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Abstract 

Background:  Recently, two-dimensional techniques have been successfully 
employed for compressing surface electromyographic (SEMG) records as images, 
through the use of image and video encoders. Such schemes usually provide specific 
compressors, which are tuned for SEMG data, or employ preprocessing techniques, 
before the two-dimensional encoding procedure, in order to provide a suitable data 
organization, whose correlations can be better exploited by off-the-shelf encoders. 
Besides preprocessing input matrices, one may also depart from those approaches and 
employ an adaptive framework, which is able to directly tackle SEMG signals reassem-
bled as images.

Methods:  This paper proposes a new two-dimensional approach for SEMG signal 
compression, which is based on a recurrent pattern matching algorithm called multidi-
mensional multiscale parser (MMP). The mentioned encoder was modified, in order to 
efficiently work with SEMG signals and exploit their inherent redundancies. Moreover, 
a new preprocessing technique, named as segmentation by similarity (SbS), which 
has the potential to enhance the exploitation of intra- and intersegment correlations, 
is introduced, the percentage difference sorting (PDS) algorithm is employed, with 
different image compressors, and results with the high efficiency video coding (HEVC), 
H.264/AVC, and JPEG2000 encoders are presented.

Results:  Experiments were carried out with real isometric and dynamic records, 
acquired in laboratory. Dynamic signals compressed with H.264/AVC and HEVC, when 
combined with preprocessing techniques, resulted in good percent root-mean-
square difference × compression factor figures, for low and high compression factors, 
respectively. Besides, regarding isometric signals, the modified two-dimensional MMP 
algorithm outperformed state-of-the-art schemes, for low compression factors, the 
combination between SbS and HEVC proved to be competitive, for high compres-
sion factors, and JPEG2000, combined with PDS, provided good performance allied to 
low computational complexity, all in terms of percent root-mean-square difference × 
compression factor.

Conclusion:  The proposed schemes are effective and, specifically, the modified MMP 
algorithm can be considered as an interesting alternative for isometric signals, regard-
ing traditional SEMG encoders. Besides, the approach based on off-the-shelf image 
encoders has the potential of fast implementation and dissemination, given that many 
embedded systems may already have such encoders available, in the underlying hard-
ware/software architecture.
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Background
The biological signal processing area has received extensive attention from the scien-
tific and industrial communities, mainly due to demands for quality improvement, fea-
ture extraction, signal classification, and signal compression. Indeed, current medical 
diagnostic systems, such as computed tomography devices, are heavily based on signal 
processing techniques, regarding data reconstruction and analysis [1]. Besides, there are 
many other possible applications, in addition to diagnostic imaging: noise removal from 
electrocardiographic (ECG) records [2], electromyographic (EMG) feature extraction 
[3], using wavelet decomposition, and automated diagnosis of epilepsy through electro-
encephalographic (EEG) signals, based on complex classifiers [4], are some examples.

Specifically, EMG signals, which measure the electrical activity related to the contrac-
tion of muscles in human bodies [5], are of paramount importance, given that they are 
fundamental for clinical applications, such as muscle fatigue assessment [6], diagnosis of 
neurological disorders [5], and biomechanical assessment [7]. In addition, they can be 
used for controlling interfaces [8], which enables the use of bionic prostheses [9] and can 
provide computer access for disabled persons [10], or even be employed in human emo-
tion classification schemes [11].

There are two known methods for acquiring EMG records: the intramuscular elec-
tromyography (I-EMG), which is invasive and uses needles or wires inserted into mus-
cles, and the surface electromyography (SEMG), which employs noninvasive electrodes 
applied to skin surface. Although the I-EMG technique normally presents higher quality, 
the SEMG approach is more interesting and popular, since it does not cause any injury 
to the patient’s body. Regarding their probability density function, isometric SEMG sig-
nals can be considered as near Laplacian, for constant-force, constant-angle, and maxi-
mal voluntary compression (MVC) levels below 30 % (light force), and tend to Gaussian 
for higher force levels [12, 13].

In applications developed for comparing signal parameters and analyzing disorder 
development, signal databases become necessary and wireless transmission is also pos-
sible, where the EMG interface has a receiver and signals are transmitted after being 
captured by associated sensors [14]. In addition, EMG records are normally acquired by 
multiple electrodes and present long duration. This way, based on what was presented 
and given the need for storage and/or transmission, there have been many recent studies 
focused on efficient compression methods. However, besides providing compact repre-
sentations, such schemes should also preserve the clinical information available in EMG 
records [15].

Traditional approaches to EMG signal compression generally employ one-dimensional 
techniques, given that the original signal itself is one-dimensional (unless multiple elec-
trodes are handled as a multidimensional source [16]). In one of such studies, which is 
available in the related literature, Norris and Lovely [17] employed adaptive differential 
pulse code modulation, for EMG coding. In summary, the current sample is predicted 
by a combination of past ones and an error signal is transmitted, after being adaptively 
quantized. Some algorithms also attempt to extract features from EMG signals, which 
are then used during the encoding process. For instance, Carotti et al. [18] proposed a 
technique based on autoregressive models, which is able to preserve spectral features of 



Page 3 of 31de Melo et al. BioMed Eng OnLine  (2016) 15:41 

the input signal, and worked on a scheme capable of producing acceptable distortions in 
signal waveforms [19], which is based on algebraic code excited linear prediction.

Transform-based schemes usually perform better than other methods [15]. Specifi-
cally, the wavelet transform has shown good results, when compared with other options, 
such as the discrete cosine transform (DCT) [20]. For instance, Wellig et  al. [21] pro-
posed two algorithms, based on the wavelet transform, for encoding I-EMG signals: the 
single-tree algorithm, which finds the best tree-structured wavelet packet bases, and 
the embedded zero-tree wavelet (EZW), which optimizes the encoding procedure for 
a target bitrate. Norris, Englehart, and Lovely [22], in turn, employed the same EZW 
algorithm, but for SEMG encoding. Another scheme for SEMG compression, which uses 
adaptive bit-allocation for wavelet transform coefficients, through an artificial neural 
network, was presented by Berger et al. [23]. Finally, an approach similar to the latter, 
but based on spectral shape models, was proposed by Trabuco, Costa, and de Oliveira 
Nascimento [24].

Another approach for achieving competitive results, which is based on pattern match-
ing techniques, is known as the multidimensional multiscale parser (MMP) algorithm. 
In its one-dimensional version, which was proposed by Filho, da Silva and de Car-
valho [25], the input EMG signal is split into segments with 64 samples, which are then 
approximated by elements retrieved from an adaptive dictionary.

Although the majority of available schemes for EMG compression are one-dimen-
sional and rely on some king of transformation or parameter extraction procedure, 
some recent studies have proposed frameworks that depart from traditional approaches: 
encoding EMG signals as two-dimensional arrays, that is, images. Chaffim et  al. [26] 
proposed the rearrangement of the input signal as a two-dimensional matrix, by splitting 
the original EMG record into segments that are later reassembled as image columns, 
which then go through a preprocessing step, in order to increase intersegment correla-
tions. That scheme allows the use of off-the-shelf image encoders, such as JPEG2000 [27] 
and H.264/AVC [28], and thus rely on the compressor capability of exploiting intra- and 
intersegment redundancies. Melo, Filho, and Júnior et al. [29] also employed a similar 
scheme, but with two different preprocessing algorithms for improving intersegment 
dependencies: the relative complexity sorting, which reorganizes segments based on 
their complexities, and the percentage difference sorting (PDS), which rearranges seg-
ments based on their similarities. The mentioned schemes presented good performance, 
when encoding SEMG signals, by enhancing signal correlations, which consequently 
result in a more effective use of the available image compression tools.

Normally, image encoders applied to SEMG signal compression are based on the 
transform-quantization-coding paradigm, which is very efficient for smooth images 
[30]. However, images created from SEMG signal segments are similar to noise [26, 29], 
which consequently decreases the performance of the chosen encoder, due to the energy 
spread across a wide frequency range [31].

In the present paper, an alternative paradigm for SEMG compression is introduced, 
which is based on two of the already mentioned approaches: SEMG records reassem-
bled as images, which results in the use of a two-dimensional encoding algorithm, and 
recurrent pattern matching through MMP, which is enhanced by adaptive dictionaries 
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and predictive coding techniques. It is worth noticing that MMP is a good candidate for 
SEMG signal coding, due to its good performance with Gaussian sources [30].

Some optimizations to the MMP structure are also introduced, with the goals of pro-
viding adaptation regarding SEMG records and increasing coding efficiency: its predic-
tion framework was replaced by that used in the high efficiency video coding (HEVC) 
algorithm, the initial dictionary construction and update procedures were revised, and 
the block number limit, in each dictionary, was changed. Besides, in order to further 
improve the exploitation of intra- and intersegment dependencies, a new preprocessing 
technique for SEMG records, rearranged as images, is presented, which is called seg-
mentation by similarity (SbS), and the performance of the PDS algorithm [29] is also 
evaluated, along with three different back ends (image encoders), which were used in 
their commercial configurations, that is, without any modification in compression algo-
rithms: H.264/AVC, JPEG2000, and HEVC. In summary, regarding two-dimensional 
commercial encoders, the main contributions are: the compression methodology, the 
SbS technique, and the results with HEVC.

Methods
Two‑dimensional SEMG encoding

In order to compress SEMG records using image encoders, one of the simplest 
approaches is to split the one-dimensional input signal into segments, of fixed or vari-
able length, and then insert each one into a row or a column of a two-dimensional array. 
Later, given that the SEMG matrix was suitably assembled, an image compressor shall 
explore inter and intrasegment dependencies, with its available coding tools. The com-
plete procedure is shown in Fig. 1.

Normally, image compressors used for encoding SEMG signals are based on the trans-
form-quantization-coding paradigm [26, 29]. Indeed, that technique employs transforms 
for exploiting intra- and intersegment redundancies, which is followed by data quanti-
zation and, finally, entropy coding. In the quantization step, transform coefficients are 
quantized, which results in a smaller number of bits, and entropy coding provides an 
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Fig. 1  Example of a one-dimensional noninvasive electromyographic (SEMG) record rearranged into a two-
dimensional array
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even more compact representation, by exploiting statistical dependencies regarding 
resulting symbols.

Such methods present good performance for natural images [30], which are normally 
smooth and then concentrate most of their energy at low frequencies. However, images 
generated from SEMG signals tend to behave as noise, since their energy is more evenly 
distributed throughout the signal frequency range, as can be seen in Fig. 2, which tends 
to decrease the performance of two-dimensional encoders. In order to overcome that, 
two main approaches can be employed: rearranging the SEMG matrix [26], that is, 
adding a additional preprocessing step, with the goal of helping image encoders to bet-
ter exploit signal redundancies, or choosing a two-dimensional encoder that does not 
expect large low-frequency content or is able to adapt to the input data [30].

Regarding the first approach, some recent studies [26, 29, 32] have proposed pre-
processing techniques, which, in general, attempt to increase correlation among signal 
segments (columns or rows) or make them more evident, in such a way that two-dimen-
sional coding tools can provide good performance. For instance, preprocessing tech-
niques may rely on segment reordering [26, 29], which is based on some metric, length 
equalization [33], DC component removal [32], or even some kind of signal decomposi-
tion [34]. Here, two preprocessing techniques will be tackled: the newly proposed SbS, 
which splits the input signal adaptively, by altering the number of samples within seg-
ments, and the PDS algorithm, which rearranges segments of the input signal, based on 
their similarities.

The second approach may be implemented through the use of an alternative paradigm 
for data compression, known as pattern matching [35, 36], which is easily identified in 
the available image literature. The related algorithms can operate in spatial domain, 
where the input image is divided into blocks that are approximated by patterns avail-
able in a dictionary. In summary, those schemes can be developed without assuming any 
signal behavior and perform encoding in an adaptive way, which is interesting for SEMG 
compression.

A viable two-dimensional option is the MMP algorithm, which is based on recur-
rent pattern matching, uses adaptive dictionaries, and presents competitive results, 
for both smooth and nonsmooth images [30]. Besides, MMP has been already used for 

Fig. 2  Spectrum of an SEMG image
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compressing ECG signals [15], stereoscopic images [37], speech signals [38], and video 
[39], which reinforces its universal behavior. It is worth noticing that MMP also presents 
good performance when used for compressing Gaussian signals [30], which, along with 
its universal behavior, makes MMP a good option for SEMG image encoding.

This work explores the two mentioned approaches for SEMG signal compression, in 
order to produce new schemes that are able to better exploit signal redundancies and 
provide good performance, as explained in the following sections.

The MMP algorithm

The MMP is a data compression algorithm based on recurrent pattern matching, which 
was introduced by de Carvalho, da Silva e Finamore [40], in 2002, and has been updated 
over the years; its most recent version was named as MMP-II [30]. In the present work, 
the most relevant features of MMP are presented, which include its basic operation and 
main coding techniques.

MMP is an algorithm able to approximate image blocks at a given scale l, using ele-
ments from an adaptive dictionary D. Actually, the latter consists of subdictionaries Dl, 
in order to address each scale l. MMP starts by searching, for every block Xl of the input 
image, an element Sli, from dictionary Dl , that minimizes the Lagrangian cost function 
J, defined by

where D(Xl , Sli ) is the sum of squared differences, � is a Lagrangian multiplier [41], and 
R(Sli ) is the rate necessary for encoding the dictionary element.

After selecting the element with smallest cost, the original block is segmented across 
the vertical and horizontal directions [42], as shown in Fig.  3. The vertical segmenta-
tion generates two new subblocks, Xl−1

0  and Xl−1
1 , each with half size, considering the 

original block. Then, the algorithm will look for the elements Sl−1
i0  and Sl−1

i1 , in D l−1, 
that minimize the Lagrangian costs regarding Xl−1

0  and Xl−1
1 , respectively. Subblocks 

Xl−2
2  and Xl−2

3  are generated through the horizontal segmentation and the same cod-
ing procedure is applied. Indeed, the mentioned segmentation procedure is recursively 
performed: MMP operates with an initial block size of 16× 16, which corresponds to the 
highest scale (l = 25), and segments down until the lowest possible level (l = 1), that is, 
blocks of size 1× 1. The result of such a procedure is shown in Fig. 3.

(1)J (Xl) = D(Xl , Sli )+ �R(Sli ),

16 x 16

16 x 816 x 8
8 x 16

8 x 16

8 x 8

8 x 8
16 x 4 16 x 4
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4 x 16
8 x 8 8 x 8 4 x 16

4 x 16

1 x 1 1 x 1 1 x 1 1 x 1 1 x 1 1 x 1 1 x 1 1 x 1

............... ... ... ... ... ... ... ...
... ... ...

Fig. 3  Example regarding the MMP segmentation scheme, for a block of size 16× 16, which is repeated until 
the lowest scale is reached
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Given that block dimensions are equal to 2m × 2n, with m, n = {0, 1, 2, 3, 4}, and con-
sidering an input block of 16× 16, the MMP dictionary is composed by 25 subdiction-
aries, at different scales. The relationship between scale and blocks, of size M × N , is 
provided by

The next procedure performed by the MMP algorithm is the optimization of the seg-
mentation tree, where it analyzes the Lagrangian cost, for each possible partition, and 
decides whether subblocks, at some scale, are segmented or not. For instance, if the cod-
ing cost of a parent block, at level l, is lower than the overall cost of its two children 
blocks, at level l − 1, the parent block will not be segmented. The cost function for a 
block that is not segmented is defined by

where R(flag) is the rate needed for encoding an element flag, which informs that the 
associated block was not segmented. The Lagrangian cost regarding children blocks 
(subblocks) is defined by

where R(flag) is the rate needed for encoding the segmentation direction.
The result of the presented optimization process is the best possible representation, 

for the original input block, and can be represented by an optimal tree, which is obtained 
after pruning the full segmentation one. In the example shown in Fig. 4, every leaf of the 
optimal tree corresponds to a nonsegmented block, which was approximated by a single 
dictionary element, and every node corresponds to a segmented block, which is approxi-
mated by the concatenation of two elements available in a given dictionary.

(2)Scale =



























(log2M + 1)(log2N + 1), if M = N

(log2M + 1)(log2N + 1)+ (log2M − 1)
�

log2
M
N

�

, ifM > N

(log2M + 1)(log2N + 1)+ (log2N − 1)
�

log2
N
M

�

+ 1, if M < N

(3)Jns(X
l) = J (Xl)+ �R(flag),

(4)Js(X
l) = J (Xl−1

j )+ J (Xl−1
j+1 )+ �R(flag),

i0

i1

i2
i3

i4

i0

i1

i2

i3 i4

V

H

V

H

ba
Fig. 4  a Segmentation of an input image block and b its corresponding optimal tree
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Combining MMP and predictive coding

Rodrigues et al. [43] presented a new image coding algorithm called MMP-Intra, whose 
goal was to improve the performance of the original MMP algorithm, when compressing 
smooth images. Such an approach employs predictive coding techniques for exploiting 
spatial correlations, within input images, in the same fashion as done in H.264/MPEG-4 
advanced video coding (AVC) [28]. As a result, MMP ultimately encodes residue sig-
nals with highly peaked probability distributions, which favors its block approximation 
procedure [30]. The same prediction modes used in the H.264/AVC standard [28] are 
adopted by MMP-Intra; however, the DC mode is replaced by the most frequent value 
(MFV) [30].

In order to generate residue blocks, MMP-Intra uses previously encoded neighboring 
samples for creating prediction blocks Pl

M, which are then subtracted from the current 
block Xl. Such a procedure is modeled by

where Pl
M is the prediction block, at scale l, and M is the chosen prediction mode for 

generating the residue block Rl
PM

.
Each prediction mode has a Lagrangian cost regarding residue reconstruction, which 

is given by the coding cost imposed by MMP, according to (3) and (4), and the rate 
required to transmit the prediction mode, that is,

The MMP-Intra algorithm employs prediction techniques across the segmentation tree, 
in a hierarchical way. It tests each available prediction mode for every block, whose scale 
rages from 25 to 9, in order to find the best possible approximation. Thus, the segmenta-
tion procedure can be associated with the prediction and optimization processes.

The final result of that procedure is represented by a segmentation tree, which is then 
optimized. In Fig. 5, the original block is vertically segmented and prediction procedures 
are performed in both halves, which generates residue blocks through prediction modes 
M1 and M2. The right half is also further segmented by MMP, in order to achieve an 
optimal representation.

(5)Rl
PM

= Xl
− Pl

M ,

(6)JPM (X
l) = J (Rl

PM
)+ �R(M).

i0

i1

i2

i3

M1 M2

Fig. 5  Segmentation of an image block that is encoded with prediction techniques
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The dictionary update procedure

The dictionary update procedure is one of the most important tasks performed by MMP, 
given that it is responsible for generating new matching patterns and increasing its rep-
resentation power. It can be regarded as an adaptive module and is the main responsible 
for the universal behavior of MMP [30].

The MMP dictionary does not require any knowledge of the input signal, although that 
can be done, in order to improve its coding efficiency. The initial elements, of each sub-
dictionary, are homogeneous blocks obtained within the range [−255, 255], in a nonu-
niform fashion, except for the dictionary at scale 1 (1× 1), which includes all possible 
values. When a block Xl is segmented, a new dictionary pattern is created, by concat-
enating the dictionary blocks, at scale l − 1, used for representing the resulting children 
blocks. Indeed, that new element updates every possible scale, through a separable scale 
transformation Ts

l  [40].
Every time a new element is added to the multiscale dictionary, a new index is cre-

ated and, consequently, the average entropy of existing dictionary indexes increases, 
which reduces the MMP coding performance. Rodrigues et al. [30] introduced an effi-
cient redundancy control scheme that limits the dictionary increase, given that a new 
element is added only if its relative distance, regarding existing blocks, is superior to a 
given threshold. Therefore, it avoids the creation of new elements that contribute little 
to coding.

Rodrigues et al. [30] also added geometric transforms and the additive symmetric, to 
the dictionary update procedure, rearranged dictionary elements within partitions with 
different probability contexts, according to the original element scale, and employed a 
norm-equalization procedure.

The MMP bitstream

In order to encode an optimal tree, the original MMP algorithm represents tree nodes 
through flags; however, due to the addition of hierarchical prediction techniques, the 
current tree also contains nodes for identifying segmentation procedures.  In summary, 
a node may be created by hierarchical prediction techniques or provided by the resi-
due segmentation process. Accordingly, five different flags should be used for identifying 
nodes:

• • Flag “0” represents a tree leaf, which is followed by a dictionary index; however, if a 
prediction mode is sent for this block, it is also followed by a prediction mode flag;

• • Flag “1” represents a tree node with vertical segmentation;
• • Flag “2” represents a tree node with horizontal segmentation;
• • Flag “3” represents a tree with vertical segmentation, through the hierarchical pre-

diction process;
• • Flag “4” represents a tree with horizontal segmentation, through the hierarchical pre-

diction process.

The resulting optimal tree is converted into a symbol string, through a top-down 
approach. When a vertical or horizontal segmentation occurs, the subtree that corre-
sponds to the left or upper branch, respectively, is first encoded and then followed by 
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the right or lower branch subtree. In the example of Fig. 5, MMP-II would generate the 
following symbol string:

The generated symbols are then fed to an adaptive arithmetic encoder [30], which use 
distinct probabilistic models. In order to code dictionary indexes, the MMP algorithm 
takes into account the block scale and the element that gave rise to a respective pattern. 
It is done this way because the adaptive dictionary of MMP, at a given scale, is parti-
tioned according to the scale of the block that gave rise to a given pattern.

Optimizing MMP for SEMG signals

In this section, the contributions of the present work to the base MMP algorithm, 
with the goal of improving compression performance regarding SEMG signals, will be 
clarified.

In order to use the MMP algorithm for encoding SEMG signals and improve the asso-
ciated performance, an adaptation for that kind of signal and an investigation of differ-
ent predictive schemes are presented. The new prediction approach is similar to what is 
done in the HEVC standard [44], whose goal is to improve the exploitation of intra- and 
intersegment correlations.

Adaptation of the current MMP version (MMP‑II)

MMP was developed to work with portable grayscale map images, which present 8 bits 
per pixel and positive dynamic range. Considering that prediction techniques may pro-
duce negative amplitudes, even when derived from grayscale levels, the dictionary is 
built with blocks composed by elements within [−X ,X]. Besides, images generated from 
SEMG signals present a bit depth greater than 8, that is, the necessary dynamic range 
is different. In order to overcome those problems, MMP was adapted to handle larger 
dynamic ranges and thus build its dictionary according to that.

The initial dictionary elements are determined nonuniformly, as in the original MMP, 
but with a slight difference: specifically, the first block is the largest image value multi-
plied by −1; then, the next one is determined by the value of the previous block plus step 
p, which is defined according to

As one may notice, the range of intensity values near zero is the most explored, due 
to the fact that the sample distribution regarding residue signals tends to be clustered 
around zero.

The MMP redundancy control scheme introduced a minimum distortion value d, 
among blocks of a given dictionary scale. Indeed, d must be carefully determined, 
because it will influence the resulting coding performance. For example, when it is too 

3 0 M1 i0 2 M2 0 i1 2 0 i2 0 i3.

(7)
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large, patterns can not be accurately matched, because there will be a lower number of 
blocks with great variation among them, which is an interesting approach for low rates. 
However, for high rates, lower values of d must be used, given that a larger number of 
blocks will be added to the multiscale adaptive dictionary, with small variations among 
them, which then allows a more accurate block matching. As the bitrate is a consequence 
of the numerical value chosen for �, the function relating � and d is defined by

The relation between d and � was determined in a heuristic way, in order to optimize val-
ues for d and provide a good dictionary composition, for a given bitrate. In each experi-
mental test, distinct pairs, composed of values for d and �, were employed. As a result, 
(8) is capable of generating pairs that achieve the best results, for the entire SEMG test 
database, in average.

Improved prediction techniques

Intraframe prediction techniques have been successfully used in MMP, given that the 
related experimental results showed an increase in performance, for smooth and non-
smooth images. The main reason behind such an improvement is that prediction tech-
niques change the data to be encoded, with the goal of making residue samples present 
highly peaked probability distributions, centered around zero [30]. Due to that, the dic-
tionary adaptation procedure was favored, which resulted in a more efficient encoding, 
regarding rate-distortion figures.

Prediction algorithms basically create an estimation of image blocks, through predic-
tion directions, which results in a difference signal that may be encoded at lower rates. 
Generally, prediction schemes with more prediction directions may lead to better block 
estimation, as long as the necessary coding rate (increased by new symbols) is compen-
sated by the distortion gain.

Based on that, the adoption of more angular predictions, as done in HEVC, is pro-
posed in this work. In summary, the new scheme replaces the eight original directional 
modes, used in MMP-Intra/MMP-II, by 33 new directional modes, as shown in Fig. 6. 
Moreover, while the current MMP approach uses neighboring samples from previously 
left, above, and upper-right coded blocks, in order to perform intra prediction [30], the 
proposed scheme also includes lower-left coded blocks.

The MMP-II algorithm performs angular predictions based on an extrapolation 
regarding reconstructed samples, from previously encoded blocks, through a given 
direction. However, such samples may be obtained, during prediction procedures, from 
blocks with different scales. In order to optimize this process, two reference vectors are 
created, during the intra prediction procedure, which are used in all scales. The first ref-
erence, called vertical vector, contains all necessary samples to carry out angular modes 
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
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2 to 17, while the second one, called horizontal vector, contains all necessary samples to 
carry out angular modes 18 to 34.

In addition to angular predictions, the proposed scheme employs the planar and MFV 
modes, as nonangular predictions, which are commonly used for smooth regions. The 
MFV mode uses the most frequent value in the reference vectors, in order to compute 
a prediction, while the planar mode performs two linear interpolations, one using the 
horizontal vector and other using the vertical one; the average of those interpolations 
results is the predicted value.

Typically, some prediction directions may produce similar values, when used for small 
blocks. Due to that, it is interesting not to use prediction modes for some blocks, with 
small scales, in order to improve coding performance (entropy coding). Nonetheless, as 
SEMG images are similar to noise, small variations in prediction data may produce dis-
torted representations. Consequently, the proposed scheme adopts the use of all possi-
ble angular prediction modes, regarding blocks at scales higher than 3; in the remaining 
scales, no prediction mode is used. Furthermore, the planar mode is used only in scales 
4, 9, 16, and 25, because this mode has similar results regarding the MFV one, for other 
scales.

Since the same prediction techniques available in HEVC are used in the proposed 
scheme, and HEVC employs blocks of size 32× 32, it may be worthwhile to investigate 
the use of input blocks with the same dimensions. The first consequence is the inclu-
sion of eleven more scales (e.g., 32× 16, 16× 32, etc.), which would result in a coding 
procedure with 35 scales. Indeed, HEVC uses larger blocks, due to the need for han-
dling high definition, which normally presents larger smooth areas. However, this is not 
the case with images generated from SEMG signals, since, as already mentioned, they 
tend to present a behavior that is still similar to noise, no matter the chosen segment 
size. As a consequence, matching larger blocks is still difficult, which results in further 
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Fig. 6  Prediction techniques (angles) used to enhance MMP
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block partitioning (more segmentation and prediction mode flags) that consequently 
decreases the expected coding efficiency.

Another important issue regarding the use of larger blocks is the resulting coding 
complexity. More scales result in more dictionaries and consequently greater number 
of operations, since the selection of a dictionary element involves a search for the block 
that causes the lowest distortion. Furthermore, for each block segmentation, prediction 
is performed for the new children blocks, which involves operations with 33 angular and 
2 nonangular prediction modes.

Based on what was presented, one can easily conclude that larger blocks would result 
in higher computational complexity and, for images generated from SEMG signals, the 
resulting coding efficiency is expected to decrease. Indeed, such conclusions were con-
firmed by experimental results, which were performed during the development of this 
work. Consequently, the largest scale for encoding SEMG signals remained as 25, that is, 
input blocks of 16× 16.

The final result of the modifications performed in MMP-II is a new encoder, which is 
able to quickly adapt to nonsmooth-signal characteristics and has the potential to effi-
ciently exploit the similarities present in SEMG images.

Preprocessing techniques

SEMG signals may present nonstationary behavior [45], which means that the initial 
segmentation procedure, employed for creating image columns, may produce a two-
dimensional signal with low correlation among samples from different segments, or even 
regarding the same segment.

However, preprocessing techniques can reshape or reorganize signals, in order to 
increase intra- and intersegment correlations. For instance, reordering signal segments 
may lead to more homogeneous areas within a SEMG image, which contributes to an 
increase in intersegment dependencies. In addition, preprocessing techniques can also 
segment input signals, according to the correlation among neighboring samples, which 
would directly increase intrasegment dependencies. Therefore, preprocessing tech-
niques have the potential to improve the exploitation of signal redundancies, when tak-
ing into account image encoders.

The percentage difference sorting algorithm

Since images are generated from one-dimensional SEMG signals, adjacent signal seg-
ments may present low correlation, which tends to decrease the performance of image 
encoders. Nonetheless, each SEMG segment can be treated as an independent unit, 
which means that segments can be rearranged, in order to increase correlations associ-
ated with two-dimensional signals.

Given that, this paper employs a technique that reorders segments based on their sim-
ilarities, known as the PDS algorithm [29], which computes similarities through

(9)PD(x,m) =

∑N−1
n=0 (x[n] −m[n])2
∑N−1

n=0 x2[n]
,
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where PD(x, m) represents the percentage difference regarding x and m segments, x[n] 
is the last sorted segment, m[n] is the segment under analysis, and N is the number of 
samples in each segment.

The PDS procedure begins by finding the segment with smallest variance, which 
is inserted into the first column of the SEMG matrix; the next columns are then rear-
ranged, according to their percentage difference relative to the last sorted element. An 
SEMG image rearranged through PDS is shown in Fig. 7. It is possible to notice that the 
new representation presents a more organized texture, whose complexity increases from 
left to right.

It is worth noticing that when PDS is used, it is necessary to transmit the original seg-
ment positions within an SEMG image, in order to rebuild the original one-dimensional 
signal, during the decoding process.

The adaptive segmentation procedure

As mentioned earlier, in order to compress SEMG signals with image coders, one needs 
to split the input signal, so that the resulting segments are inserted into matrix columns. 
However, the way segments are chosen and also the number of samples, in each seg-
ment, usually influence the resulting intra- and intersegment dependencies, which may 
compromise the exploitation of signal correlations.

Another important aspect is the need for transmitting side information. Although 
reordering techniques have the potential to improve the efficiency of two-dimensional 
compressors, the requirement of transmitting original segment positions may decrease 
the obtained coding gains, which arose by better exploiting signal correlations. In other 
words, the influence of the added side information lies on the need for making the sum 
between the new compressed-file size (whose original SEMG matrix was rearranged) 
and the side-information amount lower than the original compressed-file size, for the 
same quality. Thus, if the amount of side information is high, the achieved coding gains, 
due to the increase in signal correlations, may not compensate the transmission loss 
regarding side information, which makes a given preprocessing procedure too expensive.

Fig. 7  Result of percentage difference sorting: a original image and b reordered image
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In this context, if the segmentation procedure is adaptively performed, the need for 
segment reordering may be reduced. Therefore, the next proposed preprocessing tech-
nique seeks the optimal number of samples within a signal segment, in order to improve 
both intra- and intersegment correlations, which is called segmentation by similarity.

Here, (9) (the same used for the PDS technique) is used to compute similarities 
between adjacent segments. The proposed procedure begins with a segment of N sam-
ples, which is used for computing the percentage difference between adjacent segments. 
Then, the average value, regarding percentage differences among segments, is obtained 
and stored.

The explained procedure is recursively performed, where the number of samples 
within a segment is given by N = 16n, with n = {2, 3, . . . , 64}. Then, the segment size N, 
employed for creating SEMG images, that provides the lowest average percentage differ-
ence value is chosen.

One may notice that such a procedure may encounter difficulties when applied to 
real-time SEMG compression, due to the need for computing many possible configura-
tions. However, if the target SEMG records already exist, an offline encoding is feasible 
and may lead to good results, given that the proposed technique improves the genera-
tion process of two-dimensional SEMG matrices, which produces a representation that 
enhances the exploitation of signal dependencies, without the need for sending addi-
tional side information.

The compression architecture

In the proposed methodology, the SEMG encoding is performed in three stages: matrix 
formation, preprocessing, and image compressor, as shown in Fig. 8. The matrix forma-
tion stage splits an input one-dimensional SEMG signal, in such a way that a matrix with 
K rows and L columns is built and each segment occupies one of its columns. The num-
ber of samples in the input SEMG record is then sent as side information, in order to 
allow the decoder to correctly reconstruct the original signal. Next, the resulting matrix 
is preprocessed (e.g., reordering, length equalization, etc.), with the goal of increas-
ing signal correlations, which will probably result in a good performance regarding the 
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Fig. 8  The proposed compression scheme
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two-dimensional coding step. Finally, the resulting matrix signal is encoded by an image 
compressor. At the decoder end, the mentioned steps are just performed in reverse 
order, according to what was done during encoding (see Fig. 8).

It is worth noticing that if the PDS algorithm is used, which happens in the preproc-
essing step, a segment size is firstly defined in the matrix formation step, in order to gen-
erate a square matrix, and a list with original column indexes is created, arithmetically 
coded, and then added to the file header. Besides, if the SbS technique is employed, the 
first two stages are performed in only one step, given that the matrix is already created 
with a column length (and consequently number of rows) adapted to the current signal 
features. As a result, no further preprocessing is required. Finally, if MMP is employed, 
no preprocessing is performed.

Although it was developed for SEMG signals, the proposed compression scheme is 
able to encode other biological signals, by employing different preprocessing techniques 
and image compressors. Besides, different biological signals may benefit from specific 
tools for their compression. For instance, ECG signals may be segmented, based on their 
QRS complexes, and then inserted into matrix rows, through a length equalization pro-
cedure [46].

Database

The evaluation of the proposed method was carried out by experiments with real iso-
metric and dynamic SEMG signals, acquired in laboratory. A sample SEMG signal, 
retrieved from the ones used in the experiments, is shown in Fig. 9.

The isometric records were collected from the biceps brachii muscle of 13 volunteers, 
during isometric contractions. The volunteers were sat, with their forearm parallel to 
their torso and sustaining an MVC of 60 %. The resulting signals were sampled at 2000 
Hz, quantized with 12 bits, and present durations ranging from 1.3 to 3.0 minutes.

The dynamic records, in turn, were collected from the vastus lateralis of 13 volunteers, 
when performing knee-joint controlled exercises in the isokinetic concentric mode [47], 
through an isokinetic dynamometer, as described by Schwartz et al. [48, 49]. The result-
ing signals were sampled at 2048 Hz, quantized with 12 bits, bandpass filtered in the 
range 10–500 Hz, and present durations about 4 min.
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Fig. 9  SEMG signal retrieved from the test database
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Performance metrics

The distortion level of reconstructed signals, after decoding, is measured through the 
percent root-mean-square difference (PRD) and compression factor (CF) metrics, which 
are commonly adopted in the related literature. The equations that define the PRD and 
CF figures are, respectively,

where x[i] is the original signal, x̂[i] is the reconstructed one, and N is the number of 
samples, and

where the Bo is the total number of bits, in the original signal, and Bc is the total num-
ber of bits, in the compressed format. For every SEMG signal used in the performed 
experiments, Bo = 12n, which represents 12 bits resolution and n samples, for each 
signal.

Results and discussion
In this work, the JPEG2000, H.264/AVC (intra mode), HEVC (intra mode), and the pro-
posed modified two-dimensional MMP encoders were used in the image compression 
block. The JPEG2000 encoder was retrieved from Kakadu software [50] and employs 
a quantization step of 0.000025 and 16 bits per sample. The JM 18.2 reference soft-
ware [51] of the H.264/AVC standard was used to encode signals in FRExt High Pro-
file 100, with deblocking filter, rate-distortion optimization, and context-adaptive binary 
arithmetic coding enabled. The HM 9.1 reference software [52] of the HEVC encoder 
is employed in high efficiency mode, with rate-distortion optimized quantization and 
deblocking filter enabled. Finally, both SbS and PDS are employed in the preprocessing 
step, unless MMP is used.

Results for the isometric protocol

Results regarding the mentioned database (13 isometric SEMG signals), which was 
compressed with the proposed schemes, by employing the modified two-dimensional 
MMP alone and also combinations between the chosen commercial image encoders 
(JPEG2000, H.264/AVC, and HEVC) and the presented preprocessing techniques, 
are shown in Figs.  10 and 11, along with average values in Table  1. As from now, 
each combination will be represented by the following rule: encoder+preprocessing 
technique.

The modified two-dimensional MMP achieved PRDs below 7 %, for CFs smaller than 
85.4  % (see Fig.  10), which generally does not affect the diagnosis information con-
tained in biological signals [25]. MMP also overcame HEVC, in average, even with the 
proposed preprocessing techniques added to the latter, for CFs lower than or equal to 
80 % (see Table 1), and all other schemes, for the entire CF range (see Table 1). Although 

(10)PRD =

√

√

√

√

∑N−1
i=0 (x[i] − x̂[i])2
∑N−1

i=0 x2[i]
× 100,

(11)CF =

Bo − Bc

Bo
× 100,
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MMP and HEVC present similar prediction and input signal segmentation procedures, 
the fundamental difference is in the residue signal coding step, given that MMP is more 
successful in approximating noncoarse image blocks, that is, when low CFs are chosen.

Regarding JPEG2000, H.264/AVC, and HEVC, HEVC + SbS provided the best results, 
with PRD values below 7 %, for CFs below 85.5 % (see Fig. 11). The use of such an encoder 
and PDS produced PRD values below 85.45 %, for CFs below 85.45 %, however, one may 
notice that the SbS technique resulted in curves that are clustered at lower rates. Indeed, 
the SbS technique is more suitable to the prediction tools available in HEVC, given that 
a high overall correlation is obtained and the increased amount of available prediction 
directions is able to better exploit that feature. Besides, the difference in performance 
between PDS and SbS increases with higher CFs (see Fig. 11; Table 1).

JPEG2000 is competitive, however, when it is combined with SbS, there is a decrease 
in performance, given that the obtained results are worse than the ones provided by 
JPEG2000 alone (see Fig. 11; Table 1). Indeed, the SbS technique creates SEMG images 
that are difficult to encode, when processed by JPEG2000, mainly due to the shape of 
resulting homogeneous regions, which does not favor its algorithm (e.g., wavelet 

Table 1  Average PRD (%) results for the proposed methodology, regarding isometric sig-
nals

Compression factor

75 % 80 % 85 % 90 %

JPEG2000 1.53 2.38 4.05 8.27

JPEG2000 + PDS 1.46 2.26 3.81 7.65

JPEG2000 + SbS 1.88 2.86 4.95 10.09

H.264/AVC 2.93 4.03 5.99 10.21

H.264/AVC + PDS 2.79 3.83 5.73 9.79

H.264/AVC + SbS 2.89 3.95 5.78 9.87

HEVC 1.71 2.33 3.56 6.47

HEVC + PDS 1.67 2.32 3.55 6.49

HEVC + SbS 1.65 2.23 3.38 6.14

Mod. 2-D MMP 1.38 2.13 3.62 7.00
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Fig. 10  Performance of the modified two-dimensional MMP encoder with isometric signals
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decomposition, etc.). Besides, although an advanced coefficient-coding scheme is used 
in JPEG2000, wavelet transforms generally present high performance for energy con-
tent clustered at low frequencies, which is not possible with SEMG images, as already 
explained.

JPEG2000 achieved PRD values lower than 7 %, for CFs below 84.6 %, when combined 
with PDS, and the same performance for CFs below 82.9 %, when combined with the 
SbS technique (see Fig. 11). The superior performance provided by PDS is again closely 
related to the resulting signal shape: there are large and approximately square homoge-
neous regions.

H.264/AVC presented the worst results for almost the entire CF range, with or without 
preprocessing techniques. Indeed, it may seem strange, given that there are some simi-
larities with HEVC and what was integrated to the modified version of MMP. Although 
H.264/AVC, HEVC, and MMP present, in their schemes, input signal segmentation and 
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Fig. 11  Performance of the proposed scheme regarding isometric signals, for a PDS and HEVC, b SbS and 
HEVC, c PDS and H.264/AVC, d SbS and H.264/AVC, e PDS and JPEG2000, and f SbS and JPEG2000
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prediction steps, H.264/AVC employs more restricted segmentation and prediction 
schemes, which was of paramount importance to the obtained performance.

H.264/AVC  +  SbS resulted in PRD values lower than 7  %, for CFs below 80.6  %, 
whereas the PDS technique provided such PRD values with CFs below 81 % (see Fig. 11). 
The slightly better performance provided by PDS is due to the restricted partitioning 
scheme provided H.264/AVC, which benefited from the resulting homogeneous regions.

The results obtained with PDS and JPEG2000 reveal an enhanced performance, 
when compared with the original encoder alone, which is also true for H.264/AVC (see 
Table 1). Regarding HEVC, the PDS technique provides enhanced performance for CFs 
lower than 90 % (see Table 1), when compared with HEVC alone. Indeed, for high com-
pression factors (≥90 %), the increase in signal correlations did not compensate the dis-
advantage of sending side information.

Based on what was presented and the associated results, one may argue that the SbS 
technique has the potential to favor compressors that perform a flexible segmentation/
prediction of the input image, as done in HEVC, while PDS is more suitable to compres-
sors that rely on large homogeneous regions. Nonetheless, it is clear that HEVC + SbS 
is the best choice for high CFs and the modified MMP is more suitable to low CFs; how-
ever, the JPEG2000 +  PDS is still competitive. Indeed, given that JPEG2000 presents 
low computational complexity, when compared with HEVC, it may be an interesting 
approach for low power or restricted devices.

Finally, one can argue that the modified two-dimensional MMP is very competitive 
and is even able to outperform transform-quantization-coding based approaches, when 
low CFs are chosen.

Table  2 provides results regarding MMP, H.264/AVC, JPEG2000, HEVC  +  SbS, 
JPEG2000 + PDS, H.264/AVC + PDS, and other schemes present in the available lit-
erature. Some of them employ wavelet transform and a processing step for coding trans-
form coefficients.

Table 2  Average PRD (%) results for  isometric SEMG signal compression, with  different 
schemes

Compression factor

75 % 80 % 85 % 90 %

Norris et al. [22] 3.8 5 7.8 13

Berger et al. [23] 2.5 3.3 6.5 13

Filho et al. [25] 1.61 2.51 4.13 7.36

Chaffim et al. (JPEG2000) [26] 3.50 4.48 6.92 13.44

Chaffim et al. (H.264/AVC) [26] 5.37 6.90 9.93 16.62

Trabuco et al. [24] 2.22 2.52 3.31 6.88

JPEG2000 1.53 2.38 4.05 8.27

JPEG2000 + PDS 1.46 2.26 3.81 7.65

H.264/AVC 2.93 4.03 5.99 10.21

H.264/AVC + PDS 2.79 3.83 5.73 9.79

HEVC + SbS 1.65 2.23 3.38 6.14

Mod. 2-D MMP 1.38 2.13 3.62 7.00
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The one proposed by Norris, Englehart, and Lovely [22] encodes wavelet transform 
coefficients through the EZW algorithm, which exploits correlations between subbands 
and encodes coefficients according to their order of importance. The scheme proposed 
by Berger et al. [23] quantizes transform coefficients through a Kohonen layer, in order 
to determine the coefficient bit allocation. Likewise, Trabuco, Costa, and de Oliveira 
Nascimento [24] use a dynamic bit allocation scheme based on mathematical models 
for spectral shapes, where one is the rotated hyperbolic tangent. A scheme similar to 
what is proposed here was developed by Chaffim et al. [26] and employs a preprocess-
ing technique called correlation sorting, which is combined with the H.264/AVC and 
JPEG2000 encoders. Actually, their main differences lie on the developed preprocessing 
techniques and encoder configurations. Finally, Filho et al. [25] proposes a one-dimen-
sional approach of MMP, which uses an adaptive dictionary that is updated by concat-
enations, expansions and contractions of previously encoded blocks.

The test signals used in the other evaluated methods present similar acquisition proto-
cols, regarding what was employed in the present work. Besides, almost all signals were 
acquired during isometric contractions of the biceps brachii muscle, with 2 kHz samples 
per second and 12-bit resolution, except for the one presented by Trabuco et al. which 
uses 16-bit resolution. As a result, such facts indicate that the performance comparison 
performed here is valid and, regarding Trabuco et al., at least a rough analysis may be 
carried out.

The proposed modified two-dimensional MMP achieved the best performance for 
CFs of 75 and 80 %, overcoming transform-quantization-coding schemes with wavelets 
and DCT, and also a one-dimensional version of MMP. Indeed, the latter was already 
expected, since the proposed modified two-dimensional MMP encoder has a lot of addi-
tional tools, such as prediction techniques, norm-equalization procedure, and diction-
ary-redundancy control, and is more successful in exploiting intra- and intersegment 
correlations. In that same low-CF range, JPEG2000 +  PDS overcame the one-dimen-
sional MMP and HEVC + SbS presented competitive results.

Regarding CFs of 85 and 90  %, the proposed schemes provided competitive results, 
however, even HEVC +  SbS was outperformed, at a CF of 85  %, by the method pro-
posed by Trabuco, Costa, and de Oliveira Nascimento [24]. The main reason is that the 
redundancy exploitation regarding transform coefficients, by the dynamic bit allocation 
employed in the latter, was more effective. Particularly, the mathematical quantization 
model of that method approximates the spectral shape of the signal, which, for that CR, 
was more efficient than the adaptive dictionary of the proposed MMP version.

Finally, the performance of JPEG2000 and H.264/AVC, with and without the proposed 
preprocessing techniques, overcame the method proposed by Chaffim et al. [26], which 
uses the same encoders, but with different preprocessing techniques. Indeed, it seems 
that even the conversion from one-dimensional SEMG records to SEMG images and the 
basic compression framework, presented here, were more carefully performed and are 
somehow superior, or the chosen image encoders were not properly configured. Moreo-
ver, it is important to note that the results achieved by HEVC + SbS were superior to all 
other evaluated methods, regarding CFs of 80 and 90 %, but the proposed modified two-
dimensional MMP, at a CF of 80 %.
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In order to illustrate the quality of reconstructed isometric SEMG signals, after com-
pression processes with MMP, original and reconstructed signal segments are shown in 
Fig. 12, as well as the associated error signal. As one can notice, the visual differences 
between the original and reconstructed signals are not meaningful, that is, the error-
signal energy is low. Thus, in that case, it can be stated that the spatial domain approach 
performed by the proposed MMP algorithm has the potential to preserve the input sig-
nal waveform and, consequently, its clinical information.

The same conclusions presented in the last paragraph can be used for Fig. 13, whose 
reconstructed and error signals are related to the proposed image encoders and preproc-
essing techniques, with the same input signal and CF. Moreover, as the performance of 
each association between preprocessing technique and encoder is different, the resulting 
error signals are also distinct, although they present a scale that is ten times smaller.

Results for the dynamic protocol

Results regarding the dynamic database (13 dynamic SEMG signals), concerning the 
proposed image encoders and preprocessing techniques, are shown in Figs. 14 and 15, 
along with average values in Table 3.

Firstly, PRD figures lower than 7  % are only achieved for CFs lower than 75  %, as 
shown in Figs. 14 and 15. Besides, there are no large differences between the proposed 
preprocessing techniques, except for some records compressed with JPEG2000.
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Fig. 12  Compression result for a segment from one of the test isometric SEMG signals, at a CF of 87.3 %: a 
original, b reconstructed after being encoded with the modified two-dimensional MMP, and c error signal
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The following discussion refers to Table 3. At a first glance, it is clear that the modified 
two-dimensional MMP is not as successful as in the isometric scenario. MMP overcame 
H.264/AVC for high CFs (85 and 90 %) and HEVC for a CF of 75 %, even when they 
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Fig. 13  Compression result for a segment from one of the test isometric SEMG signals, at a CF of 87.3 %: 
 a signal reconstruction with SbS + HEVC, and b error signal, c signal reconstruction with PDS + HEVC and 
d error signal, e signal reconstruction with SbS + H.264/AVC and f error signal, g signal reconstruction with 
PDS + H.264/AVC, and h error signal, i signal reconstruction with SbS + JPEG2000, and j error signal, and 
 k signal reconstruction with PDS + JPEG2000, and l error signal
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used preprocessing techniques, and the base H.264/AVC, for the entire test CF range. 
Regarding the base HEVC algorithm, MMP is competitive and even provides better per-
formance for CFs of 75, 85, and 90 %, but it is outperformed when preprocessing tech-
niques are employed, at CFs of 80, 85 and 90 %.

With respect to JPEG2000, H.264/AVC, and HEVC, H.264/AVC + PDS provided the 
best results for CFs of 75 and 80 %, while HEVC + PDS overcame all other options for 
CFs of 85 and 90 %, as can be seen in Table 3. It seems that the relatively high-peaks 
existent in dynamic signals are better handled by H.264/AVC, since there are fewer pre-
diction directions, which require fewer bits to be encoded, and PRD results tend to be 
reduced (since it is a relative measure), due to high sample values (peaks). As already 
happened, during the previous simulations, the performance of HEVC, in relation to 
H.264/AVC, tends to improve with higher CFs. The performance difference between the 
proposed preprocessing techniques was much smaller, when compared with what was 

Table 3  Average PRD (%) results for  the proposed methodology, regarding  dynamic sig-
nals

Compression factor

75 % 80 % 85 % 90 %

JPEG2000 4.997 7.326 10.357 13.769

JPEG2000 + PDS 4.743 6.834 9.927 13.025

JPEG2000 + SbS 4.996 7.312 10.314 13.552

H.264/AVC 4.510 6.564 9.630 13.486

H.264/AVC + PDS 4.256 6.214 9.236 13.056

H.264/AVC + SbS 4.270 6.262 9.194 13.043

HEVC 4.784 6.410 9.220 12.871

HEVC + PDS 4.707 6.248 8.909 12.603

HEVC + SbS 4.709 6.233 8.929 12.605

Mod. 2-D MMP 4.296 6.474 9.069 12.788
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Fig. 14  Performance of the modified two-dimensional MMP encoder with dynamic signals
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obtained in the isometric scenario. In summary, the proposed schemes provided good 
results, even when JPEG2000 is combined with SbS, which had not happened during 
simulations with isometric signals.

JPEG2000 is not as competitive as in the isometric scenario and, in the present case, 
the combination with SbS presented a slight performance increase (see Fig. 15; Table 3). 
As in the previous scenario, the best results were obtained with the PDS technique. It is 
worth noticing that JPEG2000 + PDS outperformed H.264/AVC, even with preprocess-
ing techniques, for a CF of 90 %, as shown in Table 3.

H.264/AVC presented the its best performance with PDS, for CFs of 75, 85, and 90 %, 
whereas, for a CF of 80 %, the combination with SbS produced the best result. Besides, 
its performance degrades for high CFs (see Fig.  15), in comparison with the other 
schemes.
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Fig. 15  Performance of the proposed scheme regarding dynamic signals, for, a PDS and HEVC, b SbS and 
HEVC, c PDS and H.264/AVC, d SbS and H.264/AVC, e PDS and JPEG2000, and f SbS and JPEG2000
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HEVC provided competitive results, mainly for CFs greater than 80  %; however, at 
low CFs, it was overcome by H.264/AVC. This is an interesting result, given what was 
obtained with isometric signals.

As a general comment, preprocessed dynamic SEMG matrices are not as homogene-
ous as isometric ones, which is closely related to the original signals. Indeed, in dynamic 
contractions, there may be variations in speed, strength, and joint angle, which modify 
the signal behavior during tests. As a consequence, even the SbS technique is not able to 
create a high-correlated arrangement, as in the isometric case, which has an impact on 
the flexible prediction scheme of HEVC. In addition, this same behavior compromises 
the convergence of the adaptive dictionary module in MMP.

Differently from the previous simulations, no combination with preprocessing tech-
nique presented decrease in performance, when compared with the respective base 
algorithm. It indicates that representations created with the proposed preprocessing 
techniques present high correlation and compensate the additional side information. 
Finally, both SbS and PDS have the potential to favor the adopted compressors.

Table 4 presents a brief comparison among the proposed compression methodology 
and some schemes available in the literature. The ones proposed by Norris et al. [22], 
Berger et al. [23], and Chaffim et al. [26] employ the same algorithms used for isomet-
ric signals; however, Trabuco et al. [24] used a dynamic bit allocation scheme, based on 
decreasing square-root spectral shapes, for encoding transform coefficients.

It is important to notice that the dynamic signals used by the other schemes were 
obtained with different acquisition protocols. Berger et al. [23] and Trabuco et al. [24] 
used records acquired from the vastus lateralis of individuals riding a cycling simulator, 
as also done by Chaffim et al. [26], which included signals from the vastus medialis, and 
Norris et al. [22] employed signals representing cyclic contractions of biceps, while the 
signals used here were obtained from the vastus lateralis muscle, when individuals were 
using an isokinetic dynamometer. During the test phase, some records acquired with a 
cycling-based protocol were retrieved and compared with the ones used here and, after 

Table 4  Average PRD (%) results for  dynamic SEMG signal compression, with  different 
schemes

Compression factor

75 % 80 % 85 % 90 %

Norris et al. [22] 7.93 9.06 10.02 19.98

Berger et al. [23] 2.70 4.41 7.52 20.10

Chaffim et al. (JPEG2000) [26] – 4.39 5.77 9.39

Chaffim et al. (H.264/AVC) [26] 4.13 5.16 7.12 11.30

Trabuco et al. [24] 4.70 5.41 6.40 8.22

JPEG2000 + PDS 4.743 6.834 9.927 13.025

H.264/AVC + PDS 4.256 6.214 9.236 13.056

H.264/AVC + SbS 4.270 6.262 9.194 13.043

HEVC + PDS 4.707 6.248 8.909 12.603

HEVC + SbS 4.709 6.233 8.929 12.605

Mod. 2-D MMP 4.296 6.474 9.069 12.788
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a brief analysis, the main conclusion was that the latter present greater challenges to the 
proposed compressors.

Keeping in mind what was discussed in the last paragraph, the proposed schemes out-
performed the ones presented by Norris et al. [22] and Berger et al. [23], for entire test 
range and only for a CF of 90 %, respectively. Regarding the methods presented by Chaf-
fim et al. [26], the proposed ones are competitive, at low CFs. For a CF of 75 %, the best 
result was provided by the method presented by Berger et al. [23], while the JPEG2000 
version introduced by Chaffim et al. [26] overcame all others for CFs of 80 and 85 % and 
Trabuco et al. [24] provided the best result for a CF of 90 %.

In order to illustrate the quality of reconstructed dynamic SEMG signals, after com-
pression processes with the proposed schemes, as already done for isometric records, 
reconstructed signal segments and the associated error are shown in Figs. 16 and 17, as 
well as the original portion, in Fig. 16. The proposed methodology was employed with a 
CF of 87.3 %, as already done for the isometric scenario. Once again, differences between 
original and reconstructed signals are small and the same conclusions presented for the 
isometric scenario apply here.

Conclusions
This paper presents three main contributions: a two-dimensional approach based on the 
MMP algorithm, a new preprocessing technique called SbS, and SEMG compression 
results with HEVC. The MMP algorithm was adapted to work with SEMG signals and 
its prediction framework was replaced by an approach similar to what is used in HEVC. 
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Fig. 16  Compression result for a segment from one of the test dynamic SEMG signals, at a CF of 87.3 %: a 
original, b reconstructed after being encoded with the modified two-dimensional MMP, and c error signal
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The proposed architecture employed three off-the-shell image compressors: JPEG2000, 
H.264/AVC, and HEVC, with and without the SbS and PDS preprocessing techniques.

In experiments carried out with real isometric SEMG signals, with the goal of evalu-
ating the proposed methodology, the SbS technique was able to improve the exploita-
tion of the intra- and intersegment dependencies of HEVC and H.264/AVC (intraframe 
mode), while PDS improved the performance of all chosen encoders. Furthermore, the 
proposed modified two-dimensional MMP algorithm presented good results and out-
performed state-of-the-art methods present in the literature, for low compression fac-
tors, whereas HEVC combined with SbS achieved good results for high compression 
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Fig. 17  Compression result for a segment from one of the test dynamic SEMG signals, at a CF of 87.3 %: a 
signal reconstruction with SbS + HEVC and b error signal, c signal reconstruction with PDS + HEVC and d 
error signal, e signal reconstruction with SbS + H.264/AVC and f error signal, g signal reconstruction with 
PDS + H.264/AVC and h error signal, i signal reconstruction with SbS + JPEG2000 and j error signal, and k 
signal reconstruction with PDS + JPEG2000 and l error signal
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factors. Finally, JPEG2000 combined with PDS can still be regarded as an interesting 
option, for low compression factors.

Regarding experiments carried out with real dynamic SEMG signals, the proposed 
methodology do not seem to be as successful as in the isometric scenario, at least at 
a first glance. However, the acquisition protocol used here is different from the ones 
employed in the other schemes and results in signals that seem harder to compress. 
Nonetheless, no combination between preprocessing technique and two-dimensional 
encoder resulted in performance decrease. In addition, one may argue that tests with 
the same signals used in the other approaches may provide good results, given what was 
obtained with the similar schemes presented by Chaffim et al. [26]

The proposed combinations among preprocessing methods and two-dimensional 
encoders were efficient in encoding SEMG signals as images. The base structure can 
be easily implemented on different computer architectures, given that image compres-
sors can be easily ported or may be already available. Indeed, medical applications using 
embedded systems can benefit from what was presented, given the potential for reduc-
ing power consumption, conserving bandwidth, and saving storage space, in applications 
using databases.

As future work, new preprocessing techniques for SEMG signals will be developed, 
which will mostly rely on spectral features, and the proposed frameworks will be adapted 
to other biological signals, such as ECG and EEG, which will also drive the development 
of other preprocessing steps. Besides, electromyographic signals acquired with elec-
trode-arrays and high-density EMG will be investigated.
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