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Abstract 

Background:  Pulmonary nodules in computerized tomography (CT) images are 
potential manifestations of lung cancer. Segmentation of potential nodule objects is 
the first necessary and crucial step in computer-aided detection system of pulmonary 
nodules. The segmentation of various types of nodules, especially for ground-glass 
opacity (GGO) nodules and juxta-vascular nodules, present various challenges. The 
nodule with GGO characteristic possesses typical intensity inhomogeneity and weak 
edges, which is difficult to define the boundary; the juxta-vascular nodule is connected 
to a vessel, and they have very similar intensities. Traditional segmentation methods 
may result in the problems of boundary leakage and a small volume over-segmenta-
tion. This paper deals with the above mentioned problems.

Methods:  A novel segmentation method for pulmonary nodules is proposed, which 
uses an adaptive local region energy model with probability density function (PDF)-
based similarity distance and multi-features dynamic clustering refinement method. 
Our approach has several novel aspects: (1) in the proposed adaptive local region 
energy model, the local domain for local energy model is selected adaptively based 
on k-nearest-neighbour (KNN) estimate method, and measurable distances between 
probability density functions of multi-dimension features with high class separability 
are used to build the cost function. (2) A multi-features dynamic clustering method is 
used for the segmentation refinement of juxta-vascular nodules, which is based on the 
nodule segmentation using active contour model (ACM) with adaptive local region 
energy and vessel segmentation using flow direction feature (FDF)-based region grow-
ing method. (3) it handles various types of nodules under a united framework.

Results:  The proposed method has been validated on a clinical dataset of 113 chest CT 
scans that contain 157 nodules determined by a ground truth reading process, and eval-
uating the algorithm on the provided data leads to an average Tanimoto/Jaccard error of 
0.17, 0.20 and 0.24 for GGO, juxta-vascular and GGO juxta-vascular nodules, respectively.

Conclusions:  Experimental results show desirable performances of the proposed 
method. The proposed segmentation method outperforms the traditional methods.
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Background
Pulmonary nodules in high resolution computerized tomography (CT) images are 
potential manifestations of lung cancer. As pointed by literatures [1, 2, 3, 4], despite 
much effort being devoted to the nodule segmentation problem, segmentation for vari-
ous types of pulmonary nodules remains an ongoing research topic [4]. Some classical 
pulmonary nodules are shown in Fig. 1. One of the major difficults is the task of seg-
mentation of non-solid and part-solid ground-glass opacity (GGO) nodules with faint 
contrast and fuzzy margins (shown as Fig.  1d). In particular, non-solid nodules are 
extremely subtle with fuzzy boundaries, and part-solid nodules exhibit highly irregular 
intensity variations (called intensity inhomogeneity) and boundary shapes. Studies have 
shown that nodules of non-solid and part-solid nature are frequent and have higher risks 
of being malignant than solid ones [1]. Additionally, there is difficulty associated with the 
segmentation of nodules that are adjacent to vessels when they have very similar intensi-
ties (shown as Fig. 1c Juxta-vascular nodule); and are nonspherical in shape. Juxta-vas-
cular nodules account for the largest typology of lung nodules [2]. Thus, handling them 
under a united framework poses a great challenge to the task of segmentation of pul-
monary nodules. Although various algorithms have been reported in literatures [1, 2, 3, 
4, 5] for tackling these problems, the technical issues of segmentation still remain. Tra-
ditional segmentation methods, such as purely intensity thresholding or model-based 
segmentation methods, may fail to segment various types of nodules, especially GGO 
and juxta-vascular nodules, leading to boundary leakage or over-segmentation. All these 
factors lead to the belief that the field is relatively new and requires further investigation. 
This paper deals with the above mentioned problems. In this paper, a novel segmenta-
tion method is proposed for various types of pulmonary nodules in CT images, espe-
cially for GGO nodules (part-solid and nonsolid) and juxta-vascular nodules.

Previous work on segmentation of pulmonary nodules

The segmentation under a united framework of kinds of pulmonary nodules, especially 
for GGO nodules and juxta-vascular nodules, is a very difficult task. Active contour 
models (ACMs) have been one of the most successful methods for image segmenta-
tion [6, 7, 8, 9, 10], even in the segmentation of pulmonary nodules [11]. However, GGO 
nodules possess weak edges, intensity inhomogeneity and irregular shape, so when they 
is segmented by using traditional edge-based ACMs [12], region-based ACMs [6, 7], or 
even some complex integrated ACMs combine edge and region energy [13, 14], they 

Fig. 1  Some classical pulmonary nodules. a Well-circumscribed nodule; b Juxta-pleural nodule; c Juxta-
vascular nodule; d GGO nodule
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often occur the problem of boundary leakage. Generally, the model using local informa-
tion commonly can obtain better performance than that of global statistic information 
in solving the segmentation problems of intensity inhomogeneity and zigzag edge [7, 15, 
16, 17]. The idea of defined local neighbor is more reasonable, especially for segmenting 
the zigzag and inhomogeneous edge.  Li et al. [7] presented a region-based active con-
tour model (ACM) model, in which a data fitting energy is introduced to solve the prob-
lem of intensity inhomogeneity. Lankton et al. [16] summarized and proposed different 
segmentation models based on local information. But typically, the segmentation curve 
cannot obtain exact edge or deviates from the objects if the local domain is too large or 
too small [17]. Further, an active contour model based on nonparametric independent 
and identically distributed statistics of the image may segment an image according to the 
particular global to local strategy. The local histogram method using Wasserstein dis-
tance to measure distribution distance has a good performance in segmenting cluttered 
scenes [15]. However,the estimation effect in image segmentation is severely influenced 
by the small cabin volume and the sample distribution, when the pixel density func-
tions are estimated by histogram method. It is difficult to acquire an ideal segmentation 
effect only by relying on general intensity-data-driven segmentation methods. In order 
to overcome the limitation, Krinidis et al. [18] used fuzzy energy to solve the problem of 
“weak” local minima. Also Assen et al. [19] presented a 3D ACM drived by fuzzy infer-
ence for cardiac CT and MR images. Zhang et al. [20] added the Bayesian error of edge 
direction and region statistical information into the ACM model, to improve the conver-
gence speed.

As mentioned above, juxta-vascular nodules account for the largest typology of lung 
nodules [2]. So besides handling GGO nodules with intensity inhomogeneity and weak 
edges, it is also important for a segmentation algorithm to be able to treat juxta-vascular 
nodules. In clinic application, even some nodules are not only GGO but also juxta-vas-
cular nodules. How to handle various types of pulmonary nodules, including GGO nod-
ules and juxta-vascular nodules, under a united framework presents a great challenge [2, 
3]. Since vessels can be characterized by the tubular models and a pulmonary nodule is a 
small round or oval-shaped growth in the lung, so many approaches based on morpho-
logical operators [2, 21, 22] have been proposed to segment the juxta-vascular nodules. 
However the sizes and shapes of vessels as well as those of nodules are irregular, it may 
lead to the problem of a small volume overestimation if only morphological correction 
is relied upon. Hence a better segmentation refinement method should be taken into 
consideration furtherly. Besides intensity feature, the analysis of the shape of pulmonary 
structures has often been adopted to recognize small lung nodules from the background 
anatomy [2]. However, approaches utilizing simple criteria like shape rule or gray value 
evidence are typically not suitable to differentiate between different tubular tree struc-
tures and nodules. Lung nodules are embodied in a complex and structured background. 
Their identification and segmentation is usually affected by surrounding anatomical 
objects [2]. So, in a broad sense, the feature space for the recognition of nodules should 
be embed more prior information, including the target structures [23, 24].

To our knowledge, there are few literatures aimed at handing GGO and juxta-vas-
cular nodules under a united framework and multi-features classification space. In our 
previous work, we have built a very preliminary fuzzy integrated ACM incorporated 
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multi-features analysis to realize segmentation of GGO and juxta-vascular nodules [14, 
25, 26]. This paper deals with the above mentioned problems further. In our present 
study, the segmentation problem is converted into the optimization problem of measur-
able distance between probability density functions of multi-features. A multi-features 
dynamic clustering method is used for the segmentation refinement of juxta-vascular 
nodules.

Our approach

In this paper, a novel segmentation method for pulmonary nodules, especially for GGO 
nodules and juxta-vascular nodules in CT images is proposed, which uses an adaptive 
local region energy model with probability density function (PDF)-based similarity dis-
tance and multi-features dynamic clustering refinement method. The flowchart of the 
proposed segmentation algorithm for pulmonary nodules under a united framework is 
shown as Fig. 2.

Compared with existing traditional methods, our approach has several novel aspects: 
(1) in the proposed adaptive local region energy model, the local domain for local energy 
model is selected adaptively based on k-nearest-neighbour (KNN) estimate method, and 
measurable distances between probability density functions of multi-dimension features 

Fig. 2  Overview of the proposed segmentation method for pulmonary nodules
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with high class separability are used to build the cost function. (2) A multi-features 
dynamic clustering method is used for the segmentation refinement of juxta-vascular 
nodules, which is based on the nodule segmentation using active contour model with 
adaptive local region energy and vessel segmentation using flow direction feature (FDF)-
based region growing method. (3) It handles various types of nodules under a united 
framework.

The remainder of this paper is organized as follows. In “The proposed integrated 
ACM with adaptive local region energy and PDF-based similarity distance” section and 
“Segmentation refinement of juxta-vascular nodules based on multi-features dynamic 
clustering” section, the proposed segmentation methods of pulmonary nodules are 
introduced. The experimental results of our method are given in “Experimental results” 
section, followed by some discussions in “Discussion” section. This paper is summarized 
in “Conclusions” section.

The proposed integrated ACM with adaptive local region energy 
and PDF‑based similarity distance
We will approach the segmentation problem as a typical optimization task. Thus we 
need to adopt an appropriate model of energy function as the cost function. The pro-
posed integrated ACM with adaptive local region energy and PDF-based similarity 
distance differs from the model used in literatures [7, 13, 14, 18, 19], which has the fol-
lowing characteristics.

(1)	 The KNN-based adaptive local energy function model is proposed. The nodule with 
GGO characteristic is either part-solid or nonsolid, in which case it possesses typi-
cal weak edges and intensity inhomogeneity. The model using local information 
commonly can obtain better performance than that of global statistic information 
in solving the segmentation problem [7, 15, 16]. The local domain for local energy 
model is selected adaptively, which is approached as nonsupervised recognition 
problem and realized by a KNN estimate method based on medical prior knowl-
edge. It will be explained in detail in “The proposed KNN-based adaptive local 
energy function” section.

(2)	 The segmentation problem is converted into the optimization problem of measur-
able distance between PDF of multi-features. The Bhattacharyya distance function 
is applied to measure the distance of PDF between the foreground and background, 
and the PDF in the local region are measured by Wasserstein distance. It will be 
explained in detail in “The similarity distance based on adaptive local region prob-
ability density” section and “The PDF-based Bhattacharyya similarity distance for 
global energy” section.

(3)	 Multi-features information with high class separability is reflected and used in the 
proposed integrated ACM model. It will be explained in detail in “Generation of 
multi-dimension feature with high class separability” section.

Taking both the edge, local and global region information into consideration, our pro-
posed energy function of integrated active contour model E is given as Eq. (1). 

(1)E = Eedge + Elocal + Eglobal
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where E is the proposed energy function model; Eedge it the edge-driven energy term, 
which is used for curved surface to improve the evolved ability in concave regions; Elocal 
is the local-region-driven energy term; Eglobal is the global-region-driven energy term. 
Elocal and Eglobal are used to control the image force based on statistical multi-features 
information in the region and move the curved surface in the decrescence direction of 
feature variance.

Let � ⊂ R3 be the image domain, and D : � → R be the given medical CT image 
sequence or 3D data set. The segmentation result of the images or data set (for 3D data 
set) D is achieved by finding a surface φ, which separates Ω into disjoint regions. Ω1 and 
Ω2 represent the inside regions and outside regions of φ, respectively. Besides intensity, 
more features are used in our active contour model. Our proposed detailed energy func-
tion model is given as Eq. (2) based on Eq. (1). Why and how to build the energy term 
model as Eq. (2) will be explained in detail in the following sections (from “The proposed 
KNN-based adaptive local energy function”, “The similarity distance based on adap-
tive local region probability density”, “Generation of multi-dimension feature with high 
class separability”, “The PDF-based Bhattacharyya similarity distance for global energy” 
section).

where E(φ) is the proposed energy function model; v
(

x, y, z
)

∈ � is a given pixel/
voxel. In term Elocal of Eq. (2), λ1 and λ2 are the weights for region-driven energy term. 
The membership function u(v) ∈ [0, 1] is the degree of membership of D, and m is a 
weighting exponent on each fuzzy membership. The degree of membership is decided 
by multi-features value L. L is the value domain of feature space. Hφ is the smoothed 
Heaviside function. P(v) is the probability density of multi-features vector O of v; P1(τ) 
and P2(τ) are the means of probability density in local region Ωτ selected adaptively. In 
term Eglobal of Eq. (2), P−(τ) and P+(τ) are the kernel-based estimates of the image fea-
tures observed over the sub-domains Ω− and Ω+. Eedge is similar to our previous work 
[14], which is used for curved surface to improve the evolved ability in concave regions. 
In term Eedge of Eq. (2), μ is the weight of edge-driven energy term; δφ(v) is the smoothed 
version of the Dirac delta; g is the stop function.

The proposed KNN‑based adaptive local energy function

The model using local information commonly can obtain better performance. The 
proposed local energy function model is inspired initially by literature [7, 15]. But in 
our proposed local energy function model, the local domain is not fixed, but flexible 
and adaptive, which is realized by a KNN estimate method here. In order to segment 
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elaborately for the image with zigzag edge and noise interference, we construct k-near-
est neighbors and estimate the corresponding probability density functions with Parzen 
window method in each pixel/voxel.

As we have known, lung nodules, especially malignant nodules, sometimes show 
spiculation and lobulation signs in CT images. Typically, the segmentation curve devi-
ates from the objects if the local neighbor radius is too large or too small. Consider the 
synthetic image in Fig. 3. The segmentation results are very different with various radii 
with the implementation of local histogram-based segmentation method using the Was-
serstein Distance [15]. For instance, conventional local segmentation algorithms often 
suffer from disturbances induced by the mass of irrelevant information when the radius 
of the neighbor increases. To improve the ability to segment precisely the object where is 
intensity inhomogeneity, zigzag and difficult to define the boundary, the local region Ωτ 
of 

∫

Lτ
�P(v)− P1�dτ and 

∫

Lτ
�P(v)− P2�dτ in term Elocal of Eq. (2), should be selected 

adaptively. So the KNN-based adaptive local energy function model is proposed. The 
local domain for local energy model is selected adaptively, which is approached as non-
supervised recognition problem and realized by a KNN estimate method based on med-
ical prior knowledge.

Let x, y, z be the location variables of v, respectively. For each current voxel v, selecting 
a circular (sphere) neighbor domain RL with radius r; selecting k nearest neighbors of 
O(v) to construct the local domain Nk, we have the complementary set Nc of Nk in the RL. 
If each voxel of RL is met the condition as Eq. (3), select RL as the local region for com-
puting similarity in Eq. (3). 

where y ∈ Nk , z ∈ Nc; d
(

O(x), O
(

y
))

 is the similarity distance, as Eq. (4). 

where J(O) is the normalized multi-features vector O.
In the KNN-based adaptive local energy function model, the parameters r and k are 

determined by medical prior knowledge and the physical resolution of the pixel in CT 
imaging. As shown in Fig. 4, the local region Ωτ in 2-dimensional space is determined 
by the parameters r and k. Rules for determining the parameters r and k, as well as their 
reasons, are as follows.

(3)d(O(x), O(y)) ≤ d(O(x), O(z))

(4)d(O(x),O(y)) =
∥

∥J (O(x)) − J (O(y))
∥

∥

Fig. 3  The segmentations with different neighbor radii. The radii of a–c are 3, 10, 15
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Rule 1:	� r and k are selected as large as possible
Rule 2:	� r ≤ (8 mm/2)/(pixel spacing)

Reasons are below: (1) The best choice of k depends upon the data. Generally, larger 
values of k reduce the effect of noise on the classification, but make boundaries between 
classes less distinct. (2) A pulmonary nodule is a small round or oval-shaped growth 
in the lung. It is sometimes also called a spot on the lung or a coin lesion. So the local 
region Ωτ is selected by a circle (a sphere for 3-dimensional space). (3) k ≤ πr2 (for 
Nk ⊂ �τ , in 2-dimensional space). So r is selected as large as possible. (4) Pulmonary 
nodules are generally smaller than 3  cm (about ≤3  cm) in diameter. If the growth is 
larger than that, it is known as a pulmonary mass. (5) The nodule may have first been 
identified by a CT scan. CT scans can give information about the specific features of the 
nodule, including its shape, size, location and internal density. A CT scan can find very 
small nodules, as small as 1–2 mm in diameter. Most benign (not cancerous) nodules are 
small (less than 5 mm) in size. Most nodules between 5 and 10 mm will need additional 
imaging unless they are unlikely to be cancer based on the way they look. Larger nodules 
require more careful evaluation and examination including additional imaging tests and 
possibly a biopsy. So we can determine the parameters r and k according to the above 
medical prior knowledge. (6) According to medical knowledge, nodules less than 8 mm 
are usually too small for a biopsy. In other word, the nodule more than 8 mm should 
be evaluated carefully. In other words, we should make sure of the distinct in the local 
region of the nodule which is more than 8 mm.

Rule 3:	� k ≤ π(8mm/2(pixel spacing))2/K0, K0 = 4

Reasons are below: (1) The local region Ωτ is selected by a circle (for 2-dimensional 
space). (2) Nk ⊂ �τ. (3) Value of k should make boundaries between classes more dis-
tinct in the local region. (4) The following experiment of a dataset (the phantom nod-
ules) was performed to determine and test the parameters.

Fig. 4  Illustration of selecting adaptively local region and parameters r, k
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In the experiment, some nodule models (5 mm in diameter, from −406 to −477 HU, 
shown as Fig. 5c) in a phantom (shown as Fig. 5a) are used to determine and test the 
parameters. A quantitative analysis was performed to determine the parameters. The 
well known Tanimoto/Jaccard error A(Cm,  Co) is used as the validation merics, which 
refers to volume overlaps between the gold standard and the proposed segmentation 
method with different K0. In the experiment, the gold standard is the boundary of the 
phantom nodule, which is shown as Fig. 5d. A(Cm, Co) is defined as Eq. (5).

where Cm and Co are the extracted and the desired contours, respectively.
Here, k = πr2

/

K0 · r is selected as 5 mm/(2 pixel spacing), which is corresponded to 
the size of the phantom nodule (5 mm in diameter). Segmentation results for different k0 
are shown in Fig. 6. Figure 6 shows that the segmentation result with K0 = 4 is the best.

The similarity distance based on adaptive local region probability density

The segmentation problem is converted into the optimization problem of measurable 
distance between probability density functions. In this paper the probability density P(v) 

(5)A(Cm,Co) = 1

∫

Cm∩Co
dxdydz

∫

Cm∩Co
dxdydz

Fig. 5  The phantom nodules. a The appearance of the phantom; b interior of the phantom; c nodule models 
in the phantom (5 mm in diameter, from −406 to −477 HU); d the corresponding CT image (lung from −618 
to −726 HU)
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of multi-features vector O for the pixel/voxel v is estimated by the Parzen window esti-
mation method. Gaussian function is used as the kernel function. The probability den-
sity function of neighbor pixel is represented as Eq. (6).

where K (τ ) = (
√
2πσ)−1 exp{−τ 2/2σ 2} is a kernel function, and generally as Gaussian 

density kernel function, and ∫K (τ )dτ = 1.
The similarity distance W(P, P1) between P(v) and Pi is computed by Wasserstein dis-

tance function, as Eq. (7).

where Lτ is the value domain of feature space, P(v) is the probability density of multi-fea-
tures vector O of v; Pi(τ) are the means of probability density in local region Ωτ selected 
adaptively, which is as Eqs. (8) and (9).

Generation of multi‑dimension feature with high class separability

For one of the major difficults is the task of segmentation of non-solid and part-solid 
GGO nodules with faint contrast and fuzzy margins. In particular, non-solid nodules are 
extremely subtle with fuzzy boundaries, and part-solid nodules exhibit highly irregular 
intensity variations (intensity inhomogeneity) and boundary shapes. GGO pulmonary 
nodules are hard to distinguish if merely the intensity feature is utilized. Multi-features 
information with high class separability is reflected and used in the proposed integrated 
ACM model.

Here, in the feature space, a sample is Oi = (xi, yi, zi, Ii, level of ASMi); xi, yi and zi is the 
position feature; Ii is the intensity feature and ASMi is the angular second moment (tex-
ture feature) which is as Eq. (10).

(6)P(v) =
1

k

∫

Nx

K (||O(v)|| − ||O(x)||)dx

(7)W (P,Pi) =
∫

Lτ

||P(v)− Pi(τ )||dτ |i=1,2

(8)P1(τ ) = P(τ ), where {v : φ(v) ≥ 0}

(9)P2(τ ) = P(τ ), where {v : φ(v) < 0}

(10)ASM =
Ng−1
∑

m=0

Ng−1
∑

n=0

(P(m, n))2

Fig. 6  Segmentation results for different K0
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where P(m, n) is the matrix element of the normalized gray-level co-occurrence matrix. 
Ng is the number of possible gray levels. A gray level co-occurrence matrix is a matrix 
where the number of rows and columns is equal to the number of gray levels. The matrix 
element P(m, n | Δx, Δy) is the relative frequency with which two pixel, separated by a 
pixel distance (Δx, Δy), occur within a given neighborhood, one with intensity m and the 
other with intensity n. Given an M × N neighborhood, let f (mt, nt) be the intensity at 
sample s, line l of the neighborhood. P(m, n | Δx, Δy) is defined as Eq. (11).

where

and

This feature ASMi is a measure of the smoothness of the image. Indeed, if all pixels 
are of the same gray-level I = kI, then P(kI, kI) = 1 and P(m, n) = 0, m ≠ kI or n ≠ kI, and 
ASM = 1. At the other extreme, if we could have all possible pairs of gray levels with 
equal probability 1R, then ASM = 1

R. The less smooth the region is, the more uniformly 
distributed P(i, j) and the lower the ASM.

An example is illustrated in Fig.  7 and Table  1. It implies that the ASM value is an 
important feature for segmentation of GGO nodules, solid nodules or other regions.

The segmentation problem is converted into the optimization problem of measurable 
distance between PDF P(v) of multi-features O, shown in Eq. (2). In proposed integrated 
ACM model, P(v) is the probability density of multi-features vector Oi =  (xi, yi, zi, Ii, 
level of ASMi) of v. In “The similarity distance based on adaptive local region probability 
density” section, P(v) is estimated by the Parzen window estimation method. In order 
to reduce the computation cost and save the memory, ASMi is sampled as level 0 (from 
0.0000 to 0.1500), level 1 (from 0.1501 to 0.2300), level 2 (from 0.2301 to 0.3500), level 
3 (from 0.3501 to 0.5000), level 4 (from 0.5001 to 0.8000) and level 5 (from 0.8001 to 
1.0000).

The PDF‑based Bhattacharyya similarity distance for global energy

In order to obtain more stable segmentation and achieve the global optimal segment-
ing, the global energy term Eglobal shown as Eq.  (2), is incorporated into the proposed 
integrated ACM model. Eglobal is global energy term which maximizes the distance of 
probability density function in different regions. Bhattacharyya distance is applied to 
measure the distance of probability density distributions between the foreground and 
background. Bhattacharyya coefficient [27, 28] is defined as Eq. (12). 

(11)P(m, n|�x,�y) = WQ(m, n|�x,�y)

W =
1

(M −�x)(N −�y)

Q(m, n|�x,�y) =
N−�y
∑

l=1

M−�x
∑

s=1

A

A =
{

1 if f (s, l) = m and f (s +�x, l +�y) = n
0 elsewhere
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where Eglobal can be thought of as a direction cosine between two points on the sphere, 
so its value domain is [0,1]. This measure varies between 0 and 1, where 0 indicates com-
plete mismatch, and 1 indicates a complete match.

In global energy term Eglobal =
∫

�

√
P−(τ )P+(τ )dτ, P−(τ |φ(x)) and P+(τ |φ(x)) are 

kernel-based estimates of the image features observed over the subdomains Ω− and Ω+.
The kernel-based estimates are given by Eq. (13).

where τ ∈ RN , K−(τ) and K+(τ) are two Gaussian density functions that are 
normalized to have unit integrals with respect to the feature vector τ, viz. 
∫

RN K−(τ )dτ=
∫

RN K+(τ )dτ= 1.

(12)Eglobal =
∫

�

√

P−(τ )P+(τ )dτ

(13)












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



P−(τ |φ(x)) =
�

�
K−(τ − �O(x)�)H(−φ(x))dx

�

�
H(−φ(x))dx

P+(τ |φ(x)) =
�

�
K+(τ − �O(x)�)H(φ(x))dx

�

�
H(φ(x))dx

Fig. 7  Different region (size 8×8). region 1, GGO nodule; region 2, solid nodule; region 3, vessel; region 4, 
parenchyma; region 5, myocardium

Table 1  Second order histogram (angular second moment, ASM) feature value for differ‑
ent region

1 2 3 4 5
GGO nodule Solid nodule Vessel Parenchyma Myocardium

ASM 0.2212 0.2448 0.4828 0.4817 0.6403
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The proposed model and its numerical implementation

The proposed integrated ACM model is shown as Eq. (2). The zero level set that makes 
the energy function Eq.  (2) minimum is the optimal segmentation result. In the sim-
ple case, it is obvious that the boundary of the object φ0 is the minimizer of the energy 
functional. The energy function model as Eq. (2) is solved by using variational level set 
approach. The numerical implementations of energy function as Eq. (14).

where A− = ∫�H(−φ(x))dx and A+ =
∫

�
H (−φ(x))dx are the size of the image sub-

domains Ω− and Ω+.

Implementation of potential pulmonary nodule segmentation based on the proposed 

integrated ACM model

The implementation algorithm for the proposed integrated ACM model is as follows.

(1)	 The pulmonary parenchyma is segmented by an overall segmentation method com-
bining thresholding and morphology, which is shown in Fig. 8.

(2)	 Multi Feature computation and data structures for data set are constructed.
(3)	 Compute the degree of membership u(v). In the proposed model, the fuzzy energy 

is used as the model motivation power evolving the active contour. As shown in 
Eq. (2), u(v): X → [0, 1] defines the membership degree of a voxel v in data set D to 
the nodule class cluster center. It is different with our previous work [14], the sam-
ple in the AFIACM model is Xi = (xi, yi, zi, Ii, ASMi). Thus, the degree of member-
ship for each sample Xi = (xi, yi, zi, Ii, ASMi) in our model is calculated by using the 
fuzzy clustering algorithm based on intensity and angular second moment features.

(4)	 Compute the scale parameters r and k according to “The proposed KNN-based 
adaptive local energy function” section, and select adaptively local region RL and 
B(v).

(5)	 Specify the stop function term using posterior probability.
(6)	 Implement the numerical algorithm of the proposed model according to Eq. (14). 

Here P(v), P1(τ) and P2(τ) in the local region Ωτ are computed according to “The 
similarity distance based on adaptive local region probability density” section and 
“Generation of multi-dimension feature with high class separability” section. In 
each iteration, only P(v) in the local region Ωτ near to the curve/surface φ need to 
be computed, so pixels/voxels need to be computed are a very small proportion of 

(14)

∂φ(v)

∂t
= δ∈{udiv

(

g
∇φ(v)

|∇φ(v)|

)

− �1[u(v)]m
∫

Lτ

�P(τ )− P1(τ )�dτ

+ �2[1− u(v)]m
∫

Lτ
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+
1
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− − A−1
+ )

∫
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√
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∫

�z

1

A+
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the total data set. An example is illustrated in Fig. 9. Only P(v) in the local region 
Ωτ near to the green curve φ need to be computed. The numbers are 1591, which is 
0.6 % of the whole data set (512 × 512).

Segmentation refinement of juxta‑vascular nodules based on multi‑features 
dynamic clustering
In order to overcome the problem of a small volume over-segmentation in the adhesion 
region between the juxta-vascular nodule and its attached vessel, and obtain a better 
segmentation result, a multi-features dynamic clustering method is used for the segmen-
tation refinement of juxta-vascular nodules, which is based on the nodule segmentation 
using the proposed integrated ACM model and vessel segmentation using FDF-based 
region growing method. Various types of pulmonary nodules, including GGO nodules 
(part solid and nonsolid) and juxta-vascular nodules, are segmented under a united seg-
mentation framework. The refinement procession is just used for the pixels/voxels in 
some boundary regions between the juxta-vascular nodules and blood vessels, without 
modifying the nodule boundary elsewhere.

The refinement region selection using the proposed nodule and vessel segmentation 

method

3D potential vessel segmentation by FDF‑based region growing method

In this paper, the 3D vessel segmentation is used as the rough segmentation process 
of segmentation refinement of juxta-vascular nodules. 3D vessel segmentation can be 

Fig. 8  Segmentation results of pulmonary parenchyma. a Original image, b optimal threshold segmenta-
tion, c mending image of pulmonary parenchyma based on morphology method; d segmentation result of 
pulmonary parenchyma

Fig. 9  Illustration of pixels/voxels need to be computed, a very small proportion of the total data set. a 
original image, b green curve φ in an iteration
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accomplished by some traditional methods, such as region growing [23] and vessel 
enhancement filter [29, 30]. However shapes and appearances of vessels are irregular, a 
satisfactory result often cannot be achieved if only these traditional methods are relied 
upon. According to the medical prior knowledge, vessels are characterized by a tubular 
model, the 3D gradient vectors in a vessel can be used to extract a vector in the direction 
of the vessel by identifying a vector that is approximately orthogonal to the gradients in 
a local neighborhood [21, 22, 31]. Moreover, an ideal vascular structure not only keeps a 
certain elongation, but also has no holes. Simply connected domain is a particular con-
nected domain, in which every loop can be continuously pulled to a point without leav-
ing the space [24]. So we can use these shapes and appearances as the constraints of the 
segmentation method, which are as follows. (1) Since vascular structures should have no 
holes, the segmented objects must be removed if they are not simply connected. (2) the 
flow direction can be used as the growing direction constraint condition, which is one of 
the constraint conditions of region growing method for segmentation of blood vessels 
and attached nodules.

Here a FDF-based region growing method is proposed for 3D vessel segmentation. In 
the FDF-based region growing method, the growing constraint conditions include the 
intensity threshold and flow direction defined by flow direction vector ld. Assume λ1, 
λ2 and λ3 (λ1 ≤ λ2 ≤ λ3) are eigenvalues of the structure tensor defined by the statistical 
information of arithmetic average in local region. The structure tensors are computed by 
directly using the gradient information of each voxel [14, 29]. Let e1 be the unit length 
eigenvector belonging to the eigenvalue λ1. The flow direction vector ld of the vessel is 
set as Eq. (15).

Refinement region selection

In this paper, the intersection between potential vessel region and potential nodules 
is selected as the refinement region of juxta-vascular nodules based on multi-features 
dynamic clustering. The processes are as follows.

(1)	 The rough 3D potential vessel segmentation result Sc1 is gotten by using the flow 
direction feature- based region growing method which is described in “3D potential 
vessel segmentation by FDF-based region growing method” section.

(2)	 The segmentation result Sc2 is gotten by using the segmentation method based on 
the proposed integrated ACM model described in “The proposed integrated ACM 
with adaptive local region energy and PDF-based similarity distance” section.

(3)	 The potential object Sr for segmentation refinement is Sr = Sc1 ∩ Sc2.

Generation and construction of multi‑features vector in clustering space

Our proposed multi-features vector takes both the appearance and geometric infor-
mation into consideration. Because CT values of pulmonary nodules and that of blood 
vessels are almost uniform, it is difficult to segment exactly the blood vessels and the 
attached nodules if merely the intensity feature is utilized. So the constructed feature 
space takes both the appearance and geometric multi-features information into con-
sideration. We build a multi-features space for dynamic clustering in segmentation 

(15)ld =
√

�2 + �3 · e1
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refinement region. An extended observation vector Xi in the clustering space is defined 
as Eq. (16).

where xi, yi and zi are the position features; Ii is the intensity feature; SIi is the volumetric 
shape index, reflecting the geometric shape, which is a measure of local shape character-
istics [5].

Implementation of segmentation refinement based on multi‑features dynamic clustering

The algorithm for segmentation refinement based on multi-features dynamic clustering 
is carried out as the following steps.

(1)	 The segmentation refinement region Sr is selected according to “The refinement 
region selection using the proposed nodule and vessel segmentation method” sec-
tion.

(2)	 The feature vector Xi = (xi, yi, zi, Ii, SIi) is constructed and computed for the points 
in the region Sr, according to “Generation and construction of multi-features vector 
in clustering space” section.

(3)	 The refinement region Sr is segmented by dynamic clustering method (K-Means 
clustering method [32]), then the juxta-vascular nodules is segmented exactly.

Experimental results
In this paper, a clinical dataset of 113 chest CT scans was used to evaluate the proposed 
method, which consisted of 60 thoracic CT scans obtained from LIDC databases [33] 
and 53 thoracic CT scans obtained from several big hospitals in Guangzhou City and 
Shenzhen City, Guangdong province, China. The list of these 60 CT scans from LIDC-
IDRI databases is provided in Table 2. The used medical CT slices were data sets with an 
intensity value of 16bits and a resolution of 512 × 512. Slice thickness varied from 0.5 to 
2.5 mm and the total slice number for each scan varied from 49 to 397 with an average 
of 136/scan. The X-ray tube current ranged from 30 to 280 mA, and the pixel size ranged 
from 0.5–0.75 mm/pixel. Pulmonary nodules in CT images are solid or GGO (part solid 
or nonsolid), whose sizes are from 3 to 30 mm. Locations of nodules are uncertain, some 
are isolated (Solitary Pulmonary Nodule, SPN), others are adhered to blood vessels or 
lung wall. Each scan was read individually by members of a qualified panel and then a 
consensual gold standard was defined by the panel. The panel members assigned each 
nodule to be either GGO, juxta-vascular, GGO juxta-vascular, or others. These nod-
ules are manually segmented. This process defined ground truth of 157 nodules, and the 
number of different kinds of nodules is shown as Table 3.

Moreover, The different nodule size groups for the GGO nodules, juxta-vascular nod-
ules, GGO juxta-vascular nodules and others is illustrated in Table 4. In our experiment, 
there are four types of nodules, and they are registered respectively. The performance of 
our segmentation fusion algorithm was evaluated using both quantitative and qualita-
tive methods. Experimental results in each research step as well as some discussions are 
presented below.

(16)Xi = (xi, yi, zi, Ii, SIi)
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Table 2  The list of 60 CT scans from LIDC-IDRI databases

JV juxta-pleural nodule; GGOground-glass opacity nodule; GGO-JVGGO juxta-vascular nodule

CT scans Nodule Type CT scans Nodule Type

1 LIDC-IDRI-0003 Nodule 1 GGO 27 LIDC-IDRI-0160 Nodule 1 JV

Nodule 2 GGO-JV Nodule 2 Others

Nodule 3 Others Nodule 3 Others 10

Nodule 4 GGO Nodule 4 JV

2 LIDC-IDRI-0007 Nodule 1 Others 28 LIDC-IDRI-0162 Nodule 1 Others

3 LIDC-IDRI-0008 Nodule 1 GGO-JV Nodule 2 JV

Nodule 2 GGO Nodule 3 JV

Nodule 3 Others Nodule 4 Others 6

4 LIDC-IDRI-0011 None Nodule 5 Others 7

5 LIDC-IDRI-0015 Nodule 1 Others 29 LIDC-IDRI-0167 Nodule 1 Others

6 LIDC-IDRI-0017 Nodule 1 JV 30 LIDC-IDRI-0168 Nodule 1 JV

7 LIDC-IDRI-0018 None Nodule 2 Others 12

8 LIDC-IDRI-0019 None 31 LIDC-IDRI-0173 Nodule 1 Others

9 LIDC-IDRI-0021 Nodule 1 GGO 32 LIDC-IDRI-0175 Nodule 1 JV

Nodule 2 JV 33 LIDC-IDRI-0177 Nodule 1 JV

10 LIDC-IDRI-0025 None 34 LIDC-IDRI-0252 Nodule 1 JV

11 LIDC-IDRI-0032 Nodule 1 Others 2 Nodule 2 GGO-JVvascul

12 LIDC-IDRI-0037 Nodule 1 GGO 35 LIDC-IDRI-0273 nodule 1 JV

Nodule 2 GGO 36 LIDC-IDRI-0350 Nodule 1 Others 14

Nodule 3 Others 37 LIDC-IDRI-0477 Nodule 1 JV

13 LIDC-IDRI-0044 Nodule 1 GGO Nodule 2 JV

Nodule 2 JV 38 LIDC-IDRI-0580 Nodule 1 JV

Nodule 3 JV 39 LIDC-IDRI-0626 Nodule 1 GGO

Nodule 4 GGO 40 LIDC-IDRI-0645 Nodule 1 Others

Nodule 5 Others 41 LIDC-IDRI-0652 Nodule 1 Others

Nodule 6 GGO 42 LIDC-IDRI-0681 Nodule 1 GGO

14 LIDC-IDRI-0046 None 43 LIDC-IDRI-0684 Nodule 1 Others

15 LIDC-IDRI-0047 Nodule 1 GGO 44 LIDC-IDRI-0703 Nodule 1 Others

Nodule 2 JV 45 LIDC-IDRI-0723 Nodule 1 Others

16 LIDC-IDRI-0050 Nodule 1 GGO 46 LIDC-IDRI-0796 Nodule 1 GGO

17 LIDC-IDRI-0051 None 47 LIDC-IDRI-0803 Nodule 1 GGO

18 LIDC-IDRI-0052 Nodule 1 GGO 48 LIDC-IDRI-0818 Nodule 1 Others

Nodule 2 Others 49 LIDC-IDRI-0828 Nodule 1 GGO

19 LIDC-IDRI-0082 Nodule 1 Others 5 50 LIDC-IDRI-0840 nodule 1 Others

20 LIDC-IDRI-0114 Nodule 1 JV 51 LIDC-IDRI-0865 Nodule 1 GGO

21 LIDC-IDRI-0131 Nodule 1 GGO-JV 52 LIDC-IDRI-0882 Nodule 1 Others

Nodule 2 JV 53 LIDC-IDRI-0914 Nodule 1 Others

22 LIDC-IDRI-0133 Nodule 1 Others 54 LIDC-IDRI-0928 Nodule 1 GGO

23 LIDC-IDRI-0141 Nodule 1 Others 7 Nodule 2 JV

Nodule 2 GGO 55 LIDC-IDRI-0938 Nodule 1 GGO

Nodule 3 Others 56 LIDC-IDRI-0986 Nodule 1 JV

Nodule 4 JV 57 LIDC-IDRI-0915 Nodule 1 JV

Nodule 5 GGO 58 LIDC-IDRI-0941 Nodule 1 JV

Nodule 6 JV Nodule 2 JV

24 LIDC-IDRI-0146 Nodule 1 JV Nodule 3 JV

25 LIDC-IDRI-0152 Nodule 1 JV 59 LIDC-IDRI-0953 Nodule 1 JV

26 LIDC-IDRI-0159 Nodule 1 JV Nodule 2 JV

60 LIDC-IDRI-1012 Nodule 1 GGO
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Qualitative validation

Validation of the proposed integrated ACM model

In order to validate the effect of the proposed segmentation method, the synthetic image 
is used to segmented. As shown in Fig. 10, the problem of boundary leakage at bound-
aries of objects with intensity inhomogeneity and typical weak edges, whose intensity 
feature is similar to that of GGO nodules, is solved by using the proposed segmentation 
method.

Validation of 3D potential vessel segmentation by FDF‑based region growing method

In order to validate the effect of the proposed flow direction feature -based region grow-
ing method for 3D potential vessel segmentation, No. LIDC-IDRI-0010 (from LIDC 
database [33]) is used to segmented. As shown in Fig. 11, 3D potential vessels are seg-
mented successfully by the proposed flow direction feature- based region growing 
method. It is validated that the method can be used as the segmentation of 3D potential 
vessels and rough segmentation of juxta-vascular pulmonary nodules.

Validation of multi‑features dynamic clustering method

In order to validate the effect of the proposed multi-features dynamic clustering segmen-
tation method, the synthetic image is used to segment. As shown in Fig. 12, the tubular 

Table 3  The number of GGO, juxta-vascular, GGO juxta-vascular and other nodules

“GGO nodule” and “Juxta-vascular nodule” do not include GGO Juxta-vascular pulmonary nodule in the table

Nodule type GGO pulmonary 
nodule

Juxta-vascular  
pulmonary nodule

GGO Juxta-vascular 
pulmonary nodule

Others Total

Number 42 73 7 35 157

Table 4  The different nodule sizes on testing data

“GGO nodule” and “Juxta-vascular nodule” do not include GGO Juxta-vascular pulmonary nodule in the table

Nodule type ≤ 5 mm 5–10 mm 10–20 mm Total

GGO pulmonary nodule 7 18 17 42

Juxta-vascular pulmonary nodule 5 49 19 73

GGO Juxta-vascular pulmonary nodule 1 3 3 7

Others 7 15 13 35

Fig. 10  Segmentation of the synthetic image. a The original image; b the initial contour; c the final segmen-
tation
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model and round or oval-shaped model can be segmented successfully. This implies the 
multi-features dynamic clustering method can be used for segmentation of juxta-vascu-
lar nodules, since vessels can be characterized by the tubular models and a pulmonary 
nodule is a small round or oval-shaped growth in the lung.

Validation of the proposed segmentation method of nodules

In order to validate the effect of the proposed segmentation method, the clinical data 
with GGO nodules and juxta-vascular nodules should be segmented and explored.

A comparison for segmentation of GGO nodule between the proposed segmentation 
method and the traditional approach [34], e.g. region-based active contour model [6, 7] 
and integrated active contour model [13], is shown in Fig. 13. As shown in Fig. 13d, e, 
the problem of boundary leakage at boundaries of a GGO pulmonary nodule occurs, 
while the problem is solved in Fig. 13f.

In this paper, we handle various types of nodules under a united framework. Firstly 
the image sequences are segmented by using the proposed segmentation method. Then 

Fig. 11  3D potential vessel segmentation result by flow direction feature- based region growing method. a 
one original image (one of No. LIDC-IDRI-0010); b the segmentation result

Fig. 12  Segmentation of the synthetic image. a The segmentation result by the proposed multi-features 
dynamic clustering segmentation method, in clear background; b the segmentation result by the proposed 
multi-features dynamic clustering segmentation method, in background with intensity inhomogeneity
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the juxta-vascular nodules are segmented finely by using segmentation refinement based 
multi-features dynamic clustering method. Some experimental results for segmentation 
of juxta-vascular pulmonary nodule are shown in Figs. 14 and 15. From Fig. 15, we can 
see that the refinement procession is only applied to voxels in some regions Sr containing 
the blood vessels and juxta-vascular nodules. The refinement method will not modify 
the nodule boundary elsewhere, so the problem of over-segmentation does not occur. It 
is validated that the method can be used as the segmentation of juxta-vascular pulmo-
nary nodules.

Figure 16 shows the segmentation results of a GGO juxta-vascular pulmonary nodule 
using the proposed method, region-based ACM [6, 7] and the integrated ACM [13, 34], 
respectively. As shown in Fig. 16d, e, the problem of boundary leakage and over segmen-
tation occurs in the adhesion place between the juxta-vascular nodule and its attached 
vessel; while as shown in Fig. 16f, the problem of boundary leakage and over-segmenta-
tion is solved by the proposed segmentation method.

From Figs. 13, 14, 15 and 16, the described segmentation method outperforms the tra-
ditional methods.

Other classical experimental results for segmentation of juxta-vascular pulmonary 
nodule are is shown in Figs. 17 and 18. It is validated that the method can be used as the 
segmentation of various types of pulmonary nodules.

Fig. 13  Segmentation results of the GGO pulmonary nodule. a original CT image; b local zooming of 
Fig. 13a; c the delineation result by an experienced radiologist; d the segmentation result by region-based 
active contour model; e the segmentation result by traditional integrated active contour model; f the seg-
mentation result by the proposed segmentation method
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Quantitative validation

Beyond the visual inspection, a quantitative analysis is necessary to ascertain the accu-
racy of the proposed segmentation method. Here, the well known Tanimoto/Jaccard 
error A(Cm,  Co) as Eq.  (5) is used as the validation merics, which refers to distances 
between segmentation results or to volume overlaps between the gold standard and the 
proposed segmentation method. The gold standard typically is a high-quality reference 
segmentation carried out by experts.

Segmentation measure results are shown in Table 5. Table 5 shows that the errors of 
the proposed method are less than the other three traditional methods, the edge-based 
active contour model, the traditional region-based active contour model and the inte-
grated active contour model [6, 7, 13, 34].

In our experiment, there are 3 nodules missed in the experimental test set of 157 nod-
ules in total. Two of them are small GGO nodules close to 3 mm, and one of missing 
nodules is a small juxta-pleural nodule with very low contrast and close to 3 mm.

The proposed segmentation algorithm was implemented and tested on the computer 
with 3.46 ×  2  GHz CPU, 192  GB Memory and Graphic Card (GPU memory 12  GB 
GDDRS, 317 GB/s). On average, it takes about 3.14 min/scan (about 1.37 s/each image), 
which does not include the cost for data pre-processing.

Discussion
Experimental results of segmentation for pulmonary nodules show desirable perfor-
mances of the proposed segmentation method using the test dataset. The segmentation 
performance for GGO, juxta-vascular and GGO juxta-vascular nodules was an average 
Tanimoto/Jaccard error of 0.17, 0.20 and 0.24, respectively.

We attempt a comparison with the results reported by other research groups. Kubota 
et  al. [1] proposed a segmentation method based on morphological approaches and 

Fig. 14  Segmentation results of the juxta-vascular pulmonary nodule. a Original CT image; b local zooming 
of Fig. 14a; c the delineation result by an experienced radiologist; d the segmentation result by the segmen-
tation method without using the proposed refinement method; e the segmentation refinement result by the 
proposed multi-features dynamic clustering
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Fig. 15  3D segmentation results of the juxta-vascular pulmonary nodule. a original CT image sequence; b 
the 3D segmentation result without using the proposed refinement method; c the 3D segmentation result 
using the proposed segmentation method with multi-features dynamic clustering refinement; d local zoom-
ing of Fig. 15b; e local zooming of Fig. 15d; f local zooming of Fig. 15c; g local zooming of Fig. 15f
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convexity models for segmenting the pulmonary nodules of various densities. Results 
on 21 LIDC cases were reported with segmentation overlap measures of mean 0.69 
and standard deviation 0.18. Diciotti et al. [2]. presented a refinement method for the 
segmentation of juxta-vascular nodules, which was based on a local shape analysis of 
the initial segmentation making use of geodesic distance map representations. They 
observed a percentage of successful segmentations of 84.8 % in fully automated mode 
and of 91.0  % by using an additional interactive mode for improving the segmenta-
tion quality of juxta-vascular nodules. However, GGO juxta-vascular nodules were 
not reported in their work. Kostis et  al. [21] collected 21 juxta-vascular nodules, and 
observed an 80 % successful rate. Okadaetal et al. [35] reported an 81.2 % estimation rate 
on a dataset of 1310 various types of nodules (3–30  mm in diameter). Unfortunately, 
though most of algorithms have been developed for lung nodules, most authors did not 
report quantitative results for various types of nodules. Ye et al. [5] proposed a shape-
based SVM method for detecting nodules. The 3-D local geometric and statistical inten-
sity features were used to detect potential solid and GGO nodule. But the segmentation 
results were not been reported. Murphy [32] used the local image features of shape index 
and curvedness to detect candidate structures in the lung volume, but the segmentation 
results were not been reported yet.

Comparing with different segmentation methods covered in literature [3] and other 
reported literatures above, it seems that the proposed method’s relatively precise seg-
mentation performances. The reasons why the proposed method has a better per-
formance for segmenting all types of GGO and juxta-vascular nodules are as follows. 
In the proposed integrated ACM model, the local domain for local energy model is 
selected adaptively, and measurable distances between probability density functions of 
multi-dimension features with high class separability are used. The model using local 

Fig. 16  Segmentation result of a GGO juxta-vascular pulmonary nodule. a Original CT image; b local zoom-
ing of Fig. 16a; c the delineation result by an experienced radiologist; d the segmentation result by region-
based active contour model; e the segmentation result by traditional integrated active contour model; f the 
segmentation result by the proposed method
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information commonly can obtain better performance than that of global statistic infor-
mation in solving the segmentation problems of intensity inhomogeneity, such as part 
solid and nonsolid GGO nodules. Multi-dimension features are also important and 
helpful for the segmentation of GGO nodules. In many research papers, juxta-vascu-
lar nodules observed in CT images are outlined applying a global refinement procedure 
(i.e., throughout the initial segmentation boundary) after an initial rough segmentation. 
Differently, as is mentioned before, our solution for efficiently segmenting the potential 
nodule objects involves two steps: (1) a segmentation method is proposed for a whole 

Fig. 17  3D segmentation results of the GGO pulmonary nodule. a Original CT image sequence; b the GGO 
nodule; c the 3D segmentation result by using the proposed method
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segmentation, which is based on the proposed integrated ACM model. The method 
uses an adaptive local region energy model with PDF-based similarity distance, which is 
especially used for low-contrast nodules such as part solid and nonsolid GGO nodules, 
to overcome the problems of boundary leakage, intensity inhomogeneity; (2) a segmen-
tation refinement method based on multi-features dynamic clustering method, which is 
referred to as a fine segmentation, is used to segment potential juxta-vascular nodules. 
So the correction method has the advantage that it locally refines the nodule segmenta-
tion along recognized vessel attachments only, without modifying the nodule boundary 
elsewhere.

Fig. 18  3D segmentation results of the GGO pulmonary nodule. a Original CT image sequence; b the juxta-
pleural nodule; c the 3D segmentation result by using the proposed method
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However, some nodules are missed by the proposed segmentation method. Typically, 
these nodules are too small (almost 3 mm), or small juxta-pleural nodules with very low 
contrast, which makes it difficult to segment. The small GGO juxta-pleural nodule with 
pleural tail is very near to the edge of lung wall.

To further improve the segmentation performance, some improvements need to be 
further investigated as follows: in order to recognize small and juxta-pleural pulmonary 
nodules in noisy image more effectively, an adaptive smoothing method needs to be 
further investigated, and the juxta-pleural nodules should be further researched; This 
requires further investigated in more detail.

Conclusions
When the traditional segmentation method is used to segment the GGO and juxta-
vascular nodules with weak edges and intensity inhomogeneity characteristic, the prob-
lems of boundary leakage and small volume over-segmentation often appear. To solve 
these problems, a novel segmentation method is proposed for pulmonary nodules 
in CT images, which is based on the proposed integrated ACM model and multi-fea-
tures dynamic clustering method, especially for GGO nodules (part solid and nonsolid) 
and juxta-vascular nodules. This study demonstrates the superiority of the proposed 
method. The described segmentation method outperforms the traditional methods, and 
evaluating the algorithm on the provided test data leads to an average Tanimoto/Jaccard 
error of 0.17, 0.20 and 0.24 for GGO, juxta-vascular and GGO juxta-vascular nodules, 
respectively.
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Table 5  Segmentation measure results (error rate)
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CT image The edge-based 
active contour 
model
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integrated active 
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active contour 
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Mean 0.36
Std. 0.09
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Mean 0.29
Std. 0.12
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