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Abstract 

Background:  Aligning multiple sequences arises in many tasks in Bioinformatics. 
However, the alignments produced by the current software packages are highly 
dependent on the parameters setting, such as the relative importance of opening 
gaps with respect to the increase of similarity. Choosing only one parameter setting 
may provide an undesirable bias in further steps of the analysis and give too simplis-
tic interpretations. In this work, we reformulate multiple sequence alignment from a 
multiobjective point of view. The goal is to generate several sequence alignments that 
represent a trade-off between maximizing the substitution score and minimizing the 
number of indels/gaps in the sum-of-pairs score function. This trade-off gives to the 
practitioner further information about the similarity of the sequences, from which she 
could analyse and choose the most plausible alignment.

Methods:  We introduce several heuristic approaches, based on local search proce-
dures, that compute a set of sequence alignments, which are representative of the 
trade-off between the two objectives (substitution score and indels). Several algorithm 
design options are discussed and analysed, with particular emphasis on the influence 
of the starting alignment and neighborhood search definitions on the overall per-
formance. A perturbation technique is proposed to improve the local search, which 
provides a wide range of high-quality alignments.

Results and conclusions:  The proposed approach is tested experimentally on a wide 
range of instances. We performed several experiments with sequences obtained from 
the benchmark database BAliBASE 3.0. To evaluate the quality of the results, we calcu-
late the hypervolume indicator of the set of score vectors returned by the algorithms. 
The results obtained allow us to identify reasonably good choices of parameters for 
our approach. Further, we compared our method in terms of correctly aligned pairs ratio 
and columns correctly aligned ratio with respect to reference alignments. Experimental 
results show that our approaches can obtain better results than TCoffee and Clustal 
Omega in terms of the first ratio.

Keywords:  Multiple sequence alignment, Iterated local search, Multiobjective 
optimization
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Background
Multiple sequence alignment (MSA) is of central importance to bioinformatics. This 
technique is useful to compare new sequences with other genomic sequences, unveil-
ing their shared information and their significant differences. MSA methods are mainly 
essential to analyse biological sequences and to design applications in structure mod-
eling, functional prediction, phylogenetic analysis and sequence database searching [1]. 
Currently, these approaches are also used in applications, for example, to compare pro-
tein structures, to predict protein mutations and interactions or to reconstruct phylo-
genetic trees  [2, 3]. Moreover, these tools have found their place in medicine as well, 
mainly in the context of genetic screening and genetic engineering [4].

Most of the known alignment approaches have diverse optimization functions, along 
with assorted heuristics to search for the optimum alignment. These techniques con-
sider a weighted sum formulation that maximizes the substitution score and penalizes 
indels/gaps. This is the usual procedure even in the case of pairwise sequence align-
ment [5]. However, the way of setting up the weights is very often not trivial. Moreover, 
analyzing only one alignment may lead to too simplistic interpretations of the data [6].

A multiobjective formulation of sequence alignment provides the practitioner a set 
of alignments that represents the trade-off between decreasing the number of gaps and 
increasing similarity. In bioinformatics, this formulation and algorithms can be found 
already for pairwise sequence (DNA/Protein) alignment  [7–10]. Abbasi et al. [7] present 
dynamic programming algorithms to compute the optimal set of alignments by treat-
ing the number of indels/gaps and the scores for (mis)matches/substitution as separate 
objectives. They also apply this method to analyze the construction of phylogenetic trees. 
Taneda [11] describes a heuristic approach for pairwise RNA sequence alignment that 
incorporates RNA structure information to approximate a set of optimal alignments. 
Schnattinger et al. [12] extend the work of Taneda by computing the optimal set. They 
treat the sequence alignment and the consensus structure calculation as separate objec-
tives and solve both problems simultaneously with a dynamic programming approach. 
An extensive review about other problems in bioinformatics that are formulated as mul-
tiobjective optimization problems is explained in Handl et al. [13].

Few work has been done on multiobjective MSA (MMSA), which is much harder to 
be solved from a computational point of view. Only very recently, MSA has been treated 
as multiobjective optimization problem. Ortuño et al.  [14] used a multiobjective evolu-
tionary algorithm based on the NSGA-II to optimize sum-of-pairs score, total columns 
and number of gaps. In another article [15], the authors extended the previous work by 
applying further biological features and considering different objectives such as strike 
score, non-gaps percentage and totally conserved columns. Likewise, Soto et  al.   [16] 
applied a multiobjective evolutionary algorithm to optimize pre-aligned sequences by 
considering entropy and the metric Metal.

In this article, we propose to approach MMSA with heuristic methods, extending 
the formulation given in Abbasi et  al.  [7] for an arbitrary number of sequences. The 
approach considers the sum-of-pairs score vector by maximizing the substitution score, 
based on a substitution matrix, and minimizing the number of indels/gaps. This article is 
an extended version of a conference article [17] providing a more thorough experimental 
analysis of the algorithms proposed.
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Methods
We first give a definition of multiple sequence alignment, followed by its multiobjective 
counterpart. Then, a local search strategy is proposed.

Multiple sequence alignment

In MSA, homogeneous characters of a group of sequences are aligned together in columns. 
The following definition introduces the problem of MSA in a more mathematical form [18].

Definition 1  Multiple sequence alignment. Let A1 = (a1,1, . . . , a1,n1), . . . ,Am = (am,1,

. . . , am,nm) be m strings over an alphabet �. Let ′−′ �∈ � be an indel symbol, let 
�′ = � ∪ {−} and let � denote the empty string. Let h : (�′)∗ �→ �∗ be a homomor-
phism defined by h(a) = a for all a ∈ �, and h(−) = �. A multiple sequence alignment φ 
of (A1, . . . ,Am) is a m-tuple of B1 = (b1,1, . . . , b1,ℓ), . . . ,Bm = (bm,1, . . . , bm,ℓ) of strings 
of length ℓ ≥ max{Ai|1 ≤ i ≤ m} over the alphabet �′, such that the following condi-
tions are satisfied:

(i)	 |B1| = |B2| = . . . = |Bm|

(ii)	 h(Bi) = Ai for all i ∈ {1, . . . ,m}

(iii)	 For all j ∈ {1, . . . , ℓ} there exists an i ∈ {1, . . . ,m} such that bi,j �=′ −′.

A way of evaluating the quality of an alignment φ is to score its columns by the sum-of-
pairs score function. The score of a column j = 1, . . . , ℓ is defined as:

where the score sc(bi,j , bk ,j), for bi,j , bk ,j ∈ �, comes from a substitution matrix used 
for scoring pairwise sequence alignments (such as PAM and BLOSUM). Indels are 
scored by defining sc(′−′, ·) = sc(·,′ −′) = Wd, where Wd is the weight of an indel, and 
sc(′−′,′ −′) = 0. The score for alignment φ is computed as

Multiobjective multiple sequence alignment

Many problems of practical relevance are frequently characterized by different objec-
tives that simultaneously have to be taken into account when it comes to solve the prob-
lem. In most cases, these objectives conflict with each other and optimizing the problem 
for a specific objective might compromise other objectives. An appropriate approach to 
a multiobjective problem is to obtain a set of solutions in such a way that each of which 
cannot be improved in one objective without deteriorating at least one of the others [19].

Traditionally, approaches for solving sequence alignment are performed with a single 
objective function, which is based on a weighted sum of matches, mismatches, inser-
tions and deletions. However, there is no agreement on how to specify weights for these 
parameters. In a multiobjective formulation, the practitioner does not have to define 
weights and can get access to much more information [10].

S(j) =
∑

1≤i<k≤m

sc(bi,j , bk ,j)

SP(φ) =

ℓ
∑

j=1

S(j)
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Let φ be an alignment of m sequences (A1, . . . ,Am), as defined in the previous section. 
We define the following two score functions

where the score s(bi,j , bk ,j), for bi,j , bk ,j ∈ � is obtained from a substitution matrix and 
d(bi,j , bk ,j), for bi,j , bk ,j ∈ �′, is 1 if either bi,j = ’− ’ or bk ,j = ’− ’, and 0, otherwise. The 
multiobjective score sum-of-pairs for alignment φ is

Given two alignments φ and φ′, BSP(φ) ≥ BSP(φ′) (φ dominates φ′) if and only if it 
holds that BSPs(φ) ≥ BSPs(φ

′) and BSPd(φ) ≤ BSPd(φ
′), with at least one strict inequal-

ity. An alignment φ∗ is Pareto optimal if there exists no other alignment φ such that 
BSP(φ) ≥ BSP(φ∗). The set of all Pareto optimal alignments is called Pareto optimal 
alignment set. The image of a Pareto optimal alignment in the score space is a non-dom-
inated score and the set of all non-dominated scores is called non-dominated score set.

Although pairwise sequence alignment can be solved efficiently, that is, the running 
time to find the non-dominated score set is a polynomial function of the size of the 
sequences, this is no longer the case for the multiple counterpart for an arbitrary num-
ber of sequences. Thus, the goal, in practice, is to find an approximation to the non-dom-
inated score set in a reasonable amount of time. In this article we explore the application 
of heuristic methods, in particular, local search algorithms.

Pareto local search

A local search algorithm starts from a feasible solution and searches locally for better 
neighbors to replace the current one. This neighborhood search is repeated until no 
improvement is found anymore and the algorithm stops in a local optimum. In the con-
text of MMSA, the neighborhood function associates a set of feasible alignments N (φ) 
to every feasible alignment φ. An alignment φ is a Pareto local optimum if there exists no 
alignment φ′ in N (φ) such that BSP(φ′) ≥ BSP(φ).

Pareto local search (PLS) [20] is a generic local search framework for multiobjective optimi-
zation problems that follows the principle above by keeping the best alignments into a special 
data structure, known as the archive. Each neighboring alignment that is non-dominated with 
respect to the alignments in the archive, is added to it. The algorithm “naturally” terminates 
once there is no neighbor of any alignment in the archive that is not dominated (a local opti-
mal set). See [20, 21] for more details about this approach for multiobjective combinatorial 
optimization problems and its successful application to scheduling and graph problems.

In the following we describe some options that were considered to apply PLS to 
MMSA: neighborhood function and starting alignment.

Neighborhood

We consider a k-block neighborhood for this problem, which consists of exchanging a 
substring of at most k characters in � with indels in a gap, that is, a contiguous sequence 

Ss(j) =
∑

1≤i<k≤m

s(bi,j , bk ,j) and Sd(j) =
∑

1≤i<k≤m

d(bi,j , bk ,j)

BSP(φ) =



BSPs(φ) =

ℓ
�

j=1

Ss(j),BSPd(φ) =

ℓ
�

j=1

Sd(j)




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of indels. In the following, we establish the conditions for two alignments to be k-block 
neighbors. Let A1 = (a1,1, . . . , a1,n1), ..., Am = (am,1, . . . , am,nm) denote m strings and let 
φB and φC be two alignments, where φB = B1, . . . ,Bm and φC = C1, . . . ,Cm. The align-
ments φB and φC are k-block neighbors if and only if the following conditions hold:

(i)		�  |Bi| = |Ci|, for i = 1, . . . ,m;
(ii)		 Let J = {j | j ∈ {1, . . . ,m} : Bj �= Cj}; then |J | = 1;
(iii)	� For j ∈ J  let π i

Bj
 and π i

Cj
 denote the position of aj,i ∈ Aj in string Bj and Cj,  

respectively. Let IBj = {π i
Bj

| π i
Bj

�= π i
Cj
, i = 1, . . . , |Aj|} and ICj = {π i

Cj
| π i

Bj
�= π i

Cj
, 

i = 1, . . . , |Aj|}. Then, ℓ = |IBj | = |ICj | ≤ k.
(iv)	� Let IBj = {IBj ,1, . . . , IBj ,ℓ} and ICj = {ICj ,1, . . . , ICj ,ℓ}; then IBj ,i+1 − IBj ,i =

ICj ,i+1 − ICj ,i = 1, for i = 1, . . . , ℓ− 1.

Conditions (i) and (ii) state that both alignments should have the same size, and differ 
only in the jth string, respectively. In addition, condition (iii) and (iv) state that at most 
k characters from string Aj do not occupy the same position in both alignments, and 
that those characters are contiguous. For illustration purpose, consider the following 
alignment:

D-GGF-

-D-FGL

We list all possible 2-block neighbors as follows:
-DGGF- DG-GF- DGG-F- D-GG-F D-G-GF D-GGF- D-GGF- D-GGF- D-GGF-

-D-FGL -D-FGL -D-FGL -D-FGL -D-FGL D--FGL --DFGL -DF-GL -DFG-L

It is possible to visit all k-block neighbors of an alignment φ in a straightforward way. 
Given the first string of an alignment φ, consider the leftmost substring of size one that 
contains only a character and an indel to its right. Then, exchange it with every indel 
in its right and stop when no indel is found. In case the substring has also indels to its 
left, repeat the same exchange procedure. If it is still possible, increase the size of the 
substring by one and repeat the same moves to its right and to its left; repeat the overall 
procedure until reaching a substring of size k. Then, consider the next substring of size 
one to the right and repeat the same procedure as above. Note that each move generates 
a new k-block neighbor of alignment φ. In order to maintain feasibility, the columns that 
contain only indels are deleted from the alignment.

Starting alignment

The starting solution may have a strong impact on the overall performance of the local 
search. We considered the three following possibilities for PLS:

(i)		�  Rand: A random feasible alignment, which is obtained by inserting indels ran-
domly into the strings, except in the largest one. This initialization option tends to 
generate a feasible alignment with a small number of indels.

(ii)		� Clust: A feasible alignment obtained from program Clustal Omega  [22] (avail-
able at http://www.clustal.org/omega).

(iii)	� Tcoffee: A feasible alignment obtained from program Tcoffee [23] (available at 
http://www.tcoffee.org/Projects/tcoffee/).

http://www.clustal.org/omega
http://www.tcoffee.org/Projects/tcoffee/
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We choose Tcoffee since it is one of the best consistency based methods that outper-
forms the others existing programs in terms of accuracy and Clustal Omega since it out-
performs Tcoffee whenever sequences with large N/C terminal extensions exist [24]. We 
used the default parameters suggested for these two programs.

Algorithm 1 Pareto Iterated Local Search for MMSA
1: Φ0 = GenerateInitialAlignment()
2: Φ = PLS(Φ0)
3: repeat
4: Φ′ = Perturbation(Φ)
5: Φ′′ = ParetoLocalSearch(Φ′)
6: Φ = AcceptanceCriterion(Φ, Φ′′)
7: until termination condition met

Pareto iterated local search

The local search framework described in the previous section may get trapped in a local 
optima set of poor quality. One possibility for escaping from local optima is to perturb 
one or more alignments in the archive and restart the local search from those align-
ments. Pareto iterated local search (PILS) implements this search behavior and its main 
steps are presented in Algorithm 1. Similar to the single objective counterpart (see [25]), 
four components have to be specified in PILS:

(i)		�  GenerateInitialSolution, which generates an initial set of alignments 
�0 ; based on the experimental results, we consider two starting solutions previ-
ously described (Tcoffee and Clust).

(ii)		� Perturbation, which modifies some of the current alignments in set � lead-
ing to some intermediate set of alignments �′. Based on preliminary experi-
ments, we decided to randomly choose 5 alignments from set � in such a way 
that the corresponding non-dominated scores are spread enough in the objective 
space. Then, a gap of a given size is inserted into each sequence in random posi-
tions.

(iii)	 PLS, which is applied to �′ and returns an improved set of alignments �′′.
(iv)	� AcceptanceCriterion, which consists of merging the two sets, � and �′′, 

and filtering out the dominated scores.

Discussion and results
We performed several experiments in order to understand the effect of different param-
eters of PLS and PILS and to establish functional relationships between algorithm 
performance and instance features, such as the number of sequences and their sizes. 
Furthermore, we compare the quality of the alignments produced by our approaches 
with those produced by TCoffee and Clustal Omega.

The implementations were coded in C and compiled with GCC version 4.6.1 with the 
−O3 compiler option. Experiments were performed in a cluster with 16 nodes, each 
one comprising an Intel Core i7 CPU with 4-core and 2 GB Ram, with operating sys-
tem Ubuntu 11.10. Except the compiler option, no other code optimization technique 
was used in the experiments. For this experimental analysis, we have chosen sequences 
obtained from the benchmark database BAliBASE 3.0 [26]. In our substitution matrix, 
each cell value is 1 when the both residues are equal, and −1 otherwise.



Page 41 of 51Abbasi et al. BioMed Eng OnLine 2016, 15(Suppl 1):S70

BAliBASE 3.0 is a well-known benchmark for evaluating the multiple sequence align-
ment algorithms. The data set Reference 1 consists of equidistant family sequences with 
two subgroups: RV11 and RV12. RV11 contains 38 data sets with less than 20 % residue 
identity between groups and RV12 contains 44 data sets with residue identity between 
20 and 40 %. Reference 2  (RV20) contains 41 alignments comprising family sequences 
with more than 40 % similarity and a highly divergent orphan sequence. Reference 3, 
with 30 data sets, contains subfamilies such that the sequences within a given subfamily 
share more than 40 % identity, but any two sequences from different subfamilies share 
less than 20 % identity. The reference set RV40, with 49 data sets, contains sequences 
that are composed of groups with N/C-terminal extensions. The reference set RV50 
contains 16 data sets with large internal insertions. We tested our approaches on all the 
instances from the sets RV11 and RV20, composed by sequences with different sizes and 
varying percentage identities.

Since the heuristics proposed in this paper are stochastic, we ran each variant 10 times 
for each instance and recorded the contents of the archive for each run, namely the 
approximate set, once the termination criterion was met. To evaluate the quality of each 
approximate set, we computed its hypervolume indicator value. This indicator measures 
the area that is dominated by the approximate set, bounded by a reference point [27]; see 
an in-depth discussion about the hypervolume indicator in relation with other perfor-
mance assessment methods in Zitzler et al. [28]. Moreover, it is known that the hyper-
volume is maximized when the optimal set is found [28].

Figure 1 illustrates the hypervolume indicator (shaded area) for a given approximate 
set (black points) and a given reference point (white point). We have chosen, as the ref-
erence point for each instance, the minimum substitution score minus one and the max-
imum number of indels plus one that were obtained from the runs of all variants. We 
merged all approximate sets produced from all runs for a given instance, extracted the 
non-dominated scores and computed the hypervolume indicator value of the resulting 
set, namely, the reference hypervolume indicator value, which is then used as a reference 
value to evaluate the relative performance of each approach. Then, for each approximate 

Indels

Substitution score
Fig. 1  Illustration of the hypervolume indicator [17]
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set, we computed its hypervolume indicator value and the percentage of this value with 
respect to the reference hypervolume indicator value; the larger the value, the better is 
the approximate set in terms of this indicator.

We analysed the effect of different k-values in the k-block neighborhood, as 
well as the effect of the three starting alignments on the performance of PLS. For 
a given instance, let Min denote the length of the smallest string; we consider 
k ∈ {Min,Min/2,Min/4,Min/8,Min/16}. PLS terminates once it is not possible to find 
non-dominated neighboring alignments or the time limit of 5 minutes of CPU-time 
is reached. Tables 1 and 2 report the results obtained for PLS for the benchmark sets 
RV11 and RV20. The results were averaged over 10 runs, for each of the five k values and 
the three starting alignments. Column id corresponds to the instance id from the two 
benchmark sets (BB1100*.tfa and BB200*.tfa, where * denotes the id); column 
m gives the number of sequences; columns Min and Max correspond to the length of 
the smallest and the largest sequence, respectively. The instances are lexicographically 
ordered in terms of the number of sequences and the length of the smallest sequence. 
The values in italics correspond to the best result obtained for each instance. The last 
column Init shows the hypervolume indicator obtained for the non-dominated score 
of the two starting alignments obtained with Clustal Omega and Tcoffee.

The results clearly indicate the best performance of PLS when starting with alignments 
Clust and Tcoffee, instead of a feasible random alignment. Also, the best k-block 
value strongly depends on the number of sequences and, to a smaller extent, to their 
sizes. As a rule, for the given cut-off time, large (small) k values achieve better perfor-
mance on problems with a smaller (larger) number of sequences. Moreover, column 
Init indicates that PLS strongly improves upon the two starting alignments.

Tables 3 and 4 report results obtained for PILS on the same benchmark sets, averaged 
over 10 runs, for k-block size equals to 2; we recall that we use Clust and Tcoffee 
as starting alignments. The results reported in the tables do not include the CPU-
time taken to compute the starting alignments. PILS always terminates once the time 
limit of 5 minutes of CPU-time is reached. In this case, the limit time for each PLS run 
within PILS is 5/(P + 1) minutes. Column PLSmax gives the best value of PLS from 
Tables 1 and 2. The best results for each sequence set are shown in italics. In most of the 
instances, PILS improves over PLS, although the best performance may depend on the 
number of sequences and their size: a small (large) number of perturbations gives better 
performance on larger (smaller) sequences and larger (smaller) number of sequences.

We complemented the analysis to gain insight into the absolute quality of the align-
ments produced by PILS, when compared to the reference alignments available in the 
BAliBASE benchmark. We rely on the correctly aligned pairs (SP) and columns cor-
rectly aligned (TC) measures, as performed in  [15]. These ratios can be computed by 
the program BAliScore which is available by ftp from ftp-igbmc.u-strasbg.fr/pub/BAli-
BASE  [29]. We used seven different data sets from BAliBASE with specific features 
chosen from this benchmark; see Table 5. Columns Reference and id correspond to 
the reference and id number of the data set in the BAliBASE benchmark; columns m, 
Min and Max correspond to the number of sequences, length of the smallest and largest 
sequence, respectively; Len corresponds to the size of reference alignment in the BAli-
BASE benchmark.
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We ran PILS 10 times on these data sets, and for each collection of runs, we chose the 
best alignment produced in terms of BSPs score. We computed the SP and TC ratios by 
using this alignment and the reference alignment available for each chosen data set in 
BAliBASE. For calculation of the SP ratio, we used the substitution matrix PAM 250. 
Moreover, for comparison purpose, we performed the same procedure for the align-
ments produced by Clustal Omega and Tcoffee.

Table 3  Percentage with  respect to  the reference hypervolume indicator value for  PILS 
with several perturbation number (P) for each instances of data set RV11 [17]. The results 
are averaged over 10 runs. See text for more details

id m Min Max PLS
max P = 1 P = 2 P = 4 P = 8 P = 16

22 4 63 205 0.90 0.91 0.87 0.89 0.88 0.97

25 4 64 103 0.86 0.86 0.89 0.91 0.89 0.87

29 4 81 138 0.88 0.91 0.91 0.94 0.92 0.98

1 4 83 91 0.35 0.36 0.38 0.40 0.42 0.44

9 4 97 337 0.87 0.87 0.81 0.87 0.83 0.86

21 4 102 139 0.91 0.95 0.89 0.92 0.88 0.93

8 4 104 540 0.89 0.87 0.91 0.97 0.88 0.90

17 4 247 264 0.91 0.92 0.93 0.95 0.96 0.97

15 4 297 327 0.94 0.90 0.92 0.96 0.97 0.97

12 4 320 397 0.92 0.92 0.91 0.96 0.97 0.99

24 4 372 465 0.90 0.87 0.85 0.86 0.83 0.80

4 4 390 456 0.91 0.93 0.87 0.88 0.88 0.84

3 4 414 516 0.92 0.92 0.89 0.89 0.88 0.88

10 4 490 492 0.95 0.97 0.95 0.96 0.90 0.94

13 5 51 101 0.87 0.91 0.92 0.93 0.93 0.95

35 5 71 138 0.85 0.86 0.89 0.88 0.93 0.99

11 5 160 242 0.94 0.94 0.89 0.91 0.88 0.91

37 5 335 1192 0.93 0.92 0.94 0.91 0.99 0.98

14 6 502 634 0.96 0.95 0.97 0.95 0.94 0.91

26 7 76 906 0.96 0.99 0.96 0.95 0.66 0.60

27 7 175 432 0.95 0.91 0.87 0.85 0.85 0.69

23 7 231 407 0.93 0.89 0.81 0.82 0.82 0.79

2 8 52 193 0.88 0.92 0.84 0.82 0.84 0.78

6 8 186 283 0.88 0.88 0.77 0.75 0.75 0.66

32 8 226 403 0.93 0.88 0.85 0.83 0.81 0.74

38 8 261 614 0.94 0.86 0.88 0.89 0.85 0.81

36 8 298 436 0.94 0.94 0.94 0.94 0.96 0.97

16 8 316 729 0.95 0.94 0.93 0.96 0.95 0.99

34 8 401 729 0.94 0.85 0.83 0.81 0.80 0.77

20 9 201 237 0.92 0.96 0.97 0.96 0.90 0.83

7 9 385 457 0.93 0.92 0.92 0.97 0.93 0.88

28 10 93 211 0.91 0.95 0.95 0.90 0.87 0.86

19 10 299 396 0.91 0.85 0.85 0.83 0.83 0.81

33 11 85 239 0.92 0.92 0.91 0.90 0.87 0.84

31 11 300 611 0.96 0.95 0.88 0.89 0.84 0.82

30 14 236 392 0.90 0.89 0.86 0.81 0.80 0.78

5 14 329 465 0.85 0.87 0.83 0.80 0.75 0.75

18 14 418 750 0.90 0.94 0.92 0.90 0.88 0.87
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Table 4  Percentage with  respect to  the reference hypervolume indicator value for  PILS 
with several perturbation number (P) for each instances of data set RV20. The results are 
averaged over 10 runs. See text for more details

id m Min Max PLS
max P = 1 P = 2 P = 4 P = 8 P = 16

20 16 74 697 0.95 0.95 0.95 0.88 0.83 0.73

1 16 247 527 0.90 0.90 0.90 0.87 0.88 0.85

2 20 52 1520 0.82 0.93 0.94 0.94 0.89 0.84

11 21 95 631 0.90 0.97 0.95 0.91 0.86 0.85

7 23 381 457 0.93 0.95 0.96 0.95 0.89 0.83

19 24 401 729 0.96 0.91 0.94 0.95 0.95 0.87

16 27 106 458 0.89 0.91 0.90 0.80 0.78 0.72

12 27 210 634 0.89 0.89 0.82 0.80 0.59 0.52

13 28 447 747 0.94 0.69 0.77 0.86 0.83 0.87

29 29 64 167 0.83 0.89 0.84 0.82 0.81 0.81

9 29 254 415 0.94 0.89 0.96 0.94 0.82 0.76

27 29 279 1052 0.87 0.73 0.81 0.87 0.90 0.92

10 29 577 1233 0.92 0.64 0.73 0.80 0.90 0.94

24 30 74 739 0.86 0.80 0.85 0.90 0.91 0.88

23 31 202 244 0.92 0.98 0.95 0.91 0.87 0.73

26 32 271 1016 0.86 0.73 0.85 0.90 0.93 0.82

35 35 226 982 0.83 0.80 0.78 0.82 0.88 0.90

15 37 54 274 0.94 0.82 0.91 0.94 0.86 0.80

38 42 79 199 0.94 0.94 0.94 0.84 0.73 0.69

5 42 343 474 0.97 0.83 0.85 0.87 0.91 0.93

17 45 509 713 0.97 0.71 0.74 0.81 0.87 0.94

30 47 76 155 0.84 0.84 0.87 0.83 0.80 0.83

33 48 81 155 0.89 0.95 0.89 0.81 0.67 0.69

41 48 293 1520 0.64 0.88 0.84 0.82 0.83 0.86

6 51 224 293 0.95 0.85 0.91 0.95 0.93 0.86

18 53 296 381 0.96 0.70 0.87 0.94 0.83 0.67

21 53 418 838 0.83 0.89 0.91 0.93 0.94 0.91

28 54 241 610 0.97 0.96 0.97 0.96 0.94 0.93

4 55 401 734 0.93 0.81 0.80 0.84 0.89 0.94

8 56 98 1520 0.72 0.72 0.78 0.81 0.85 0.87

22 58 320 381 0.89 0.62 0.68 0.79 0.91 0.92

34 59 234 548 0.85 0.75 0.75 0.82 0.88 0.86

31 60 175 432 0.92 0.87 0.87 0.83 0.82 0.88

32 61 93 149 0.97 0.97 0.98 0.88 0.73 0.67

37 65 160 810 0.84 0.80 0.84 0.81 0.80 0.91

14 65 333 729 0.66 0.84 0.84 0.83 0.86 0.90

3 74 409 800 0.88 0.73 0.90 0.81 0.76 0.95

25 81 372 518 0.87 0.82 0.86 0.85 0.81 0.96

40 87 273 570 0.87 0.83 0.92 0.91 0.88 0.94

36 91 82 335 0.81 0.82 0.83 0.77 0.78 0.92

39 91 298 458 0.85 0.73 0.76 0.79 0.81 0.85
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Tables 6 and 7 show the results obtained with SP and TC ratios, respectively. The italics 
face values represent the best ratio. From Table 6, it can be observed that PILS obtained 
the best value for all the tested data sets. In Table 7, the best TC ratio is either from Tcof-
fee or Clustal Omega. Note that a null TC value was obtained by the alignment of Clustal 
Omega in RV12 id 20 and RV20 id 20, and by TCoffee in set from RV20 and id 1.

Table 5  The selective data sets from difference reference of the benchmark

Reference id Identity m Min Max Len

RV11 1 <20 % 4 83 91 96

RV11 4 <20 % 4 390 456 603

RV12 20 <20 and >40 % 4 118 129 141

RV12 42 <20 and >40 % 4 448 561 611

RV20 20 >40 % 16 74 697 615

RV20 1 >40 % 16 247 527 780

RV30 17 − 15 231 370 416

RV40 10 − 9 67 214 275

RV40 14 − 9 298 609 712

RV50 4 − 9 386 505 547

Table 6  The results of  Sp score in  Tcoffee, Clustal Omega and  PILS on  the selected test 
cases

Reference id Clustal Omega Tcoffee PILS

RV11 1 0.956 0.965 0.985

RV11 4 0.033 0.706 0.788

RV12 20 0.331 0.973 0.981

RV12 42 0.678 0.789 0.85

RV20 20 0.535 0.934 0.946

RV20 1 0.939 0.596 0.951

RV30 17 0.765 0.787 0.811

RV40 10 0.875 0.872 0.878

RV40 14 0.878 0.890 0.894

RV50 4 0.973 0.983 0.988

Table 7  The results of  TC score in  Tcoffee, Clustal Omega and  PILS on  the selected test 
cases

Reference id Clustal Omega Tcoffee PILS

RV11 1 0.912 0.930 0.885

RV11 4 0.408 0.554 0.378

RV12 20 0.000 0.957 0.851

RV12 42 0.548 0.662 0.434

RV20 20 0.000 0.775 0.654

RV20 1 0.775 0.000 0.459

RV30 17 0.552 0.581 0.535

RV40 10 0.639 0.590 0.330

RV40 14 0.671 0.658 0.463

RV50 4 0.919 0.940 0.892
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Conclusions
The local search introduced in this article is able to provide high quality alignments in a 
reasonable amount of time. Since local search can be stuck in local optima, we propose 
a method that perturbs the set of alignments in the archive and restarts the local search, 
such as done by iterated local search. The results show that the hypervolume indicator 
has improved over different number of perturbations.

The size of the trade-off returned by our approaches is still considerably large, which 
may be overwhelming for the practitioner. One possibility is to present a smaller subset 
of alignments that are representative of the complete trade-off; such notion of represent-
ativeness may be based on metrics of uniformity (the most spread subset) or coverage 
(the subset that best covers the complete set). Algorithms that allow to find optimal rep-
resentative subsets are available in [30].

For the future work, we might try other starting alignments that are not just based on 
the similarity but also taking into account other biological criteria such as the secondary 
structure of the alignments. Further, we may test different perturbation methods. One 
of the possibilities is to use the phylogenetic trees of the sequences and apply the ratchet 
strategy [31, 32] which may help to create a new starting solution with more information 
from existing results.
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