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Background
Magnetic resonance imaging is of ever increasing importance in clinical and research 
settings, owing to its accurate non-invasive 3D representation of the internal human 
structure. Nevertheless, MRI suffers significantly from noise arising during the acquisi-
tion procedure. Hence, denoising is used as the primary preprocessing step for subse-
quent clinical diagnosis and other applications, such as registration and segmentation.

A wide range of denoising methods have been proposed to estimate the latent image from 
noisy observations and many of them can be categorized as patch-based filters. In general, 
patch-based filters estimate each voxel in an MRI dataset using patches selected according 
to some predefined similarity criteria. For example, a non-local means filter [1] denoises 
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images by minimizing the penalty term for the weighted distance between filtered image 
patches and other patches in the search window. This weighted distance was first defined as 
a decreasing function of the Euclidean distance between gray level intensities in the patches, 
and then adapted to various high-order operators to enhance the performance [2–5]. This 
strategy has also been implemented effectively in statistical methods, such as expectation–
maximization-based Bayesian estimation [6] and maximum likelihood estimation [7] to 
promote more effective denoising of 3D MRI. On the other hand, based on the assumption 
that latent images have a sparse representation in some transform domain, numerous trans-
forms have been proposed to filter noisy images. These include the discrete cosine transform 
(DCT) [8], principal component analysis [9], over-complete dictionaries [10], and high-order 
singular value decomposition [11]. The filtering process was implemented by applying a 
shrinkage function to the transform coefficients and recovering estimated patches with an 
inverse transform. For instance, the block matching in three dimensions (BM3D) method [8] 
collects a group of similar patches from the reference patches to construct a 3D array. After 
projecting the 3D array onto a 3D transform basis, the coefficients are truncated by a hard 
threshold and filtered patches are reconstructed by inversion of the transform.

Although promising results have been achieved, the performance of patch-based fil-
ters is still limited by the necessity of finding sufficiently similar patches. Specifically, 
if the similar patches cannot be effectively represented, the denoising process will be 
affected by mistaken truncating of the signal component or some other implementation 
due to a lack of redundancy provided by similar patches. Since the number of voxels of 
3D MRI dataset is large, most of the currently used patch-based methods implemented 
a subset of the whole dataset as the searching window and compromise between compu-
tational efficiency and estimation accuracy empirically [2–4]. However, these predefined 
parameters cannot be used to fulfill various MRI dataset, especially when multimodal 
MRI has different signal to noise ratio (SNR) or resolutions.

Recently, another group of methods stems from the emerging theory of low-rank 
matrix completion, which is derived from compressed sensing theory [12], were pro-
posed to accomplish the accurate restoration from the whole 3D dataset effectively. 
Low-rank matrix completion technology relies on self-similarities across different slices 
or frames in an MRI dataset to construct a low-rank matrix and demonstrates significant 
benefits for various MRI applications, including reconstruction from highly under-sam-
pled k-t space data [13], super-resolution [14], and denoising [15–17]. Lin exploited the 
self-similarity between multi-channel coil images and formulated denoising as a non-
smooth convex optimization problem [15]. Lam incorporated low-rank modeling and 
an edge-preserving smoothing algorithm prior to denoising MRI data in a unified math-
ematical framework [16]. Recently, Talebi and Milafar [18] proposed a promising global 
approach based on low-rank approximation to denoise natural scene images. Rather 
than empirically predefining a part of the image as a search window, this global filter 
introduced the whole dataset as a search window and implemented a low-rank Nyström 
extension to approximate the large weighting matrix for practical applications [19].

In this study, we propose a modified global filtering framework for 3D MRI. The pro-
posed framework estimates denoised voxels based on a similarity weighting matrix which 
is computed between the reference patches and other patches located throughout the 
entire dataset. Meanwhile, the large similarity weighting matrix is low-rank approximated 
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using the Nyström method [19] to achieve computational viability. The contributions of 
this work are as follows: firstly, the global filtering framework is extended and applied to 
3D MRI datasets. More importantly, since the computational burden is prohibitively high 
due to the sophisticated structure of 3D MRI data and other MRI modalities such as dif-
fusion weighted imaging (DWI) [20], a simple and efficient sampling scheme, k-means 
clustering, is introduced to improve the Nyström method for applicable implementations. 
This adaptive sampling scheme enhances the matrix estimation accuracy and effectively 
improves the computational efficiency. This is significantly beneficial for global filtering.

In the remainder of this paper, we describe our global filtering framework in detail, 
together with the adaptive Nyström low-rank approximation. After quantitative and 
qualitative comparisons of the proposed global framework for multimodal MRI datasets, 
we consider the advantages and limitations of our proposed technique.

Methods
General model of iterative global denoising

Image denoising, as the most common image restoration problem, can be modeled as:

where y and x are column vectors in the noisy image [y1, y2, …, yn]T and the ‘original’ 
image [x1, x2, …, xn]T and n represents additive Gaussian noise. The commonly-used 
spatial domain denoising method can be represented using the following restoration 
framework:

where the kernel Kij weights the similarity between xi and yj and x̂i is the estimated voxel.
This equation can be minimized by substituting the normalized weighting sum of each 

voxel:

where the weighting vector can be defined as

in which [Mi1,Mi2, . . . ,Min] denotes the ith row of the kernel M. The global denoising 
process for the whole image can be represented by stacking the weighting vectors:

where W is the denoising weighting matrix used to estimate the denoised voxel x̂.
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n∑
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While W is not generally a symmetric matrix, it can be closely approximated as a sym-
metric, positive definite matrix [21] and then eigen-decomposed as follows:

where V = [v1, . . . , vn] is a complete orthonormal basis for Rn. E = diag[�1, . . . , �n] con-
tains the eigenvalues in decreasing order 0 ≤ �n ≤ · · · ≤ �1 = 1. The global denoising 
proposed in (5) can then be rewritten as:

In the proposed global denoising framework, y is first projected onto the eigenvector of 
W; then the projected signal is manipulated with its corresponding eigenvalue, which 
maps back to the original domain to obtain the final estimation x̂. Since the filter W was 
performed on the leading eigenvector, the mean square error (MSE) of the global filter 
truncated with m leading eigenvalues can be computed as [22]:

where b = VTx = [b1, . . . , bn]
T contains the projected signal in all modes. However, as 

indicated in [16], hard threshold truncating preserves an accurate estimation of the opti-
mal threshold, which can be used to avoid under- or over-smoothing. In this study, we 
introduce an iterative diffusion model [22] which can tune the filter to vary its filtering 
strength iteratively. The proposed global filter can then be rewritten as:

where Vm = [v1, v2, . . . vm], Skm = diag[�k1, �
k
2, . . . , �

k
m], and k denotes the iteration num-

ber. When this model is used, the mean square error (MSE) can be rewritten for this 
iterative truncated filter as:

The minimization problem can then be extended to estimate the shrinkage (k̂) and trun-
cation (m̂) factors from an estimation of the mean square error.

It is worth noting that the initial global filter proposed in (9) was designated for images 
corrupted by additive Gaussian noise and cannot be directly applied to MRI datasets 
which are corrupted by Rician noise [23]. Owing to advantages of the recently-proposed 
method of variance-stabilizing transforms for the Rician distribution [22], the global fil-
ter in (9) can be successfully applied to Rician noise data without any modification of the 
algorithm [22, 24]. The VST transform can effectively remove the dependence of noise 
variance for the underlying signal before denoising and can compensate for the effects 
of bias in the filtered results. Formally, the global filter can be expressed as follows for 
Rician noise:

(6)W = VEVT ,

(7)x̂ = Wy = VEVTy,

(8)MSE(m) =

n∑

i=1

x2i +
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where VST−1 denotes the inverse of VST and σR is the standard deviation of the Rician 
noise. Thus, the noisy Rician data y is first stabilized by the VST and then filtered using 
the proposed global filter. The denoised results are finally obtained by applying an 
inverse VST to the denoising output.

It should be noted: firstly, since the global framework implemented the whole data-
set to obtain the optimal similarity weight matrix, this scheme will be improvable for 
currently used patch-based denoising methods. Secondly, the computational burden of 
the proposed global framework is prohibitively high due to 3D structure of MRI dataset. 
As a result, we have implemented the Nyström method [19] in the following section in 
order to ameliorate this problem. We then introduce a k-means clustering which further 
improves the global framework to achieve applicable implementation for 3D MRI.

K‑means Nyström approximation for global filtering

As mentioned above, the proposed global filter demands extremely high computational 
and storage costs. Fortunately, as mentioned previously, the proposed global framework 
only requires a portion of the ‘best’ eigenvectors and eigenvalues for efficient matrix 
approximation, rather than computing every element of W. This strategy can be effec-
tively achieved by the Nyström method.

The Nyström method offers an efficient way to generate a low-rank approximation 
of the original matrix from a subset of its columns [19, 25, 26]. Given a matrix M, the 
eigenvectors can be estimated numerically:

where γ = [γ1, . . . , γn] and ε = [ε1, . . . , εn] represent the eigenvector and eigenvalue of 
M, respectively. Nyström suggests [19] that instead of computing all of the entries in M, 
the ‘best’ eigenvectors can be estimated through a sampled subset of the whole dataset, 
in order to obtain an approximation for M̃.

Let the l ×  l matrix M1 denote the similarity weights of voxels in the subimage W1, 
which samples l voxels from the entire image. The (n − l) × (n − l) matrix M2 denotes 
the similarity weights of voxels in subimage W2, which contains (n − l) unsampled vox-
els. The l × (n − l) matrix M12 denotes kernel weights between voxels in M1 and M2. The 
similarity matrix M can then be defined as.

According to Nyström, the approximation of the ‘best’ eigenvectors of M can be defined as:

(11)x̂ = Wy = VST−1((VmE
k
mV

T
mVST (y, σR)), σR),

(12)M = γεγ
T ,

(13)M =

[
M1 M12

MT
12 M2

]
,

(14)γ̃ =

[
γ1

MT
12γ1ε

−1
1

]
,
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where M1 = γ1ε1γ
T
1  and the approximation of M̃ can then be obtained as:

It is evident that the large matrix M2 in (12) has been simplified to MT
12M

−1
1 M12. In this 

circumstance, the subset M is crucial to the accuracy of the matrix approximation and 
computational efficiency. Several methods have been proposed to define a sampling 
strategy for subset M. The most intuitive sampling method for Nyström approximation 
is uniform sampling in which columns are selected using a fixed probability distribu-
tion [25]. It was implemented successfully in natural scene imagery. However, since MRI 
datasets contain a large background area and the informative voxels are distributed in 
a concentrated manor, uniform sampling cannot select informative voxels effectively. 
Besides uniform sampling, the dataset can be sampled non-uniformly, in which sampling 
is biased towards selection of the most informative columns of the matrix. For exam-
ple, column-norm sampling has been implemented to analyze a singular value decom-
position approximation algorithm [27], while diagonal sampling has been used to limit 
reconstruction error in the Nyström method [28, 29]. Unfortunately, these distributions 
cannot be efficiently computed in practice, except for special cases in which the dataset 
coincides with the sampling distribution.

In addition to fixed sampling methods, various adaptive sampling schemes have also 
been proposed to produce efficient low-rank approximations. The sparse greedy matrix 
approximation [30, 31] involves matching a pursuit algorithm to a new sample, ran-
domly selected from a subset in successive rounds. The incomplete Cholesky decompo-
sition [28] generates low-rank factorization through adaptive selection of columns based 
on potential pivots. The K-means clustering method stores centroids, which are used to 
generate informative columns [32].

For an MRI dataset, the informative voxels are concentrated in only a portion of the 
columns and the number of background voxels is large. Motivated by this observation 
and the fact that k-means clustering can find a local minimum in the quantization error 
[33], we propose using centroid voxels obtained by k-means clustering as adaptive sam-
pled voxels in the Nyström approximation. The reasons for choosing k-means clustering 
for adaptive voxel sampling are threefold and can be summarized as follows: firstly, the 
k-means clustering ensures most of the selected voxels are located in the informative 
parts of the dataset and excludes redundant sampling of voxels from the background 
area. Secondly, the centroids obtained by k-means clustering are distributed throughout 
the whole dynamic range, which is more representative of the whole dataset and thus 
improves the estimation accuracy. Thirdly, the k-means clustering itself has been proven 
to be more suitable for handling large datasets with minimal quantization errors [32]. 
Let k be the desired number of clusters: the larger k, the more accurate the approxi-
mation, together with higher computational burden. To explore the effectiveness of the 
proposed k-means clustering method, a quantitative comparison including uniform 
sampling and adaptive sampling, namely the sparse greedy matrix approximation and 
incomplete Cholesky decomposition, is proposed. The comparison was implemented 
using in-house MRI datasets, which included 35 different datasets from various parts 

(15)M̃ = γ̃ ε1γ̃
T =

[
M1 M12

MT
12 MT

12M
−1
1 M12

]
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of the human body. The performance of different sampling schemes using the Nyström 
approximation was evaluated using the relative accuracy defined in Ref. [19]:

where K and K(r) are the actual kernel and its exact rank-r approximation, F denotes the 
Frobenius norm. Using the Nyström approximation, the approximated kernel K̃(r) can 
be reconstructed using r leading eigenvectors. Note that the relative accuracy is lower-
bounded by 0 and will approach 1 as a good approximation. In our experiment, r is fixed 
at 100, which captures more than 90 % of the spectral energy in the MRI dataset.

As demonstrated in Table  1, the k-means method achieved the best performance 
among all algorithms, generating the most accurate approximation in nearly every set-
ting. When the sampling rate increased up to 20 %, the random sampling method even 
outperforms some adaptive methods; this fact was also observed by Zhang et al. [32]. 
This suggests there is a trade-off between time and space requirements.

After approximation of the similarity matrix M, the denoising filter W can be obtained 
as a row-normalized kernel M as demonstrated in Eq. 4:

where D = diag
[∑n

j=1 K1j ,
∑n

j=1 K2j , . . . ,
∑n

j=1 Knj

]
. Since we have already estimated 

the ‘best’ eigenvectors of M, the symmetric positive definite matrix W can be estimated 
using the Sinkhorn algorithm [21]:

Finally, W is orthogonalized to achieve the final denoising filter W̃. Define:

where W−1/2
1  is the symmetric positive definite square root of W1 and O can be eigen-

decomposed as O = VOEOV
T
O. The orthogonalized W̃ can then be expressed as:

(16)Relative Accuracy =

∥∥K − K(r)

∥∥
F∥∥∥K − K̃(r)

∥∥∥
F

× 100,

(17)W = D−1M,

(18)W =

[
W1 W12

WT
12 W2

]
,

(19)O = W1 +W
−1/2
1 W12W

T
12W

−1/2
1 ,

Table 1  Nyström reconstruction accuracy for various sampling methods for MRI datasets 
for three l/n percentages

Numbers in parenthesis indicate the standard deviations for 10 different runs for l. Numbers in italics indicate the best 
performance on each dataset

l/n % Uniform ICL SMGA K-means

5 62.3 (0.6) 67.7(0) 73.8 (1.3) 74.9 (0.8)

10 73.6 (1.1) 78.2(0) 81.7 (1.5) 86.2 (1.2)

20 84.8 (1.7) 83.4(0) 89.6 (1.9) 91.3 (1.1)



Page 8 of 17Wu et al. BioMed Eng OnLine  (2016) 15:54 

where Ẽ = EO and Ṽ =

[
W1

WT
12

]
W

−1/2
1 VOE

−1/2
O .

This global filter W̃ is approximated using the leading eigenvectors and eigenvalues 
and can be implemented for denoising using a small sampling rate which nearly matches 
the performance of the exact filter.

Experiments
The proposed framework was evaluated using state-of-the-art algorithms in both syn-
thetic and in vivo MRI datasets. In our proposed global framework, both the non-local 
means [2] and BM3D [8] were implemented as baseline kernels in spatial and transform 
domain respectively. It should be noted that any patch-based denoising method could be 
used in our proposed global denoising framework. The k-means clustering scheme was 
implemented for the Nyström approximation and the sampling rate was set to 0.0005 %, 
which was defined and discussed in the following section. The non-local means filter and 
BM3D were implemented for comparison and the parameters were set as indicated in 
[2] and [8], respectively.

Two open-access datasets, namely BrainWeb (simulated images) [34] and the Internet 
Brain Segmentation Repository (IBSR—real images) [35] were selected for comparison. 
In addition, a real MRI dataset containing the spinal cord and a real diffusion-weighted 
MRI dataset were utilized to evaluate the adaptability and robustness of the proposed 
framework.

For the BrainWeb dataset, T1, T2, and PD weighted 3D MRI phantoms were used. 
Each of these phantoms had a voxel size of 1 × 1 × 1 mm and was 181 × 217 × 181 
voxels in size. To evaluate the performance of the proposed framework, the same 
three phantom images corrupted by different levels of Rician noise (1–15  % of maxi-
mum intensity) were used and each image was denoised using the four denoising algo-
rithms outlined previously. The visual quality, together with the residuals (rescale to 64 
gray level for better discernment) of the T1, T2, and PD weighted datasets, are shown 
in Figs. 1, 2 and 3, respectively. The peak signal-to-noise ratio and structural similarity 
index [36] were selected for quantitative comparison (see Table 2).

For the IBSR dataset, 2 % Rician noise was added to achieve better discernment of the 
algorithm performance; the results are shown in Fig. 4. In addition to a visual compari-
son, the two horizontal profiles are also denoted.

The real 3D MRI dataset for the spinal cord was acquired using a Siemens 3T scan-
ner [TE = 4.7 ms, TR = 2040 ms, TI = 900 ms, voxel size = 1.0 × 1.0 × 1.0 mm, image 
size =  180 ×  192 ×  192, flip angle =  8°]. The Rician noise level was estimated to be 
around 3  % of the maximum gray level intensity using the method proposed by Aja-
Fernández et  al. [37]. Since the original dataset was already noisy, only the restored 
images are shown in Fig. 5. In addition to a visual comparison, the results of segmenta-
tion with a region-growing algorithm [38] are also provided. The seed point was manu-
ally selected in the center of the spinal cord area and is indicated with an asterisk.

(20)W̃ = ṼẼṼT .



Page 9 of 17Wu et al. BioMed Eng OnLine  (2016) 15:54 

The real 3D diffusion-weighted imaging dataset was obtained using a 3T Philips Intera 
Achieva MRI scanner (Best, The Netherlands), using an eight-element SENSE coil 
and a single shot echo-planar pulsed gradient spin-echo imaging sequence. Diffusion 
weighting was performed along 32 non-collinear directions with a value of 1000 s/mm2 
(matrix size = 128 × 128, field of view = 256 × 256 mm2, TE = 60 ms, TR = 10 s, thick-
ness = 2 mm, gap = 0, SENSE factor = 2). Diffusion tensor imaging was estimated from 
diffusion-weighted imaging data using a linear least-squares fitting procedure [20]. From 
this, the fractional anisotropy and principle direction (PD) weighted with fractional ani-
sotropy were computed; the results are shown in Figs. 6 and 7, respectively.

Results
Figures 1, 2 and 3 demonstrate visual evaluation of the denoising results using different 
MRI modalities with a 15 % noise level. It can been observed that the proposed global 
denoising framework improves patch-based methods (whether non-local means or 
BM3D) in different MRI modalities. Specifically, denoising results for the global filter 
feature less intensity oscillation in homogenous areas compared with the original patch-
based method. This finding can be more clearly observed in residual images. Moreo-
ver, the global filter can improve denoising of patch-based methods when there are high 

Fig. 1  Denoising results for an axial slice of the T1w BrainWeb phantom (Rician noise level of 15 %). The third 
row demonstrates the absolute value of the residual for different methods
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levels of noise. This finding is also in agreement with the quantitative comparison shown 
in Table 1, which shows that the peak signal-to-noise ratio and the structural similar-
ity index achieved by the global framework always achieve the best results. Finally, both 
edge and feature preservation can also benefit from this global filter. It can clearly be 
observed that the residual images in the global filter contain less structural informa-
tion compared with residuals from the original NLM or BM3D. This coincided with all 
modalities including T1w, T2w, and PDw.

Figure 4 shows denoising results using the proposed global filter with a real MRI data-
set from IBSR. Since the original images already contain noise, neither ideal residual 
images nor quantitative results can be obtained. As demonstrated with the synthetic 
dataset, the proposed global filter attains good results in terms of both noise removal 
and edge preservation. Similar to the results with the synthetic dataset, the denoising 
results from the global filter demonstrate a stable intensity in the central region of the 
target tissue and sharper edges. This can be better observed from line profiles which 
have smaller amplitude differences near the edges and attenuate the visible artifacts 
manifested in the image.

Figure 5 demonstrates the consistency of the proposed global framework for a real spi-
nal cord MRI dataset. Upon close inspection of the central area, it can be seen that the 

Fig. 2  Denoising results for an axial slice of the T2w BrainWeb phantom (Rician noise level of 15 %). The third 
row demonstrates the absolute value of the residual for different methods
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denoised results using the proposed method include a more explicit boundary, which 
matches the results obtained with the synthetic datasets. The segmentation results in 
the denoised image, which produce smoother contours in the spinal cord image, may be 
beneficial to further applications.

Figures  6 and 7 demonstrate the effect of shape and orientation information on the 
diffusion tensor computed using the denoised results in diffusion-weighted imaging. The 
original image of the PD orientation map and the fractional anisotropy contain obvi-
ous artifacts. Compared with the results obtained using the non-local means and BM3D 
methods, the proposed global framework exhibits visually significant improvements 
in both PD and fractional anisotropy. For the two methods using the proposed global 
framework, the results appear smoother and preserve more fine structural detail.

Discussion
We proposed a global filtering framework for 3D MRI. Compared with commonly used 
patch-based methods, the proposed global filter uses all of the voxels in an input image 
to denoise every single voxel. Since the involvement of all voxels in the 3D MRI data-
set results in a prohibitively high computational burden, we implemented a k-means 

Fig. 3  Denoising results for an axial slice of the PDw BrainWeb phantom (Rician noise level of 15 %). The third 
row demonstrates the absolute value of the residual for different methods
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clustering Nyström method to produce a low-rank approximation in order to achieve a 
viable algorithm.

The primary concern for efficiently generating a low-rank matrix approximation using 
the Nyström method is the sampling scheme. In this study, a k-means clustering algo-
rithm was proposed as an adaptive sampling scheme, which effectively improved both 
estimation accuracy and computational efficiency. Compared with commonly-used fixed 
sampling schemes, which acquire voxels from the whole dataset, the k-means clustering 
method excludes redundant sampling of background voxels which form a large portion 
of the MRI dataset and concentrates the sampling in the informative area. Moreover, 
since the k-means clustering obtained centroids covering the whole dynamic range of 
gray levels, it ensures a fully representative selection of voxels for the Nyström approxi-
mation. From this point, a more elegant clustering algorithm, together with more effec-
tive clustering criteria, retains the potential for further improvements.

Sampling rate is another crucial factor which compromises both the approximation 
accuracy and computational complexity. As demonstrated in Table 1, a higher sampling 
rate ensures a more accurate approximation. In addition, the proposed k-means clus-
tering sampling scheme achieved a more accurate approximation result, as a result of 
more effective sampling of the informative voxels. The denoising performance between 
the exact and approximated filter is compared in Fig. 8. The T1, T2, and PD weighted 

Table 2  PSNR and SSIM of the compared methods for different MRI modalities and Rician 
noise levels

Numbers in italics indicate the best performance on each dataset

Noise level (%) 1 3 5 7 9 11 13 15

T1w PSNR NLM 36.74 31.07 29.27 28.03 26.86 25.72 24.63 23.46

G-NLM 36.23 32.11 29.16 28.93 27.34 27.01 25.85 24.37

BM3D 43.40 36.65 33.48 31.26 29.26 27.47 25.97 24.40

G-BM3D 42.56 36.78 33.32 32.23 30.67 29.26 26.78 26.12

SSIM NLM 0.9700 0.9042 0.8666 0.8319 0.7968 0.7617 0.7275 0.6907

G-NLM 0.9625 0.9041 0.8745 0.8437 0.8052 0.7861 0.7432 0.7231

BM3D 0.9904 0.9632 0.9320 0.8993 0.8661 0.8326 0.8029 0.7697

G-BM3D 0.9903 0.9638 0.9362 0.9016 0.8795 0.8563 0.8247 0.7968

T2w PSNR NLM 33.37 27.52 24.43 22.99 22.16 21.55 20.99 20.42

G-NLM 33.43 27.51 25.12 23.37 22.06 21.87 21,34 20.64

BM3D 42.54 34.97 31.68 29.50 27.77 26.34 24.87 23.50

G-BM3D 42.89 33.67 32.54 30.68 28.52 26.43 25.26 24.37

SSIM NLM 0.9677 0.9051 0.8637 0.8259 0.7850 0.7467 0.7078 0.6731

G-NLM 0.9658 0.9037 0.8764 0.8347 0.7938 0.7637 0.7286 0.7031

BM3D 0.9898 0.9627 0.9334 0.9084 0.8768 0.8497 0.8201 0.7918

G-BM3D 0.9884 0.9638 0.9467 0.9128 0.8856 0.8643 0.8432 0.8169

PDw PSNR NLM 34.81 30.11 27.55 25.85 24.74 23.95 23.35 22.75

G-NLM 36.78 32.22 29.53 26.84 24.97 24.65 24.36 23.77

BM3D 43.43 36.40 33.28 31.27 29.62 28.25 27.10 25.86

G-BM3D 43.56 37.37 34.56 32.78 30.62 30.17 28.96 26.77

SSIM NLM 0.9728 0.9075 0.8401 0.7856 0.7435 0.7088 0.6742 0.6463

G-NLM 0.9823 0.9234 0.8564 0.7958 0.7736 0.7297 0.7056 0.6573

BM3D 0.9915 0.9665 0.9403 0.9144 0.8885 0.8678 0.8406 0.8163

G-BM3D 0.9927 0.9711 0.9568 0.9347 0.8982 0.8768 0.8543 0.8256
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MRI phantom from the BrainWeb dataset, together with in  vivo MRI and diffusion-
weighted imaging datasets, were involved in this comparison. The peak signal-to-noise 
ratio for each dataset was normalized by the results of the exact filter. It can be seen that 
the discrimination of denoising performance at different sampling rates is more moder-
ate than in the matrix approximation. Although there are slight improvements as the 
sampling rate is increased, a corresponding computational burden led to the selection of 
0.0005 as a reasonable sampling rate. The results also suggest that the proposed Nyström 
method with k-means clustering can achieve nearly the same performance as the exact 
filter, using an applicable sampling rate for 3D MRI. This is likely because information 
oriented k-means clustering can provide plenty of landmark voxels for sampling, thereby 
improving the sampling efficiency.

Finally, the runtime for the proposed global filter, as demonstrated in Table 3, is rea-
sonable for a typical 181 × 217 × 181 3D MRI dataset using an Intel Core i7 CPU plat-
form and matlab R2013b. With the above setting, the proposed G-NLM and G-BM3D 
required 18 and 8 min, whereas NLM and BM3D required 40 and 14 min, respectively. 
However, parallelizing the computation could be implemented to further reduce pro-
cessing time.

Fig. 4  Denoising results for the IBSR dataset. From top to bottom: original volume and enlarged target tissue, 
denoising results of the enlarged target tissue using NLM, G-NLM and the profile of the upper line, denoising 
results for the enlarged target tissue using BM3D, G-BM3D and the profile of the lower line
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Conclusions
We have proposed a global filtering framework for a 3D MRI dataset, which used the 
whole dataset to denoise each voxel. Due to its size, the large global denoising weight 
matrix was low-rank approximated using the Nyström method. In addition, k-means 

Fig. 5  Denoising results for the real MRI dataset of the spinal cord. From top to bottom: original volume, 
denoised results and corresponding segmented results using NLM and the proposed global framework, 
denoised results and corresponding segmented results using BM3D and the proposed global framework

Fig. 6  Denoising results for the FA map of the DWI dataset
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clustering was implemented as an adaptive sampling scheme to further improve the 
approximation accuracy and computational efficiency. The proposed global filtering 
framework is not restricted to any specific patch-based algorithm and our results show 
that it can be used to improve most patch-based methods.

Fig. 7  Denoising results for the principle direction weighted with FA of the DWI dataset

Fig. 8  Comparison of the denoising performance of the exact and approximated filter for BrainWeb T1w, 
T2w, PDw phantom, and real MRI and DWI datasets. Note that the dataset is corrupted with 20 % Rician noise, 
the sampling rate is computed as p = n/100, and PSNR is normalized by the results of the exact filter

Table 3  Running time (in seconds) of the compared methods

Volume size NLM G-NLM BM3D G-BM3D

181 × 217 × 181 2412.5 1091.3 845.9 487.6
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