provides accurate parameter estimates for 
ODEs when the true standard deviation of the noise is known. This method performs 
well across ODE models and variation of the scheduling of the tempered mismatch 
parameter.

We have found that the method in Dondelinger et al. [4] provides accurate estimation, 
although the decrease in uncertainty is at the expense of bias. The method in Campbell 
and Steele [5] shows a lack of robustness, due to the difficulty in configuring the splines 
settings. For the method in Ramsay et al. [3], we found it was outperformed by the other 
methods we looked at. The method in González et al. [14] is accurate and robust, but can 
be outperformed by Dondelinger et al. [4] and the proposed method in this paper. For a sig-
nal to noise ratio of 10 on the Fitz-Hugh Nagumo system, the González et al. [14] method 
is able to outperform the method in Dondelinger et al. [4] and our new method, for one 
parameter. We found that using cross validation as opposed to AIC for the González et al. 
[14] method, to estimate the penalty parameter, yielded results that were more robust.

In order to avoid a potential drawback to our proposed method, we hold the stand-
ard deviation of the noise at the true value, to avoid the signals deviating from the data 
and flattening. This remedy was found to lead to a significant improvement over the 
method with a flexible standard deviation of the error. In practice, the standard devia-
tion of the noise could be estimated, for example by a standard GP regression, and gen-
eral approaches to this should be the focus of future research.
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