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Background
Identification of connections between biological and clinical characteristics of Alz-
heimer’s disease (AD) patients is a long term goal that could significantly improve the 
understanding of the AD pathophysiology, improve clinical trial design, and help in pre-
dicting outcomes of mild cognitive impairment [1]. The difficulty of the task is connected 
to the fact that AD is clinically described as a set of signs and symptoms that can only be 
measured indirectly and have been integrated into various scoring systems like clinical 
dementia rating sum of boxes, Alzheimer’s disease assessment scale, or montreal cogni-
tive assessment [2]. All of these scores as well as symptoms of everyday cognition prob-
lems have proved their usefulness in the diagnostic process but a unique and reliable 
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measure or indicator does not exist. On the other side, although relations between some 
biological descriptors and AD diagnosis have been undoubtedly demonstrated [3, 4],  
currently known biological descriptors are non-specific (e.g., hippocampal volume) 
and their changes may be a consequence of various physiological processes. The poten-
tially useful information related to biological causes of the cognitive status of a patient is 
therefore hidden in the large ‘noise’ of interfering physiological processes.

From the data analysis point of view we are searching for relevant relations in a very 
noisy data domain (biological descriptors) in which the target function is defined by a 
large set of imprecise and sometimes biased values (clinical descriptors). A simplified 
approach in which medical AD diagnosis is used as the target function has enabled 
detection of some relations, like the correlation of the decreased FDG-PET values and 
the AD diagnosis, but all the detected relations including those obtained by complex 
supervised approaches [5] have low predictive power and did not significantly improve 
our understanding of the disease. In line with the approach proposed in [6], our work 
employs a novel clustering algorithm, and aims at finding homogeneous subpopulations 
of AD patients in which it will be easier to identify potentially relevant relations between 
clinical and biological descriptors.

Clustering is a well-established machine learning methodology aimed at grouping of 
examples (patients) so that members in the same cluster are as similar as possible [7]. The 
applications are numerous and mainly aimed at the discovery of underlying concepts pre-
sent in data. Popular approaches to clustering are based on distance minimization (cen-
troid-based, k-means and hierarchical approaches) and detection of dense sets of examples 
(DBSCAN algorithm [8]). Distribution based clustering (expectation-maximization algo-
rithm [9]) searches for a combination of distribution functions that can generate observed 
data. It presents a theoretical generalization of the distance minimization approach. On 
the other side, subspace clustering (CLIQUE algorithm [10]) is a type of density based 
approach that can be applied to domains with a large number of attributes. Its distinctive 
property is automatic generation of human interpretable descriptions of identified clusters.

The idea is extended in the redescription mining approach [11] where the necessary 
condition for the recognition of a cluster is not the density of examples but the existence 
of descriptions in different attribute subspaces that describe examples in the cluster. But 
irrespective of the implemented approach, clustering requires that important parame-
ters like the number of clusters to be constructed, their minimal size, or maximal accept-
able distance between examples are specified by the user. Often many experiments and 
previous experience are needed to select good parameters for a concrete application. By 
selecting the parameters and the way the input data are prepared the user can signifi-
cantly influence the final result. The fact can be regarded as a deficiency of the method-
ology but also as its property that enables that available expert or background knowledge 
is included into the clustering process [12]. Especially problematic are domains in 
which examples are described by a combination of numerical and categorical attributes, 
because it is difficult to define appropriate distance measures, and domains that have 
many attributes, because the sensitivity of distance measures degrades as the number of 
non-informative attributes increases.

A distinguishing property of the approach presented in this work is the assumption 
that members of each cluster must have a common relation among a subset of attribute 
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values. For example, if we want to identify a cluster of grown-up males from a larger 
set of people we can do that by detecting a set of persons that all have properties like 
high weight, deep voice, broad shoulders and strong arms. In order words, co-existence 
of potentially many properties is a good motivation to cluster examples together. The 
approach is different from density based algorithms because there is no requirement on 
actual number of examples with some property and different from redescription mining 
because no descriptions are generated. The resulting clusters may be similar to those 
obtained by distance based approaches because it can be assumed that distance between 
examples with co-existing properties will be small. The methodology can be regarded 
as an upgrade of the distance based approach in which co-existng attribute values are 
selected as those that are actually relevant for the computation of distances between 
examples. The practical implementation consists of two steps. In the first step similar-
ity between all pairs of examples is determined through an application of a supervised 
learning algorithm [13]. In the second step, which is novel, possible reduction of the var-
iability of similarity values is used to identify homogeneous clusters in single-layer and 
multi-layer settings [14]. Multi-layer approach is a way to ensure high homogeneity of 
constructed clusters. By using clinical data in one layer and biological data in the other 
layer and by constructing clusters that are at the same time homogeneous in both layers, 
the methodology seems tailored for discovery of relations that exist between clinical and 
biological characteristics of patients. In this work we present modification the method-
ology originally published in [14] and extension of the results published in [15, 16].

Methods
Data were obtained from the Alzheimer’s disease neuroimaging initiative (ADNI) data-
base. ADNI is a long term project aimed at the identification of biomarkers of the disease 
and understanding of the related pathophysiology processes. The project collects a broad 
range of clinical and biological data about patients with different cognitive impairment. 
The ADNI was launched in 2003 by the National Institute on Aging (NIA), the National 
Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Admin-
istration (FDA), private pharmaceutical companies and non-profit organizations. More 
information can be found at http://www.adni-info.org and http://www.adni.loni.usc.edu.

ADNI dataset used in the experiments

Our work started from a set of numerical descriptors extracted from the ADNIMERGE 
table, the joined dataset from several ADNI data tables. We used baseline evaluation 
data for 916 patients in total with five different medical diagnoses: cognitive normal CN 
(187 patients), significant memory concern SMC (106), early mild cognitive impairment 
EMCI (311), late mild cognitive impairment LMCI (164), and Alzheimer’s disease AD 
(148). The patients are described by a total of 10 biological and 23 clinical descriptors. 
Biological descriptors are genetic variations of APOE4 related gene, PET imaging results 
FDG-PET and AV45, and MRI volumetric data of: ventricles, hippocampus, wholeBrain, 
entorhinal, fusiform gyrus, middle temporal gyrus (midtemp), and intracerebral volume 
(ICV). Clinical descriptors are: clinical dementia rating sum of boxes (CDRSB), Alz-
heimer’s disease assessment scale (ADAS13), mini mental state examination (MMSE), 
rey auditory verbal learning test (RAVLT immediate, learning, forgetting, percentage of 

http://www.adni-info.org
http://www.adni.loni.usc.edu
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forgetting), functional assessment questionnaire (FAQ), montreal cognitive assessment 
(MOCA) and everyday cognition which are cognitive functions questionnaire filled by 
the patient (ECogPt) and the patient study partner (ECogSP) (memory, language, visuos-
patial abilities, planning, organization, divided attention, and total score).

The clustering process started from one table with biological data consisting of 916 
rows and 10 columns and one table with clinical data consisting of 916 rows and 23 col-
umns. Each of the two tables represented one attribute layer. The information about 
medical diagnoses of the patients have not been included into the tables with the inten-
tion to use it only in the evaluation of the clustering results. The goal of the clustering 
process was to identify groups of patients that are large as possible and as similar as pos-
sible in terms of both layers, i.e., biological and clinical characteristics.

Overview of the multi‑layer clustering approach

Before explaining the multi-layer clustering approach, let us first assume a basic cluster-
ing task in which we have only one layer of attributes. The clustering process consists of 
two steps. In the first step we compute the so-called example similarity table (EST). It is 
an N × N  symmetric matrix, where N is the number of examples. All its values are in 
the range 0.0–1.0. A large similarity value vi,j at position (i, j), i �= j, denotes a large simi-
larity between examples exi and exj. In the next steps, the EST table is used in the cluster 
construction process.

Step 1: compute example similarity table (EST) through supervised learning

Computation of the example similarity table starts from the original set of N examples 
represented by nominal and numerical attributes that may contain unknown values. An 
artificial classification problem is defined so that the examples from the original set rep-
resent positive examples while negative examples are artificially constructed by shuffling 
the values of the positive examples. The shuffling is performed at the level of attributes 
so that we randomly mix values among the examples. The values remain within the same 
attribute as in the original set of examples. As a result, we have the same attribute values 
in positive and negative examples, but in negative examples we have randomized con-
nections between the attribute values.

Next, a supervised machine learning algorithm is used to build a predictive model dis-
criminating the positive cases (original examples) and the negative cases (examples with 
shuffled attribute values). The goal of learning is not the predictive model itself, but the 
information on the similarity of examples. To this end, appropriate machine learning 
approaches need to be used, i.e., approaches that are able to determine which examples 
are classified in the same class in the same manner. For example, in decision tree learn-
ing these are the examples which end in the same leaf node, while in decision rule learn-
ing these are the examples covered by the same rule. In order to reliably estimate the 
similarity of examples it is necessary to compute statistics over a sufficiently large set 
of classifiers (i.e., decision trees or rules). Additionally, a necessary condition for a good 
estimate is that classifiers are as diverse as possible and that each of them is better than 
a random classifier. All these conditions are satisfied, for example, by the random forest 
[17] and random rules algorithms [18]. We use the latter approach in which we typically 
construct 50,000 rules for each EST estimation.
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Similarity between the original (positive) examples is determined as follows. For each 
pair of the original examples we count how many rules cover both examples. A pair of 
similar examples will be covered by many rules, while no rules or a very small number of 
rules will cover pairs that are very different in respect of their attribute values. The exact 
EST values are obtained by normalization of the above mentioned counts with the larg-
est detected value in the table.

Let us illustrate the EST computation with the following example. Table 1 presents an 
EST for a subset of 6 examples extracted from a real-world domain [14]. On the left-hand 
side is the table with numbers of rules covering pairs of examples. Diagonal elements rep-
resent total numbers of rules covering each example. After normalization of this table we 
obtain the EST that is presented on the right-hand side. It can be noticed that we have two 
very similar examples (ex2 and ex5), three similar examples (ex1, ex3 and ex4), and one very 
different example (ex6). The maximal value in the table on the left-hand side is 140 and EST 
values (the table on the right-hand side) are obtained by normalization with this value.

Step 2: compute clustering related variability (CRV) score

The second step in the process of clustering uses the example similarity information rep-
resented by the EST in order to identify subsets of examples with reduced variability 
of similarity estimates. For this purpose we define the so-called clustering related vari-
ability (CRV) score. This is the basic measure used as a heuristic function that guides the 
search process in the iterative bottom-up clustering algorithm. The CRV score is defined 
for a single example, but its value depends on the examples it is clustered with, though a 
cluster may consist of a single example.

The CRV score for an example exi, denoted by CRVi, is the sum of squared deviates of 
EST values {vi,j , j ∈ {1, . . . ,N }} in row i (i.e., example exi), where CRVi is actually com-
puted as a sum of two components:

Within cluster value CRVi,wc =
∑

j∈C(vi,j − vmean,wc)
2 is computed as a sum over col-

umns j of row i corresponding to examples included in the same cluster C with exam-
ple exi. In this expression vmean,wc is the mean value of all vi,j in the cluster. When exam-
ple exi is the only example in cluster C then CRVi,wc = 0 because we compute the sum 
only for value vi,i and vmean,wc = vi,i.
Outside cluster value CRVi,oc =

∑
j /∈C(vi,j − vmean,oc)

2 is defined in the same way as 
CRVi,wc but for vi,j values of row i not included in cluster C. The vmean,oc is the mean 
value of the EST values in row i not included in the cluster and it is different from 

CRVi = CRVi,wc + CRVi,oc

Table 1  Example of an EST

ex1 ex2 ex3 ex4 ex5 ex6 ex1 ex2 ex3 ex4 ex5 ex6

ex1 72 5 51 48 0 19 ex1 0.51 0.04 0.36 0.34 0.00 0.14

ex2 5 140 11 4 118 20 ex2 0.04 1.00 0.08 0.03 0.84 0.14

ex3 51 11 87 62 6 9 ex3 0.36 0.08 0.62 0.44 0.04 0.06

ex4 48 4 62 91 12 7 ex4 0.34 0.03 0.44 0.65 0.09 0.05

ex5 0 118 6 12 125 18 ex5 0.00 0.84 0.04 0.09 0.89 0.13

ex6 19 20 9 7 18 55 ex6 0.14 0.14 0.06 0.05 0.13 0.39
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vmean,wc used to compute CRVi,wc. When example exi is the only example in a cluster 
then CRVi,oc is the sum of squared deviates for all values in row i except vi,i.
Final cluster value CRVC is computed as the sum of all CRVi values of the examples 
contained in the cluster: 

Step 3: apply CRV score based multi‑layer clustering algorithm

Before presenting the multi-layer clustering algorithm used in the experiments, we first 
describe its single-layer variant.

Based on the CRV score we can define the following bottom–up clustering algorithm 
that iteratively merges the most similar examples together. In this way it produces a hierar-
chy of clusters. It should be noted that, in contrast to most other clustering algorithms, this 
algorithm has a well defined stopping criterion. The process stops when further merging 
does not result in the reduction of example variability measured by the CRV score. This 
means that the algorithm automatically determines the optimal number of clusters and 
that some examples may stay unclustered, or, more precisely, they remain in clusters con-
sisting of a single example. The single-layer clustering algorithm is presented below.

CRV score based single-layer clustering algorithm
1) Each example is in its own cluster
2) Iteratively repeat steps 3–6
3) For each pair of clusters x,y compute

CRVx (CRV for examples in cluster x)
CRVy (CRV for examples in cluster y)
CRVxy (CRV score in union of clusters x and y)
DIFF = CRVx+CRVy − CRVxy

4) Select pair of clusters x,y with maximal DIFF value
5) If maximal DIFF is positive then merge clusters x and y

6) Else stop

Let us illustrate CRV score and DIFF computation on a simple example. We take 
the data from the EST presented in Table  1 from which one can notice high similar-
ity between examples ex2 and ex5. We will compute the CRVex2 value for example ex2 
when it is the only example in a cluster, CRVex5 value for example ex5 when it is in its 
own cluster, and finally the value CRVex2, ex5 when these two examples are together in 
one cluster. The aim is to demonstrate that DIFF value for this case is positive and large, 
resulting in a decision to actually put these two examples in one cluster.

1.	� If example ex2 is the only example in a cluster then vmean,wc = 1.0 and vmean,oc = 0.23.

 CRVex2 = 0.484

CRVC =
∑

i∈C

CRVi.

CRVex2,wc = (1.0− 1.0)2 = 0

CRVex2,oc = (0.04 − 0.23)2 + (0.08− 0.23)2 + (0.03− 0.23)2 + (0.84 − 0.23)2

+ (0.14 − 0.23)2 = 0.484
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2.	 If example ex5 is the only example in a cluster then vmean,wc = 0.89 and vmean,oc = 0.22.  
CRVex5,wc = (0.89− 0.89)2 = 0

CRVex5 = 0.494

3.	 If example ex2 and ex5 are together in a cluster then for ex2 we have vmean,wc = 0.92 
and vmean,oc = 0.07. CRVex2,wc = (1.00− .92)2 + (0.84 − 0.92)2 = 0.012

CRVex2 = 0.020

4.	 If example ex2 and ex5 are together in a cluster then for ex5 we have vmean,wc = 0.87 
and vmean,oc = 0.06. CRVex5,wc = (0.84 − 0.87)2 + (0.89− .87)2 = 0.001

CRVex5 = 0.010

5.	 CRVex2,ex5 = 0.030

6.	 DIFF = CRVex2 + CRVex5 − CRVex2,ex5 = 0.948

The basic lesson learned from redescription mining and multi-view clustering is that the reli-
ability of clustering can be significantly improved with a requirement that the result should 
be confirmed (i.e., difference between CRV scores should be as high as possible) in two or 
more attribute layers. The approach to clustering based on example similarity presented 
above for a single-layer case can be easily extended to clustering in multi-layer domains.

If we have more than one attribute layer then we compute the example similarity table 
independently for each of the layers. For each layer we construct a separate artificial 
classification problem and construct a separate EST table. Regardless of the number and 
type of attributes in different layers, EST tables will always be matrices of dimension 
N × N , because we have the same set of N examples in all the layers. After computing 
the EST tables, multi-layer clustering is performed as described below.

CRV score based multi-layer clustering algorithm
1) Each example is in its own cluster
2) Iteratively repeat steps 3–8
3) For each pair of clusters x,y do
4) For each attribute layer l compute

CRVlx (CRV for examples in cluster x in layer l)
CRVly (CRV for examples in cluster y in layer l)
CRVlxy (CRV score in union of clusters x and y in layer l)
DIFFl = CRVlx+CRVly − CRVlxy

5) For the given cluster pair x,y: DIFF = minl DIFFl

6) Select pair of clusters x,y with maximal DIFF value
7) If maximal DIFF is positive then merge clusters x and y

8) Else stop

 Conceptually, the multi-layer clustering is identical to the single-layer one. The main 
difference is that we merge two clusters together only if there is variability reduction in 
all the layers. For each possible pair of clusters we have to compute potential variabil-
ity reduction for all attribute layers and to select the smallest value for this pair. If this 

CRVex5,oc = (0.00− 0.22)2 + (0.84− 0.22)2 + (0.04− 0.22)2 + (0.09− 0.22)2 + (0.13− 0.22)2 = 0.494

CRVex2,oc = (0.04 − 0.07)2 + (0.08 − 0.07)2 + (0.03 − 0.07)2 + (0.14 − 0.07)2 = 0.008

CRVex5,oc = (0.00−0.06)2+ (0.04−0.06)2+ (0.09−0.06)2+ (0.13−0.06)2 = 0.009
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minimal value is positive it means that merging of the clusters enables variability reduc-
tion in all the layers. When there are more pairs with positive minimal value, we chose 
the pair with the largest minimal value and then we merge these clusters in the current 
iteration. When we perform clustering in two or more layers we have a conjunction of 
necessary conditions for merging two clusters. A consequence is that resulting clusters 
are smaller than in the case of a single-layer clustering.

Positive properties of the approach are that no explicit distance measure is used, that 
the algorithm has a well-defined stopping criterion, that examples can include both 
numerical and categorical attributes with unknown values, and that availability of many 
attributes is an advantage. The algorithm cannot be used in domains with a very small 
number of attributes and in applications like text mining in which attribute values are 
sparse. The main disadvantage of the approach is high sensitivity to the existence of 
attribute copies. The multi-layer concept can be regarded as a way to ensure attribute 
diversity at least at the level of different layers. Finally, it must be noted that the final 
result of the algorithm is a potentially large set of clusters and that some of clusters may 
contain only a small number of examples. Which clusters will be selected for the expert 
evaluation is the task for a human evaluator. A common practice is to select a small 
number of large clusters. In this work we have selected three largest clusters.

The algorithm is publicly available as a web service at http://www.rr.irb.hr/MLC/index.
php. The instructions as well as an illustrative data set that may be used for experiments 
are also available.

Results
By applying the multi-layer clustering to the available data set we identified three clusters 
of patients with significant problems with dementia. Table 2 presents the basic informa-
tion about the clusters: total number of included patients, number of patients with AD, 
LMCI, and EMCI diagnosis that are in the cluster, and mean value of the CDRSB score 
for included patients. In the last column are the names of clusters that have been given 
after the analysis of the properties of included patients.

The first cluster (A) includes patients with very small volumes of all relevant parts of 
the brain: hippocamus, entorhinal, fusiform gyrus, and middle temporal gyrus. Small are 
also intracerebral volume and the volume of the whole brain. From Table  3 it can be 
seen that for fusiform and midtemp the mean values for patients in the first cluster are 
about 20 % lower than the mean values for the cognitive normal ADNI population. For 
Entorhinal volume the difference is about 30 %. Atrophy for patients in this cluster is so 
high that their mean volumetric data are lower than the mean value for all 148 patients 

Table 2  Three clusters of patients with significant dementia problems. In the last column 
are the names of clusters given according to the properties of the included patients

Cluster Number of 
patients

Patients with diagnoses CDRSB score Description

AD LMCI EMCI

A 35 30 4 1 4.81 Severe atrophy AD

B 21 10 9 2 3.55 Mild self-critical AD

C 42 30 10 2 4.15 Traumatic AD

http://www.rr.irb.hr/MLC/index.php
http://www.rr.irb.hr/MLC/index.php
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with AD diagnosis. The clinical properties of patients in this cluster are characteristic 
for patients with severe problems with dementia: very high CDRSB, ADAS13, and FAQ 
scores and very low MMSE and MOCA scores (Table 4). Table 4 also presents FDG-PET 
values that are in accordance with the status of patients in this cluster. The name “severe 
atrophy AD” that is given to the cluster denotes patients that have severe problems with 
dementia as a consequence of a strong degenerative process. The cluster consists of 
about 65 % of female patients. The cluster includes 30 patients with AD diagnosis, four 
patients with LMCI diagnosis, and one patient with EMCI diagnosis (see Table 2). The 
question why these patients with LMCI and even EMCI diagnosis have been included 
into a cluster with severe problems with dementia deserves special attention but is out of 
the scope of this work. ADNI identification numbers for these patients are 2194 (EMCI), 
4034, 4167, 4430, and 4502 (LMCI).

The second cluster (B) is named “mild self-critical AD.” It includes 10 patients with 
AD, nine patients with LMCI, and two patients with EMCI diagnosis. The patients are 
characterized with moderately decreased volumes that are about 20  % for Entorhinal 
and Hippocampus, and 10 % for Fusiform and midtemp lower than mean values for cog-
nitive normal patients. The intracerebral volume and whole brain volume are about nor-
mal values. Clinical picture is typical for AD patients (CDRSB score above three) but 
values for all scales demonstrate a mild form of AD. A decisive property of patients in 
this cluster is that for all cognitive functions problems values reported by patients them-
selves are higher than for other clusters and higher than the mean value for the complete 
AD population (see Table 5). The result suggests self-criticism of included patients. This 
is an interesting observation because self-criticism is not characteristic for patients that 
have problems with dementia and typically it is less expressed as the disease progresses. 
The cluster includes about 60 % of female patients.

The third cluster (C) consists of patients with the least expressed degenerative changes 
in respect of hippocampus, entorhinal, fusiform, and midtemp (see Table 3) but which 

Table 3  Mean values of MRI volumetric data for clusters A, B and C

Actual values are reduced by 1000. In last two rows are the mean values for 148 patients with AD diagnosis and 187 
cognitive normal patients

Cluster Hippocampus Entorhinal Fusiform MidTemp ICV Wholebrain

A 5.52 2.7 14.5 15.3 1388 912

B 6.05 3.1 16.7 18.7 1464 1011

C 6.46 3.3 17.8 19.3 1710 1124

AD 5.91 2.9 16.3 17.8 1509 1006

CN 7.53 3.9 18.7 20.8 1487 1054

Table 4  Mean values of FDG-PET data and four clinical scores for clusters A, B and C

Cluster FDG ADAS13 MMSE MOCA FAQ

A 4.72 35 22 15 15

B 5.68 24 25 20 10

C 5.07 30 24 18 12

AD 5.34 31 23 17 13

CN 6.59 9 29 26 0
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are accompanied by high values of the ventricular volume, the intracerebral volume, and 
the whole brain volume (see Table 6). Mean value for the ventricles is about 100 % higher 
than for cognitive normal patients. Patients in clusters A and B also have increased ven-
tricles but their size is significantly smaller. It is very important to notice that in spite of 
the low level of brain atrophy the included patients have unexpectedly expressed prob-
lems with dementia, and for all scales, including the FDG-PET, the values are between 
the values of the first and the second cluster (see Table  4). Clinically the patients in 
this cluster have specifically problems with RAVLT forgetting and divided attention as 
reported by the patient study partner (see Table 6). We name this cluster “traumatic AD” 
because it is known that head injuries may cause ventricular enlargement [19]. The sup-
porting fact is that 85 % of included patients are males and brain injuries in some male 
sports like boxing and football as well injuries during military service may result in sig-
nificant problems with dementia [20, 21]. Data available in the ADNI database did not 
allow us to evaluate this hypothesis.

The relation between brain degeneration and ventricular enlargement for clusters A, B 
and C is presented in Fig.  1. Hippocampal volume is selected for the illustration of the 
brain degeneration. Small red points represent patients in cluster A, small green points are 
patients in cluster B, while patients in cluster C are denoted by blue points. Large circles 
denote mean values in corresponding clusters. The position of the black “×” denotes the 
mean value for 187 cognitive normal patients while the big black circle is the mean value 
for 148 patients with AD diagnosis. At first we can notice a significant difference between 
cognitive normal and AD patients both in respect of hippocampal volume and ventricular 
volume. But even more interesting are the differences among clusters. Hippocampal atro-
phy (and also entorhinal, fusiform, and midtemp volumes) is most severe for cluster A and 
least expressed for cluster C. In contrast, ventricular enlargement of similar intensity is 
present for clusters A and B while it is especially expressed for cluster C.

Table 5  Mean values of  cognitive functions questionnaire demonstrating self-criticism 
filled out by patients in cluster B

Cluster EcogPt

Memory Language Visuosp. Planning Organization Div. att. Total

A 2.35 1.81 1.55 1.40 1.59 1.90 1.81

B 2.60 1.95 1.81 1.62 1.70 1.98 1.97

C 2.29 1.78 1.49 1.50 1.50 1.61 1.77

AD 2.40 1.88 1.60 1.62 1.74 1.91 1.89

CN 1.54 1.35 1.15 1.12 1.25 1.42 1.32

Table 6  Characteristics of patients in cluster C

Cluster Ventricles ICV Wholebrain RAVLT forgetting EcogSP Div att.

A 43.1 1388 912 4.20 2.86

B 41.4 1464 1011 4.76 2.85

C 64.9 1710 1124 4.86 2.94

AD 47.8 1509 1006 4.42 2.90

CN 32.5 1487 1054 3.80 1.25
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Figure 2 illustrates relations between values of ICV and clinical severity of dementia. 
ADAS13 score is used as a measure of the clinical status of patients but similar proper-
ties are present also for CDRSB, FAQ, MOCA and MMSE. At first it should be noted 
that in respect of ICV there is no significant differences between cognitive normal 
patients and AD patients when we compare mean values of the complete populations 
but that there are significant differences when we look at specific patients and mean val-
ues of clusters. Patients in cluster C (blue points) are mostly in the right-hand part of 
the figure while red and green points (patients in clusters A and B, respectively) are in 
the left-hand part. Patients in all three clusters have significant problems with dementia 
(ADAS13 values above 20), clinical symptoms are very expressed for clusters A and C 
while they can be characterized as mild for the majority of patients in cluster B.

Fig. 1  Ventricles versus hippocampus volumes. Distribution of patients in cluster A (red circles), cluster B 
(green circles), and cluster C (blue circles) is presented by their hippocampus and ventricles volume values.  Big 
circles present mean values of clusters. The big “×” represents the mean value for 187 CN patients while the big 
black circle represents the mean value for AD patients

Fig. 2  ADAS14 score versus intracerebral volume.Relation between ADAS13 score and ICV values for patients 
in cluster A (red circles), cluster B (green circles), and cluster C (blue circles). Big circles present the mean values 
of clusters. The big “×” represents the mean value for 187 CN patients while the big black circle represents the 
mean value for AD patients
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Discussion
The results demonstrate that the population of patients that have problems with demen-
tia is very non-homogeneous and that population of patients diagnosed as cognitive nor-
mal is even less homogeneous than the population of patients with AD diagnosis. This 
can be concluded from the fact that constructed clusters are small and that all three larg-
est clusters are subgroups of patients in which those with AD diagnosis are the major-
ity. The total number of patients with AD diagnosis included into clusters A, B and C is 
less than 50 % of all AD patients. This means that our clusters should be interpreted as 
the most homogeneous subpopulations of AD patients and not as a segmentation of the 
complete AD population.

Very elaborate medical studies have recently shown that mild and severe cognitive 
impairment as well as AD diagnosis are correlated with atrophy of the brain. Our results 
are completely in agreement with these findings: degenerative changes of the brain are 
present in all three identified clusters. The strongest atrophy is characteristic for patients 
in cluster A and it is accompanied by the most severe clinical properties of patients. 
Significant atrophy is present in cluster B and although it is less expressed in cluster C, 
lower than normal volumes of hippocamus, entorhinal, fusiform gyrus, and middle tem-
poral gyrus can be encountered practically in all included patients. The novelty of our 
result is the identification of cluster B which includes patients that demonstrate a prop-
erty of self-criticism, and especially the identification of cluster C for which it may be 
assumed that medical problems are a consequence of previous brain injuries.

The relevance of cluster C is manifold. First, it is interesting that this is the largest 
identified cluster. This is not a proof that injuries are the most common cause of prob-
lems with dementia because only about 20 % of patients with AD diagnosis included into 
the analysis are actually present in cluster C. But the result suggests that a significant 
part of problems with dementia can be attributed to previous brain injuries. The proper-
ties of patients in cluster C suggest that brain injuries alone are not enough for the devel-
opment of AD: it is necessary that they are accompanied by at least mild brain atrophy. 
It is perhaps the reason that consequences of brain injuries are not present immediately 
after the injury but only after many years when due to aging atrophy naturally happens.

Our results demonstrate that large volume of ventricles that can be attributed to inju-
ries of patients included into cluster C is unexpectedly correlated with large ICV and the 
whole brain volumes. The result is in agreement with our previous results [15, 16] which 
demonstrated existence of male AD subpopulations with such properties. Although dif-
ferences among clusters for ICV values are less expressed than differences for ventricles, 
differences for ICV and whole brain volumes are statistically more significant than dif-
ferences for ventricles because the direction of differences is opposite: due to atrophy 
ICV and whole brain volumes are decreased while due to injures they are increased. It 
can be observed that a significant number of cognitive normal, especially male patients 
in the ADNI database also have increased values of ICV. An important issue is whether 
these patients also have a history of previous brain injuries and if they will develop AD 
when even a slight brain atrophy will take place.

Finally, it is interesting to notice that the mean values of FDG-PET presented in 
Table  4 for clusters A, B and C decrease proportionally to the severity of the disease 
regardless of the causes of the disease and the way volumetric values change. The result 
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is not surprising because it is in accordance with previously published results [3]. A les-
son learnt from our work is that FDG-PET is not useful for understanding the underly-
ing biological processes but it is the most useful among available biological descriptors 
for the objective evaluation of the clinical status of patients.

Conclusions
This work presents the application of a novel clustering methodology for identification 
of small but homogeneous subsets of patients with significant dementia problems. The 
methodology is based on a novel concept of co-existing properties as a main motiva-
tion for building clusters. The evaluation of the properties of constructed clusters has 
clearly demonstrated usefulness of the developed algorithm. But the methodology has 
also some deficiencies, among which sensitivity to inclusion of highly correlated attrib-
utes is the most significant. Because of that the implemented algorithm cannot be rec-
ommended as a general purpose clustering tool. The success in the AD domain is mainly 
due to the availability of many attributes distributed in two different data layers. It may 
be expected that the methodology will be successful also in other similar medical and 
non-medical domains.

AD domain is a good example of a task in which relations between layers can be differ-
ent for various subpopulations. In such cases it is very difficult to identify relevant rela-
tions on a complete population by classical statistical analysis and supervised machine 
learning approaches. But after successful identification of homogeneous subpopulations 
even a simple analysis of mean values and standard deviations may enable discovery of 
relevant relations.

A drawback of the methodology is that constructed clusters are small and that they 
tend to be even smaller if more than two layers are used. In the concrete AD domain we 
got some useful insights about less than a half of AD patients and practically no insight 
about cognitive normal patients and patients with mild impairment. Additionally, the 
methodology has a high computational complexity, which is growing quadratically with 
the number of examples. Because of this the methodology is currently not applicable to 
domains with more than a few thousands of examples.
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